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In earlier rumor spreading models of the real world complex networks,
nodes contact all of their neighbors at each time step. In more realistic sce-
nario, a node may contact only some of its neighbors to spread the rumor.
The rumor spreading rate may also depend on the degree of the spreader
and ignorant nodes. We have given a new modified rumor spreading model
to accommodate these facts. This new model has been studied for rumor
spreading in scale free networks model of real world complex networks.
Nonlinear rumor spread exponent α and degree dependent tie strength ex-
ponent β of nodes affect the rumor threshold. By using the given two
exponents, rumor threshold has some finite value. This was not observed
in the earlier models for scale free networks. The rumor threshold becomes
independent of network size when α and β parameters are tuned to ap-
propriate value. In any social network, rumors can spread and may have
undesirable effect. One of the possible solutions to control rumor spread
is to inoculate a certain fraction of nodes against rumors. We have used
modified rumor spreading model over scale free networks to investigate the
efficacy of random and targeted inoculation schemes. It has been observed
that rumor threshold in targeted inoculation scheme is higher than in the
random inoculation. Therefore, it is hard to spread rumors using modified
rumor spreading model in scale free networks using targeted inoculation
scheme. The proposed hypothesis is also verified by the simulation results.
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1. Introduction

Many researchers have discussed how the properties of networks affect
the dynamical processes taking place in the networks. In the recent years,
complex network structures and their dynamics have been studied exten-
sively [1–8]. By analyzing different real world networks, e.g. Internet, the www,
social network and so on, researchers have identified different topological
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characteristics of complex networks such as the small world phenomenon
and scale free property. An interesting dynamical process in complex net-
works is the epidemic spreading. Work on epidemic spreading has been done
by many researchers [5, 9, 10]. There are two models, susceptible-infected-
susceptible (SIS) [11, 12] and susceptible-infected-recovered [5, 9] for the
epidemic spreading.

In order to improve the resistance of the community against undesir-
able rumors, it is essential to develop deep understanding of the mech-
anism and underlying laws involved in rumor spreading and establish an
appropriate prevention and control to generate social stability. First time
Sudbury studied the spread of rumors based on SIR model [13]. Another
standard model of rumor spreading was introduced many years ago by Da-
ley and Kendal [14]. Its variant was introduced by Maki–Thomsan [15].
In Daley–Kendal (DK) model, homogeneous population is subdivided into
three groups: ignorant (who do not know about the rumor), spreaders (who
know about the rumor) and stifler (who know rumor but do not want to
spread it). The rumor is propagated throughout the population by pairwise
contacts between spreaders and other individuals in the population. Any
spreader involved in a pairwise meeting attempts to infect other individual
with the rumor. In the case this other individual is an ignorant, it becomes
a spreader. If other individual is a spreader or stifler, it finds that rumor
is known and decides not to spread rumor anymore, thereby turning into
stifler. In Maki–Thomsan (MK) model, when spreader contacts another
spreader, only the initiating spreader becomes a stifler. DK and MK mod-
els have an important shortcoming that they do not take into account the
topology of the underlying social interconnection networks along which ru-
mors spread. These models are restricted in explaining real world scenario
for rumor spreading. By considering the topology of network, rumor model
on small world network [4, 16, 17] and scale free networks [18] has been de-
fined. Therefore, as long as one knows the structure of spreading networks,
he can figure out variables and observable to conduct quantitative analysis,
forecast and control the rumor spreading. The most important conclusion of
classical propagation theory is the existence of critical point of rumor trans-
mission intensity. When an actual intensity is greater than critical value,
the rumors can spread in networks and persistently exist. When the actual
intensity is less than the critical value, rumors decay at an exponential rate
and this critical value is called rumor threshold. In Internet, weight implies
the knowledge of its traffic flow or the bandwidth of routers [19], in the world
wide airport networks it can define the importance of an airport [20] and so
on. In the case of rumor spreading, the strength can indicate the frequency
of the contact between two nodes in the scale free networks. The greater the
strength, the more intensely the two nodes are communicating. Chances of
spreading rumors tend to differ among individuals and laws of spreading in
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social networks with different topologies are also different. Each informed
node can be assumed to make contacts with all of its neighbors in a single
time step. In other words, we can say that each informed node can spread
information to nodes equal to its degree. In real case, an informed node
cannot make contact to all of its neighbors in single time step. Studies on
small world networks found that compared to regular network, small world
network has smaller transmission threshold and faster dissemination. Even
at small spreading rates, rumors can exist for long. Studies on infinite-size
scale free networks have also revealed that no matter how small transmission
intensity be, the rumors can be persistent as positive critical threshold does
not exist [7, 21].

