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In this paper, we present results of high precision computations for the
ground energy of weakly coupled double well potential in quantum mechan-
ics. We give a numerical evidence for cancelation of imaginary contributions
to energy coming from Borel resummation and multi-instanton terms. We
also estimate several higher coefficients of the multi-instanton expansion
which are not given in the literature.
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1. Introduction

The question of the relation between the perturbative and non-pertur-
bative contributions in quantum theories is a long standing one. The answer
emerged over years of studies and is well known, e.g. for the anharmonic os-
cillator [1, 2]. The two contributions are, in principle, additive, however,
there is a subtle interplay between them. Namely, the ambiguities in resum-
mation of perturbative, asymptotic series are non-perturbative and cancel
against the ones of multi-instanton contributions. In this paper, we verify
this claim by confronting theoretical predictions with, very high precision,
numerical solutions of the problem.

We consider a double well potential in the following parametrization

V (x) = 1
2x

2
(
1−√gx

)2
. (1)

As it is well known [3], the perturbation series for the ground energy E(g)
is not Borel summable. Still, one can perform a Borel sum for complex
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(49)
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coupling constant g and analytically continue it to positive axis from lower
or upper half of the complex plane. This freedom results in an ambiguity
of imaginary part of the Borel sum. However, there is another ambiguity
originating from instanton contributions to energy. As stated in [1], these
imaginary terms must cancel.

In this paper, we give a direct numerical evidence of this fact. To this
end, we find perturbative series of the ground state energy and construct its
Borel transform. Then, we continue it analytically using Padé approximation
and perform inverse Borel transform. It is done in the limit g = <g + i0+.
Next, we demonstrate that imaginary part of the two-instanton molecule
contribution derived by Bogomolny [2] cancels imaginary part of energy in
Borel sum at leading order. We also confirm cancelation of higher order
imaginary terms given by Jentschura and Zinn–Justin in [4] and find next
few coefficients of their expansion.

To compute energies numerically, we use, essentially exact, cut Fock
space approach [5–8]. With this method, we show that real part of the
Borel sum plus two-instanton molecule contribution give very accurate ap-
proximation to the energy for small couplings.

2. Borel resummation

One can find perturbation series of the ground state energy E(g) =∑∞
k=0 εkg

k up to high orders using the Rayleigh–Schrödinger perturbation
theory [9]. We found εk for k ≤ 500. Asymptotic behavior of εk is known [10]
and yields

εk ≈ −k!3k
3

π
. (2)

The relative difference between asymptotic estimate and exact value of εk is
0.6% for k = 500 and decreases at rate estimated in [10]. The perturbative
series is asymptotic and a resummation procedure is needed. To this end,
we use the Borel transform

BK(t) =
K∑
k=0

εk
k!
tk . (3)

B∞(t) is convergent for |t| < 1
3 and has a pole at t = 1

3 . Both follow from the
asymptotic behavior of εk. Inverse Borel transform is given by the integral

EBorel(g) =
1

g

∞∫
0

dte−t/gB(t) , (4)

where B(t) is analytic continuation of the Borel transform B∞(t). Because
the pole at t = 1

3 lies on the integration path, the perturbative series is called
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not Borel summable [3]. Still, the integral can be calculated for t = <t±i0+.
One can show that it is equivalent to take t real but g = <g±i0+. Changing
between positive and negative imaginary part of g alters sign of imaginary
part of the integral (4). In particular, contribution of the leading singularity
at t = 1

3 is

EBorel

(
g + i0+

)
− EBorel

(
g − i0+

)
= −2i

g
e−1/3g . (5)

As an approximation of the analytic continuation B(t), we took the
diagonal

[
K
2 /

K
2

]
Padé approximant P (t) of BK(t). We shall now analyze

poles of P (t). They are presented in Fig. 1. Poles on the real axis condense
with growing K and form a cut on the interval [13 ,∞). They reflect a cut
of B(t). Poles with nonzero imaginary part move to infinity as K increases.
We infer that they lie in the region where the Padé approximant is no longer
reliable. It is known [11] that the approximant is weakly convergent near
poles of the approximated function. Therefore, we changed the integration
contour from t = <t + i0+ to t = |t|eiπ/4. Secondly, we cut the integral at
<t = 1.4 so that we did not come close to poles of P (t). Error coming from
both, change of integration contour and cutting the integral is of the order
of 1

ge
−1.4/g. It is much smaller than the ambiguity of Borel sum already for

g = 0.1 and, therefore, we shall neglect it. Major error for small coupling
constant g is an effect of finite K. It is a nontrivial task to estimate it
a priori. One has to try different Ks and check if one can reach such values
that the energy is independent of K.
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Fig. 1. Poles of Padé approximant for different orders of approximation K.
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3. Instanton contributions

The perturbation theory yields the same series expansion of the ground
energy in both minima of the potential V (x), x = 0 and x = 1/

√
g. Thus,

the ground energy is degenerate at the level of perturbation theory.
One can calculate splitting of the ground energy E0 and the first excited

energy E1 using semiclassical methods in the dilute instanton gas approxi-
mation. The difference is E(1)