In previous studies on rumor spreading in scale free networks, it has been
assumed that the larger the nodal degree, the greater the rumor spreading
from the informed node, i.e. the rumor spread is proportional to the nodal
degree. With these assumptions for SIR model, in scale free networks with
sufficiently large size, the rumor threshold λc can be zero. Yan et al. [22]
have demonstrated that the asymmetry of infection plays an important role.
They redistributed the asymmetry to balance the degree heterogeneity of the
network and found the finite value of epidemic threshold. Zhou et al. [23, 24]
concluded that this hypothesis is not always correct. In rumor spreading, the
hub nodes have many acquaintances; however, they cannot contact all their
acquaintances in single time step. They assumed that the rumor spreadness
is not equal to the degree but identical for all nodes of the scale free networks
and obtained the threshold λc = 1

A , where A is the constant infectivity of
each node and is not equal to the degree of node. Recently, Fu et al. [25]
have defined piecewise linear infectivity. They suggested if the degree k, of
a node is small, its infectivity is α′k, otherwise its infectivity is a saturated
value A when k is beyond a constant A/α′. In both constant and piecewise
linear infectivity, the heterogeneous infectivity of the nodes due to different
degrees has not been considered. While in scale free networks heterogeneity
in nodal degree is very common. There may be nodes with different degrees
which have the same infectivity, and there will be a large number of such
nodes if infectivity does not saturate or the size of network is infinite.

In order to control the spread of rumors, inoculating the nodes is an
option. Although random immunization strategy works very well in ho-
mogeneous random networks, this strategy is not effective in preventing a
rumor in scale free networks [31]. Hence, the new immunization strategies
need to be developed which are able to recover from the rumor spreading.
One of the efficient approach is to immune the high degrees nodes, or, more
specifically, to immune those nodes (hereafter termed as hubs or hub nodes)
which have degrees higher than a preset cut-off value kc. Such a strategy
is known as targeted immunization [12, 21, 26–30]. Targeted inoculation
is successful in arresting the rumor spread in scale free networks [7, 31].
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Random inoculation usually requires inoculation of large number of nodes
for being effective. If nodes with higher connectivity are targeted for in-
oculation, the same effectiveness can be achieved with smaller number of
inoculated nodes. But it needs the knowledge of nodes which have higher
connectivity [32]. Chen et al. [33] suggested that identifying influential nodes
using betweenness centrality and closeness centrality can lead to faster and
wider spreading in complex networks. This approach cannot be, however,
applied in large-scale networks due to the computational complexity involved
in identifying such nodes. While higher degree nodes can be identified with
much less efforts. The best spreaders using various measures of centrality
can be identified in a network to ensure the more efficient spread of infor-
mation. The inoculation of these efficient spreaders can also stop the rumor
spreading efficiently [34, 35].

In this work, we have investigated rumor spread in the scale free net-
work considering the varying tie strengths between nodes. Further, we have
assumed that a non-linearly varying number of neighbors are infected with
the rumor in each time step. While in the earlier models [4, 9] tie strength
has been considered to be uniform and a constant number of neighbors have
been assumed to be infected in each time step by each node. In the earlier
models, if a node has K neighbors in each time step, all the K neighbors will
be infected. We have modified the earlier SIR model given by Nevokee [4]
and included a rumor spreading exponent α. In this work, Kα neighboring
nodes will be infected in each time step. Here, α is the spreading exponent,
where 0 < α ≤ 1. The tie strength between two nodes is (kikj)

β , where
ki and kj are degrees of node i and j, and β is tie strength exponent. We
have used Barabasi–Albert (BA) model [2] to create scale free networks with
power law distribution of nodal degree, and then used the proposed strategy
in them to study the rumor spread. Scale free networks have been specif-
ically chosen as they are much more heterogeneous than the small world
or the random network models, and thus a good candidate for testing our
proposition.

The dynamical differential equations have been used to represent the
modified model for information spread. The equations have been used to find
the threshold and study the rumor propagation behavior. The results have
also been verified by the simulations. By choosing the appropriate values
of α and β, finite non-zero threshold value can be found for the scale free
networks. It is found that the rumor spreading threshold is more sensitive to
α than β in a large scale free network. Finally, the rumor threshold has been
calculated after applying the random and targeted inoculation of the nodes
to suppress the rumor in the scale free networks. In the targeted inoculation
scheme, the rumor threshold has been found to be larger. The targeted
inoculation has also been effective in the scale free networks to suppress the
rumor spread.
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2. Classical SIR model

Classical SIR model is one of the most investigated rumor spreading
models for complex networks. In this model, nodes are in one of the three
categories: ignorants (the nodes who are ignorant of the rumor), spreaders
(those who hear the rumor and also actively spread it) and stifler (the nodes
who hear the rumor but do not spread it further). The rumor is propagated
through the nodes by pairwise contacts between the spreaders and other
nodes in the network. Following the law of mass action, the spreading process
evolves with direct contact of the spreaders with others in the population.
These contacts can only take place along the edges of undirected graph
of complex network. If the other node is the spreader or stifler, then the
initiating spreader becomes the stifler. The classical SIR model has been
studied by Nekovee et al. [3, 4] for heterogeneous population (nodes having
different degrees). In this paper, I(k, t), S(k, t), R(k, t) are expected values
of ignorants, spreaders and stifler nodes in network with degree k at time
t. Above rumor spreading process can be summarized by following set of
pairwise interactions:

S1 + I2
λ−→ S1 + S2

(when spreader meets with the ignorant, it makes them spreader at
rate λ),

S1 +R2
σ−→ R1 +R2

(when a spreader contacts a stifler, the spreader becomes a stifler at
the rate σ),

S1 + S2
σ−→ R1 + S2

when a spreader contacts with another spreader, initiating spreader
becomes a stifler at the rate σ),

S
δ−→ R

(δ is the rate at which spreaders change state to stifler spontaneously
and stop spreading of a rumor).

Let ρi(k, t) = I(k, t)/N(k), ρs(k, t) = S(k, t)/N(k), ρr(k, t) = R(k, t)/N(k)
are the fraction, of ignorant, spreaders and stifler nodes, respectively, with
degree k at time t. These fractions of the nodes satisfy the normalization
condition, ρi(k, t) + ρs(k, t) + ρr(k, t) = 1, where N(k) represents the total
number of nodes with degree k in the network. Nekovee et al. [4] proposed
the formulation of this model for analyzing complex networks as interacting
Markov chains. They used the framework to derive from the first-principles,
the mean-field equations for the dynamics of rumor spreading in the complex
networks with arbitrary correlations. These are given below:
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dρi(k, t)

dt
= −kλρi(k, t)

∑
l

P (l|k)ρs(l, t) , (1)

dρs(k, t)

dt
= kλρi(k, t)

∑
l

P (l|k)ρs(l, t)− kσρs(k, t)
∑
l

(ρs(l, t)

+ρr(l, t))P (l|k)− δρs(k, t) , (2)
dρr(k, t)

dt
= kσρs(k, t)

∑
l

(ρs(l, t) + ρr(l, t))P (l|k) + δρs(k, t) , (3)

where conditional probability P (l|k) is the degree–degree correlation func-
tion that a randomly chosen edge emanating from a node of degree k leads
to a node of degree l. Here, it has been assumed that the degree of nodes
in the whole network are uncorrelated. Therefore, degree–degree correlation
is P (l|k) = lP (l)

〈k〉 , where P (l) is the degree distribution and 〈k〉 is the aver-
age degree of the network. Nekovee et al. [4] have shown that the critical
threshold for rumor spreading is independent of the stifling mechanism. The
critical threshold found by him was λc = 〈k〉

〈k2〉 . It is the same as found for
SIR model [9, 36]. Hence, it implies that epidemic threshold is absent in
large size scale free networks (〈k2〉 → ∞, λc → 0). This result is not good
for epidemic control, since the epidemics will exist in the real networks for
any non-zero value of spreading rate λ.

3. Modified rumor spreading model

The real world networks can have the intimacy, confidence, etc. between
the nodes. Unlike previous studies, where each node can spread the rumor
with constant transmission rate λ, in this study, we have considered a ru-
mor spreading model with nonlinear rumor spread. The transmission rate
between two connected nodes has been considered a function of their degrees.
Based on this assumption, we can write the rate equations as follows:

dρi(k, t)

dt
= −kρi(k, t)

∑
l

P (l|k)ρs(l, t)
Φ(l)

l
λlk , (4)

dρs(k, t)

dt
= kρi(k, t)

∑
l

P (l|k)ρs(l, t)
Φ(l)

l
λlk − kρs(k, t)

∑
l

(ρs(l, t)

+ρr(l, t))P (l|k)
Φ(l)

l
σlk − δρs(k, t) , (5)

dρr(k, t)

dt
= kρs(k, t)

∑
l

(ρs(l, t) + ρr(l, t))P (l|k)
Φ(l)

l
σlk + δρs(k, t) , (6)
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where Φ(l) represents the rumor spreadness of a node with degree l, λlk
and σlk represents the rumor spreading rate and stifling rate from nodes
of degree l to nodes with degree k, respectively, and P (l|k) replaced by
Φ(l)P (l|k)