1 − E
(1)
0 = 1√

πge
−1/6g. The leading correction

to dilute gas approximation due to interactions between instantons was later
calculated by Bogomolny [2]

E
(2)
N (g) =

1

πg
e−1/3g

(
γ + ln

(
−2

g

))
, N = 0, 1 , (6)

where γ ≈ 0.577 is the Euler constant. One has to understand this formula
as a continuation from negative g through upper or lower half of the complex
plane, i.e. taking g+ i0+ or g− i0+ limit. These limits give different results

E
(2)
N

(
g + i0+

)
− E(2)

N

(
g − i0+

)
=

2i

g
e−1/3g , N = 0, 1 . (7)

Note that this is exactly opposite to the leading order of ambiguity of Borel
sum (5).

Full formula for instanton and perturbative contributions to energy was
given by Zinn–Justin [1, 4]

EN (g) =
∞∑
k=0

εkg
k+

∞∑
n=1

(
−(−1)N e

−1/6g
√
πg

)n n−1∑
l=0

(
ln

(
−2

g

))l ∞∑
k=0

εnlkg
k (8)

for N = 0, 1. Some coefficients were given in [4]:

ε200 = γ , ε210 = 1 ,

ε201 = −
23

2
− 53

6
γ , ε211 = −

53

6
,

ε202 =
13

2
− 1277

72
γ , ε212 = −

1277

72
. (9)

Cancelation of ambiguities (5) and (7) renders formula (8) unique at least
at the order of g−1e−1/3g. We will use numerical analysis to see that the
series is unique also at higher orders in g, i.e. n = 2 and k > 0. We will also
show that real part of energy improves when one adds two-instanton terms
to the Borel energy (4). This can be done only if we eliminate much larger
contributions from independent instanton (n = 1). Note that n = 1 terms
are exactly opposite for the ground and first excited energy. Therefore, we
will be interested in their mean values E = 1

2(E0 + E1).
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4. Cut Fock space method

An alternative technique of computing the lowest energies is the cut Fock
space method. Let us denote by |n〉 the Fock basis, which is set of energy
states of the harmonic oscillator with minimum at x = 1

2
√
g . Then the matrix

HM = (〈n|12P
2 + V (X)|m〉)nm with n,m < M is an approximation of the

Hamiltonian. M is called the cutoff. We expect that the lowest eigenvalues
of HM approximate energies of the system. It was very well confirmed in
many cases [5–7]. For our system convergence of energies with increasingM
is presented in Fig. 2.

0 20 40 60 80 100 120

2

6

10

14

18

M

en
er

gy

Fig. 2. Convergence of eigenvalues of the matrix HM with growingM for g = 0.002.
Behavior of eigenenergies changes qualitatively around the top of the barrier.

For small coupling constant g, there are several eigenenergies smaller
than height of the barrier, e.g. there are 38 for g = 0.002 with V (1/2

√
g) ≈

15.6. Classically, the potential barrier is impenetrable for states with such
energy. In the classical limit, there is a pair of degenerate states, one lo-
calized in left and one in right minimum of the potential. Due to quantum
tunneling these states mix into symmetric and antisymmetric combinations.
The symmetric state of each pair has slightly lower energy than the anti-
symmetric one.

Let us now analyze convergence of the energies with growing cutoff.
Characteristic feature of this method is, as in any variational method, that
energies are approximated from above. Therefore, they fall down as the
cutoff increases and approximation improves. For small cutoffs, energies are
higher than the potential barrier and splitting between them is large. Only
when energies become smaller than the potential barrier they join into pairs.
This can be clearly seen in Fig. 2.
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Another feature is that energies fall linearly for small cutoffs. This is
because the space basis does not yet explore minima of the potential. For
cutoffs high enough, the convergence becomes approximately exponential.
One can find a more detailed analysis of this system in [12].

The cut Fock space method yields no approximations apart from preci-
sion of computations and finite cutoff effects. Thus, it is essentially exact.
For our purposes we consider the value

EFock(g) =
1
2(E0 + E1) , (10)

where E0,1 are the two lowest eigenvalues ofHM . For the smallest considered
value of coupling constant g = 0.00016, the needed cutoff was M = 5000
and precision 10−980. The cut Fock space method turns out to be far more
efficient than computing energies through Borel resummation procedure.
Still higher cutoff and greater numerical precision can be applied resulting
in more accurate results.