l .
3.1. Tie strength in complex networks

The topological properties of a graph are fully encoded in its adjacency
matrix A whose elements aij (i 6= j) are 1 if a link connects node i to
node j, and 0 otherwise. The indices i, j run from 1 to N , where N is the
size of the network. Similarly, a weighted network is entirely described by
a matrix W whose entry wij gives the weight on the edge connecting the
vertices i and j (wij = 0, if the nodes i and j are not connected). In this
study, we will consider only the case of symmetric weights (wij = wji) while
the undirected case of the network is considered [20]. In a call network, if
two nodes call each other for a long duration, then weight of the connecting
edge will be high and it shows high tie strength between them [37]. Here,
weight of the edge in terms of total call duration defines the tie strength
between the nodes. It has also been observed in the dependence of the edge
weight wij to define strength between nodes with end point degrees ki and kj .
Weight as a function of the end-point degrees can be well approximated by
a power-law dependence

wij = b(kikj)
β ,

where β is the degree influenced real exponent which depends on the type
of complex networks and b is a positive quantity. When β > 0, then rumor
transmit to high degree nodes and when β < 0, then rumor will transmit
to low degree nodes. Further, if β = 0 there will be the degree independent
transmission.

It has been observed that the individual edge weight does not provide
clear view of network’s complexity. A detailed measurement of tie strength
using the actual weights is obtained by enhancing the property of a vertex
degree ki =

∑
j aij in terms of the vertex strength Si =

∑N
j=1 aijwij (total

weights of their neighbors). Therefore, there is a coupling between interac-
tion strengths of the nodes with the counterintuitive consequence that social
networks are robust enough to the removal of the strong ties but fall apart
after a phase transition if the weak ties are removed [20]. Therefore, we can
measure the strength of a node of degree k for scale free network

Sk = k
∑
l

P (l|k)wkl = k
∑
l

lP (l)

〈k〉
wkl = b

k1+β

〈k〉

〈
k1+β

〉
. (7)

Here, it has been considered that the rumor spreading model, where
rumor transmission rate in contact process between a spreader node and
an ignorant node is influenced by their degrees. If wkl is the tie strength
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between k -degree node and l-degree node for (k, l) edge, Sk is the node
strength with degree k. In scale free network, each node of degree k is a
constant rumor transmission rate λk. Therefore, rumor transmission rate
from k-degree node to l-degree node is given by the proportion of wkl to Sk.
Hence, λkl can be defined as

λkl = λk
wkl
Sk

. (8)

We can see in Eq. (8) that by increasing the proportion of wkl/Sk, the
more possibility of rumor transmission rate can be increased through the
edge. In the present work, uncorrelated networks have been considered,
hence λkl = λlβ〈k〉/〈k1+β〉. In this model, rumor spreadness Φ(k) = kα,
where 0 < α ≤ 1, it defines that each spreader node may contact with kα
neighbors within one time step. Therefore, spreadness of a rumor will vary
nonlinearly with the growing degree k. In Eqs. (4)–(6), we can write rumor
equation for Φ(k) and λlk can be written as

dρi(k, t)

dt
=

λk1+β

〈k1+β〉
ρi(k, t)

∑
l

lαP (l)ρs(l, t) , (9)

dρs(k, t)

dt
=

λk1+β

〈k1+β〉
ρi(k, t)

∑
l

lαP (l)ρs(l, t)− σk1+β

〈k1+β〉
∑
l

(ρs(k, t)

+ρr(l, t))lαP (l)− δρs(k, t) , (10)
dρr(k, t)

dt
=

σk1+β

〈k1+β〉
∑
l

(ρs(l, t) + ρr(l, t))lαP (l) + δρs(k, t) . (11)

After solving rumor Eqs. (9)–(11) with initial conditions ρi(k, 0) ' 1,
ρs(k, 0) ' 0, ρr(k, 0) ' 0, we get

ρi(k, t) = e
−λk1+β

〈k1+β〉
Θ(t)

, (12)

where an auxiliary function is

Θ(t) =
∑
k

kP (k)

〈k〉

t∫
0

ρs(k, t′)dt′. (13)

4. Rumor threshold of the modified model

In the infinite time limit, i.e., at the end of rumor spreading, we will have
ρs(k,∞) = 0, limt→∞Θ(t) → Θ and limt→∞ dΘ/dt = 0. Near the critical
threshold, Θ will be small as ρs(k,∞) = 0. After solving Eqs. (9)–(11) and
Eq. (13)
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Θ =

(
λ 〈k

α+β+1〉
〈k1+β〉 − δ

)
λ2 〈k

α+2β+2〉
〈k1+β〉2

(
1/2 + σδ 〈k

α+β+1〉
〈k1+β〉 I

) , (14)

where I =
∫ t
0 e

λ(t− t′)f(t′)dt′ is the finite and positive integral and Θ(t) =
Θf(t), where f(t) is a finite function. Eq. (14) will give positive value for Θ,
when

λ

〈
kα+β+1

〉
〈k1+β〉

− δ ≥ 0 ,
λ

δ
≥

〈
k1+β

〉
〈kα+β+1〉

. (15)

Therefore, to leading order in σ, the critical threshold is independent of
the stifling mechanism, for δ = 1 the critical rumor spreading threshold is
given by

λc =

〈
k1+β

〉
〈kα+β+1〉

. (16)

It is interesting to note that, by putting α = 1 and β = 0 in Eq. (16), the
threshold for this model reduces to 〈k〉/〈k2〉 for classical rumor spreading
model [7].

When t→∞ spreader nodes will be 0, (ρs(k,∞) = 0) and from Eq. (12),

ρi(k,∞) = e
−λk1+β

〈k1+β〉
Θ
. Therefore, the final size of rumor R at t→∞ (limt→∞

ρr(k, t) = R)

R =
∑
k

P (k)ρr(k,∞) =
∑
k

P (k)(1− ρs(k,∞))

=
∑
k

P (k)

(
1− e

−λk1+β

〈k1+β〉
Θ
)

= 1−
∑
k

P (k)e
−λk1+β

〈k1+β〉
Θ
. (17)

In the real world, complex networks rumor spreads on a finite size com-
plex networks. It may be possible that size of scale free network is very large.
The maximum or minimum degree of scale free network is mentioned by kmax

or kmin. Pastor et al. [21] found that the epidemic threshold λc for kmax for
SIS model on bounded SF networks with P (k) ∼ k−2−γ

′ , 0 < γ′ ≤ 1. They
assumed that with the soft and hard cut-off kmin and kmax, when α = 1.
The hard cut-off denotes that a network does not possess any node with
degree k > kmax. As kmax of a node is network age, defined in the terms of
number of nodes N

kmax = kminN
1

γ′+1 . (18)
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The normalized degree distribution is defined by

P (k) =
(1 + γ′)k1+γ

′

min

1− (kmax/kmin)−1−γ′
k−2−γ

′
θ(kmax − k) . (19)

Here θ(x) is a Heaviside step function [21].
In modified rumor spreading model, if α = 1 and β = 0, then it converges

to classic rumor spreading model. As the degree distribution in scale free
networks P (k) = k−γ , where 2 ≤ γ ≤ 3, therefore,

λc
′(kmax) =

〈k〉
〈k2〉

(20)

=

∫ kmax

kmin
k1−γdk∫ kmax

kmin
k2−γdk

(21)

' 3− γ
(γ − 2)kmin

(kmax/kmin)γ−3 . (22)

Eq. (18) gets modified for the given scale free network as

kmax = kminN
1

γ−1 , (23)

λc
′(N) ' 3− γ

(γ − 2)kmin
(N)(γ−3)/(γ−1) , (24)

for γ = 3
γc
′(N) ' 2[kmin ln(N)]−1 . (25)

Eqs. (24)–(25) show that λ′c → 0 if N →∞.
In modified rumor spreading model, nonlinear rumor spread is considered

using Θ(k) = kα. The rumor threshold is given by

λc
#(kmax) =

∫ kmax

kmin
kβ+1−γdk∫ kmax

kmin
kα+β+1−γdk

= k
(−α)
min

α+ β − γ + 2

β − γ + 2

[
(kmax/kmin)β−γ+2 − 1

]
[(kmax/kmin)α+β−γ+2 − 1]

. (26)

Theorem 4.1 In classic rumor spread model (α = 1, β = 0) threshold is
smaller than the modified rumor spread model (0 < α < 1 and β 6= 0).

The proof is given in the next section after lemmas.
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Lemma 4.2 When the size of network (N) increases, the value of critical
threshold λ#c > 0 for α+ β + 2 < γ, otherwise it will approach to 0.

Proof Since kmax/kmin = N
1

γ−1 , therefore, kmax/kmin increases when N
increases, it becomes infinity when N → ∞. When, α + β + 2 < γ,
(kmax
kmin

)β−γ+2 = (kmax
kmin

)α+β−γ+2 = 0. The value of λ#c will be positive.
Here, β < 0 (rumor transmission influenced to low degree nodes) is con-
sidered. Now from Eq. (26), we can conclude that λ#c will be positive. For
α+ β + 2 ≥ γ, λ#c → 0 when N increases. It can be summarized as

λc
#(kmax) =


k
(−α)
min

α+β−γ+2
γ−β−2 (kmax/kmin)γ−α−β−2 , α+ β + 2 > γ ,

k
(−α)
min

γ−α−β−2
γ−β−2 , α+ β + 2 < γ ,

k
(−α)
min

1
αln(kmax/kmin)

, α+ β + 2 = γ .

(27)

Lemma 4.3 In given rumor spreading model when α+β+2 < γ, then rumor
spreading threshold λ# is independent from the size of scale free network (N).