5. Comparison

We will show that =EBorel(g)+=E(2)(g) = 0 and <EBorel(g)+<E(2)(g) =
EFock(g) up to leading order disregarded in E(2)(g). To this end, we intro-
duce:

E(2),K =
1

πg
e−1/3g

1∑
l=0

(
ln

(
−2

g

))l K∑
k=0

ε2lkg
k , (11)

∆K
I (g) =

=EBorel(g) + =E(2),K(g)
1
ge
−1/3g , (12)

∆K
R(g) =

<EBorel(g) + <E(2),K(g)− EFock(g)
1
πge
−1/3g ln(2/g)

. (13)

Denominators of ∆K
I (g) and ∆K

R(g) are leading terms of imaginary and
real part of E(2)(g), respectively. According to formula (8), we expect that
∆K
R,I(g) = O(gK+1). Plots of ∆K

R,I(g) for K = 0, 1, 2 are presented in
Figs. 3, 4. Asymptotic behavior of ∆K

R,I(g) agrees with predictions. We also
found approximations of coefficients (9) from numerical data and confirmed
coefficients ε21k in with precision 10−20 and coefficients ε20k with precision
10−8.
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Fig. 3. Function ∆K
R(g) for K = 0, 1, 2. One expects that ∆K

R(g) = O(gαK ) with
αK = K+1. Fitting a straight line to the log–log plot gives αK=0 = 1.0242±0.0007,
αK=1 = 2.05 ± 0.02, αK=2 = 3.039 ± 0.002. Fitted values of αK are slightly
above expectance because of higher order corrections, which are not negligible for
nonzero g.

0.001 0.010 0.100

10-3

10-6

10-9

g

D
IK

HgL

K=0
K=1
K=2

Fig. 4. Function ∆K
I (g) for K = 0, 1, 2. One expects that ∆K

I (g) = O(gαK ) with
αK = K+1. Fitting a straight line to the log–log plot gives αK=0 = 1.001±0.0001,
αK=1 = 2.0075± 0.0008, αK=2 = 3.009± 0.0009.

It turned out that it is possible to determine several next coefficients ε2lk
in expansion (8). Taking coefficients (9) as given we found:

ε203 = −45941

144
− 336437

1296
γ ± 1.6× 10−10 ,

ε204 = −20772221

2592
− 141158555

31104
γ ± 2× 10−6 ,
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ε205 = −205496.5847− 17542610737

186624
γ ± 2× 10−3 ,

ε206 = 6936980.4± 4.8

ε213 = −336437

1296
± 1.3× 10−21 ,

ε214 = −141158555

31104
± 4.2× 10−17 ,

ε215 = −17542610737

186624
± 5.9× 10−13 ,

ε216 = −2221191.7314262645± 4.8× 10−9 ,

ε217 = −58524267.633067± 2.5× 10−5 ,

ε218 = −1695080020.213± 9.5× 10−2 ,

ε219 = −53461315700± 1.6× 103 ,

ε21;10 = −1823771270000± 4.8× 105 .

In Fig. 5, the plot of ∆K
I (g) with found coefficients is presented. One

can observe that ∆K
I (g) decreases with growing K and the relation ∆K

I (g) =
O(gK+1) holds. Having already a few coefficients of the n = 2 expansion, we
found its Borel sum. It turns out that this procedure improves convergence
by at least a factor of 102 for g ∈ (0.00016, 0.009). From formula (8), it
can be seen that n = 2 terms do not have to remove full ambiguity of
energy. Some of it may be removed by n = 4 contribution. Therefore, we
cannot expect ∆K

I (g) to be smaller than 1
ge
−1/3g ln2(2g ). This limitation is
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Fig. 5. Dashed lines represent function ∆K
I (g) for K = 2, 4, 7, 10. Imaginary am-

biguity of energy decreases for growing K. Thick line is ∆10
I (g) with instanton

contribution replaced by its Borel sum. Solid line is the leading term of the n = 4

contribution in expansion (8) with ε430 = 1. Since it was neglected in our analysis,
it is the lower bound for ∆K

I (g). It is approximately saturated for g > 0.02.
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indeed seen in Fig. 5. Similar analysis was made for ∆K
I (g) and results are

shown in Fig. 6. A detailed analysis concerning cancelation of higher order
ambiguities was presented in [13] for the cosine potential.
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Fig. 6. Dashed lines represent function ∆K
R(g) for K = 0, 2, 4, 6. Approximation of

energy improves for growing K. Thick line is ∆6
R(g) with instanton contribution

replaced by its Borel sum. Thin line is n = 4 contribution which is neglected in
our analysis.

6. Summary

Using essentially exact numerical solutions of the anharmonic oscilla-
tor problem, we have verified the long-existing theoretical predictions that
the ambiguities in resumming the perturbative, asymptotic series are non-
perturbative, and indeed cancel with the ones from two-instanton inter-
actions. The remaining, well defined part, is constructed additively from
resummed perturbative series and non-perturbative contributions and is in
agreement with our numerical results for g < 0.05. For agreement in higher
orders, the story repeats itself on the level of multi-instanton interactions.

Thanks to high precision of computations we were able to confirm val-
ues of coefficients of two–instanton correction given by Zinn-Justin and
Jentschura. It was also possible to estimate a few more coefficients of the
energy expansion which appear in imaginary part of energy. Computing en-
ergies for smaller values of the coupling constant g would require yet higher
precision. For g = 10−5 the instanton correction is of the order of 10−14471
so precision of computations would have to be 16 times higher than for
g = 0.00016.
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The series E(2)(g) appears to be asymptotic and not Borel summable.
Considerable improvement of results is observed when one finds Borel sum
of E(2)(g) even with only few coefficients of given expansion. Having more
terms it might be possible to extract E(4)(g) contribution to the ground
energy.
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