Proof It may also be defined using Eqs. (23)–(27) in the term of the number
of nodes N

λc
#(N) =


k
(−α)
min

α+β−γ+2
γ−β−2 (N)(γ−α−β−2)/(γ−1) , α+ β + 2 > γ ,

k
(−α)
min

γ−α−β−2
γ−β−2 , α+ β + 2 < γ ,

k
(−α)
min

γ−1
αln(N) , α+ β = γ .

(28)
Here, it is found that for α+ β + 2 < γ, λ#c is independent of N.

Proof Now using lemmas (4.2) and (4.3) the theorem can be proved for
α + β + 2 > γ. The ratio of rumor threshold in classic model and given
model is given as

λ′c(N)

λc
#(N)

=
(2− γ)(γ − β − 2)

(γ − 2)k
(1−α)
max (α+ β − γ + 2)N (1− γ − β + 2)/(γ − 3)

. (29)

It has been found from Eq. (29) that λ′c(N)

λc
#(N)

< 1 for finite scale free

networks. Therefore, it has been justified that rumor threshold λ#c (N) is
greater than the λ′c(N) in finite size scale free networks. In finite size scale
free networks for which 0 < α < 1, β 6= 0 and α + β + 2 > γ, it is harder
to spread rumor in comparison to networks which have α = 1 and β = 0.
Finite rumor threshold is possible for any size of networks as seen in Eq. (28).
However, it will be 0 when N approaches infinity.
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5. Random inoculation

In random inoculation strategy, randomly selected node will be inoc-
ulated Fig. 1. This approach inoculates a fraction of the nodes randomly,
without any information of the network. Here, variable g (0 ≤ g ≤ 1) defines
the fraction of inoculative nodes. In the presence of random inoculation, the
rumor spreading rate λ is reduced by a factor (1 − g). In mean field level,
for the scale free networks in the case of random inoculation, the rumor
equations are modified using initial conditions as

dρi(k, t)

dt
=

(1− g)λk1+β

〈k1+β〉
ρi(k, t)

∑
l

lαP (l)ρs(l, t) , (30)

dρs(k, t)

dt
=

(1− g)λk1+β

〈k1+β〉
ρi(k, t)

∑
l

lαP (l)ρs(l, t)− σk1+β

〈k1+β〉
∑
l

(ρs(l, t)

+ρr(l, t))lαP (l)− δρs(k, t) , (31)
dρr(k, t)

dt
=

σk1+β

〈k1+β〉
∑
l

(ρs(l, t) + ρr(l, t))lαP (l) + δρs(k, t) . (32)

a

b

Fig. 1. Modified network after inoculation: (a) random inoculation (red crossed
nodes inoculated), (b) targeted inoculation (red crossed nodes inoculated).

Therefore, final size of informed nodes (R) is

R = 1−
∑
k

P (k)(1− g)e
−λ(1−g)k1+β

〈k1+β〉
Θ − g . (33)

The rumor spreading threshold in the case of random inoculation is obtained
from Eq. (14) as

λ̂c =

〈
kβ+1

〉
(〈kα+β+1〉) (1− g)

. (34)
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The relation between rumor spreading threshold with inoculation (λ̂c) and
without inoculation (λc) can be defined as

λ̂c =
λc

1− g
. (35)

It is to note that by applying random inoculation, the rumor spreading
threshold (λ̂c) can be increased as seen in Eq. (35) (i.e., λ̂c > λc).

6. Targeted inoculation

Scale free networks permit efficient strategies and depend upon the hier-
archy of nodes. It has been shown that SF networks show robustness against
random inoculation. It shows that the high fraction of inoculation of nodes
can be resisted without loosing its global connectivity, see Fig. 1. But on
the other hand, SF networks are strongly affected by targeted inoculation
of nodes. The SF network suffers an interesting reduction of its robustness
to carry information. In targeted inoculation, the high degree nodes have
been inoculated progressively, i.e. more likely to spread the information. In
SF networks, the robustness of the network decreases at the effect of a tiny
fraction of inoculated individuals.

Let us assume that fraction gk of nodes with degree k are successfully
inoculated. An upper threshold of degree kt, such that all nodes with degree
k > kt get inoculated. Fraction gk of nodes with the degree k are successfully
inoculated. The fraction of inoculated nodes is given by

gk =


1 , k > kt ,

f , k = kt ,

0 , k < kt ,

(36)

where 0 < f ≤ 1, and
∑

k gkP (k) = ḡ, where ḡ is the average inoculation
fraction. Therefore, now rumor spreading equation is defined for targeted
inoculation as

dρi(k, t)

dt
=

(1− gk)λk1+β

〈k1+β〉
ρi(k, t)

∑
l

lαP (l)ρs(l, t) , (37)

dρs(k, t)

dt
=

(1− gk)λk1+β

〈k1+β〉
ρi(k, t)

∑
l

lαP (l)ρs(l, t)− σk1+β

〈k1+β〉
∑
l

(ρs(l, t)

+ρr(l, t))lαP (l)− δρs(k, t) , (38)
dρr(k, t)

dt
=

σk1+β

〈k1+β〉
∑
l

(ρs(l, t) + ρr(l, t))lαP (l) + δρs(k, t) . (39)
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Next, rumor spreading threshold in the case of targeted inoculation is ob-
tained from Eq. (14) as

λ̃c =

〈
kβ+1

〉
〈kα+β+1〉 − 〈gkkα+β+1〉

. (40)

Here 〈gkkα+β+1〉= ḡ〈kα+β+1〉+ η′, where η′=〈(gk−ḡ)[〈kα+β+1−〈kα+β+1〉]〉
is the covariance of gk and kα+β+1. The cut-off degree kt is large enough,
where η′ < 0, but for small kt, gk− ḡ and kα+β+1−〈kα+β+1〉 have the same
signs except for ks, where gk − ḡ and/or kα+β+1 − 〈kα+β+1〉 is 0.

Hence, η′ > 0 for appropriate kt

λ̃c >
1− g
1− ḡ

λ̂c . (41)

If average inoculation fraction of nodes in targeted inoculations is the same
as fraction of nodes in the random inoculations, then g = ḡ

λ̃c > λ̂c . (42)

The above relation shows that in scale free networks targeted inoculation is
more effective than the random inoculation.

7. Numerical simulations: results and discussion

The studies of uncorrelated networks have been performed using the de-
gree distribution of scale free network. The size of the network is considered
to be N = 105, the degree exponent (γ) = 2.4, δ = 1 and σ = 0.2. At
the starting of rumor spreading, the spreaders are randomly chosen. In
Fig. 2, the final size of rumor R is plotted against rumor transmission rate
for N = 100000, 1000 and 100 by tuning α and β as:

• α+β = 0: Finite rumor threshold has been found. It has been observed
that for different size of networks, constant threshold is there (after
fixing the value of α and β). For the case, α + β + 2 < γ, since
γ = 2.4. Therefore, here it is interesting to see that a finite threshold
has been found which is independent from the size of network, the
same as obtained from Eqs. (27) and (28).

• α+β = −1: The simulation results are found the same as above since
α+ β + 2 < γ with finite threshold and constant for any network size
(for fixed values of α and β).

• α+ β = 1: In this case, the rumor threshold has non-zero value but it
tends to 0 when the network size increases. For this case, α+β+2 > γ
since γ = 2.4. Therefore, the threshold approaches to 0 as network
size increases. Similar results have been obtained from Eqs. (27)–(28).
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• α + β = 2: The simulation results are found the same as above since
α + β + 2 > γ with threshold approaches to 0 as size of network
increases.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

R

 

 

N=100000

N=5000

N=100

α + β + 2 > γ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

λ

R

 

 

N=100

N=5000

N=100000

α + β + 2 < γ 

Fig. 2. R versus λ with α+ β + 2 > γ (left) and α+ β + 2 < γ (right) for different
size of scale free networks.

Final size of the rumor (R) obtained in numerical simulation is plotted
against time (t) in Fig. 3. It has been observed that rumor size increases
exponentially as time increases and after some time it approaches a steady
state, that will remain constant, since spreader density is 0 at that time. It
has also been observed that when α+ β is low, then rumor size initially in-
creases slowly but when α+β increases, rumor size increases rapidly against
time. While tuning the parameter α and β from α + β = −1 to α + β = 2
rumor increments faster initially (Fig. 3). When ratio of α and β is high,
then the rumor size is also high. This result justifies that the α affects more
final rumor size R than β. It is seen from Eq. (16) that when α is very small
(0.1–0.3), then the rumor threshold will be high. Then, it is seen that the
final size of rumor will be too small when rumor transmission rate (λ) is less
than the rumor threshold (λc).

Critical rumor threshold is plotted against α in Fig. 4 while considering
β = 0. Here, λc decreased exponentially with the increase of α. It is maxi-
mum for α = 0.1 and almost 0 at α = 1 for N = 100000. Interestingly, this
also happens in real life situation, when an informed node pass information
to its maximum number of neighbors then rumor spreading will get outbreak
in the network. However, the outbreak is hard to achieve when it passes ru-
mor to less number of neighbors (' 10–30%). Similarly, λc has been studied
against β at α = 1 in Fig. 4. It is found that β affects less rumor threshold
for entire range except when β > 0. Further, it approaches to 0. When size
of the network (N) increases, then rumor threshold is decreased as shown
in Fig. 4 (left) and (right).
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Fig. 3. R(t) versus t (a)–(d) and S(t) versus t (e)–(h) for λ = 0.8 and different
combinations of α and β parameters.
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In Fig. 5, final size of rumor has been plotted against β for α = 1,
γ = 2.4, 3, and λ = 1. It is seen that R is maximum when β = −1. Initially
rumor size R increases with β but after achieving a maximum value for
β = −1 it decays exponentially. Further, for α = 1, γ = 2.4 final rumor
size R approaches to 0 (beyond β = 1.5). Furthermore, it is interesting to
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Fig. 5. Final size of rumor R vs β (N = 105 nodes, α = 0.5 and α = 1) for different
values of γ.

note that final rumor size R increased with increase of α, see Fig. 6. For
random inoculation g = 0.1, 0.3, 0.5, 0.7, 0.9, the final rumor size R has
been plotted against β (Fig. 7). It is observed that to get maximum value
of R, β increases when g increases. Also, maximum size of rumor decreases
with the increase of g. It is because in random inoculation rumor threshold
value is larger than the threshold in model without inoculation as inferred
from Eq. (35) (λ̂c > λc). The sharp decrease in the value of R is seen
when rumor transmission rate (λ) is decrease by 0.5 in comparison to the
case, where decrease of R is shallow when α is decreased by 0.5. Since
for λ ' 1 there may be a chance that rumor will spread to some extent at
any value of g < 1, for very large N. Similar results have been observed in
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Fig. 6. Final size of rumor R versus α (N = 105 nodes, β = −1 and λ = 1) for
γ = 2.4, 3.
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the case of targeted inoculation in Fig. 8. But here maximum rumor size
is much smaller with the inoculation of very less fraction of nodes (e.g. for
g = 0.25 the final rumor size R is almost suppressed), since rumor threshold
in targeted inoculation is larger than the random inoculation.
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Fig. 8. Final size of rumor R versus β in targeted inoculation scheme for different
fraction of inoculation (g).

For random inoculation strategy, the rumor spreading is plotted against
time evolution using modified model through simulation results. It is found
in Figs. 9–12, for g = 0.1, 0.3, 0.5, 0.7 that, if α + β increases from −1
to 2, R will increase since rumor threshold decreases. Further, it can be
observed from Eq. (28) that, for α + β = −1 and 0, λc is finite and higher
than the case, where α+β = 1 and 2. Therefore, R(t) is almost 0 and grows
slowly with time when α + β = −1. The growth in R(t) is higher for lower
values of g, but the case is reversed for the higher values of g. Similarly,
in the case of targeted inoculation scheme using lower values of g = 0.05,
0.1, 0.15, 0.2 for α + β = −1 to 2, rumor threshold found more than the
random inoculation scheme (Eq. (42)) and rumor spreading is suppressed
for inoculation less number of nodes than the random inoculation scheme
(Figs. 13–16).
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Fig. 10. R(t) versus t with α + β = 0, λ = 0.6 in random inoculation for g = 0.1,
0.3 (upper) 0.5, 0.7 (lower).
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Fig. 12. R(t) versus t with α + β = 2, λ = 0.6 in random inoculation for g = 0.1,
0.3 (upper) 0.5, 0.7 (lower).
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Fig. 13. R(t) versus t with α+β = −1, λ = 0.6 in targeted inoculation for g = 0.05,
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0.1 (upper) 0.15, 0.2 (lower).
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Fig. 15. R(t) versus t with α+ β = 1, λ = 0.6 in targeted inoculation for g = 0.05,
0.1 (upper) 0.15, 0.2 (lower).
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Fig. 16. R(t) versus t with α+ β = 2, λ = 0.6 in targeted inoculation for g = 0.05,
0.1 (upper) 0.15, 0.2 (lower).

8. Conclusion

In presented study, the modified SIR model has been proposed by con-
sidering standard SIR rumor spreading model with degree dependent tie
strength of nodes and nonlinear spread of rumor. The two parameters non-
linear exponent α and degree dependent tie strength exponent β have been
introduced. In modified rumor spreading model, finite rumor spreading
threshold has been found for finite scale free networks while fixed rumor
threshold has been found for any size of network when α+ β + 2 < γ. Ran-
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dom and targeted inoculation schemes have been introduced in the proposed
modified model. Rumor threshold in targeted inoculation scheme is found
to be higher than the random inoculation. On the other hand, the rumor
threshold in random inoculation is higher than the modified model without
inoculation. It has also been observed that for scale free networks targeted
inoculation scheme is successful in suppressing the rumor spreading in the
network, since it requires to inoculate less number of nodes than random
inoculation. Further, α is found to be more sensitive than β, as it affects
more to rumor threshold. Finally, it is seen that in real world networks finite
rumor threshold can be achieved by considering more realistic parameters
(degree dependent tie strength of nodes and nonlinear spread of rumor).
The targeted inoculation scheme can be successfully applied to suppress the
rumor spreading over scale free networks.
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