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1. Introduction

The suggestion to use noncommutative coordinates goes back to Heisen-
berg and was firstly formalized by Snyder in [1]. Recently, there were also
found formal arguments based mainly on Quantum Gravity [2, 3] and String
Theory models [4, 5], indicating that space-time at Planck scale should be
noncommutative, i.e. it should have a quantum nature. Consequently, there
appeared a lot of papers dealing with noncommutative classical and quan-
tum mechanics (see e.g. [6–8]) as well as with field theoretical models (see
e.g. [9–11]) in which the quantum space-time is employed.

It is well-known that a proper modification of the Poincare and Galilei
Hopf algebras can be realized in the framework of Quantum Groups [12, 13].
Hence, in accordance with the Hopf-algebraic classification of all deforma-
tions of relativistic and nonrelativistic symmetries (see [14, 15]), one can
distinguish three types of quantum spaces [14, 15] (for details see also [16]):
1. Canonical (θµν-deformed) type of quantum space [17–19]

[xµ, xν ] = iθµν , (1)

2. Lie-algebraic modification of classical space-time [19–22]

[xµ, xν ] = iθρµνxρ , (2)

(59)
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3. Quadratic deformation of Minkowski and Galilei spaces [19, 22–24]

[xµ, xν ] = iθρτµνxρxτ , (3)

with coefficients θµν , θ
ρ
µν and θρτµν being constants. Moreover, it has been

demonstrated in [16], that in the case of so-calledN -enlarged Newton–Hooke
Hopf algebras U (N)

0 (NH±) the twist deformation provides the new space-
time noncommutativity of the form1,2.
4.

[t, xi] = 0 , [xi, xj ] = if±

(
t

τ

)
θij(x) , (4)

with time-dependent functions
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θij(x) ∼ θij = const or θij(x) ∼ θkijxk and τ denoting the time scale pa-
rameter — the cosmological constant. Besides, it should be noted that the
mentioned above quantum spaces 1., 2. and 3. can be obtained by the
proper contraction limit of the commutation relations 4. 3

As it was mentioned above, recently, there has been discussed the impact
of different kinds of quantum spaces on the dynamical structure of physical
systems (see e.g. [6–10]). However, the especially interesting results have
been obtained in the series of papers [25–28] concerning the Hall effect for
canonically deformed space-time (1). Particularly, there has been found the
θ-dependent energy spectrum of an electron moving in uniform magnetic as
well as in uniform electric field. Besides, it was demonstrated that in the
case of noncommutative system one obtains the standard (commutative)
Hall conductivity in terms of an effective magnetic field Beff(θ).

In this article, we derive the Landau energy levels for twisted N -enlarged
Newton–Hooke space-time (11). Preciously, we find the time-dependent en-
ergy spectrum and the corresponding time-dependent eigenfunctions for an
electron moving in uniform electric as well as magnetic field. Of course, for
special choice of the noncommutativity function f(t) (see formula (11)) i.e.
for f(t) = θ, we rediscover partially the results of articles [25–28].

1 x0 = ct.
2 The discussed space-times have been defined as the quantum representation spaces,
so-called Hopf modules (see e.g. [17, 18]), for quantum N -enlarged Newton–Hooke
Hopf algebras.

3 Such a result indicates that the twistedN -enlarged Newton–Hooke Hopf algebra plays
a role of the most general type of quantum group deformation at nonrelativistic level.
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The paper is organized as follows. In Sect. 2, we recall basic facts con-
cerning the twisted N -enlarged Newton–Hooke space-times provided in ar-
ticle [16]. The third section is devoted to the calculation of Landau en-
ergy levels for commutative (classical) space, while the Landau spectrum for
twisted N -enlarged Newton–Hooke space-times is derived in Sect. 4. The
final remarks are presented in the last section.

2. Twisted N -enlarged Newton–Hooke space-times

In this section, we recall the basic facts associated with the twisted
N -enlarged Newton–Hooke Hopf algebra U (N)

α (NH±) and with the corre-
sponding quantum space-times [16]. Firstly, it should be noted that in ac-
cordance with Drinfeld twist procedure the algebraic sector of twisted Hopf
structure U (N)

α (NH±) remains undeformed, i.e. it takes the form

[Mij ,Mkl] = i (δilMjk−δjlMik+δjkMil−δikMjl) , [H,Mij ] = 0 , (5)[
Mij , G

(n)
k

]
= i
(
δjkG

(n)
i − δikG

(n)
j

)
,

[
G

(n)
i , G

(m)
j

]
= 0 , (6)[

G
(k)
i , H

]
=−ikG(k−1)

i ,
[
H,G

(0)
i

]
= ± i

τ
G

(1)
i ; k > 1 , (7)

where τ , Mij , H, G(0)
i (= Pi), G

(1)
i (= Ki) and G(n)

i (n > 1) can be identified
with cosmological time parameter, rotation, time translation, momentum,
boost and accelerations operators respectively. Besides, the coproducts and
antipodes of considered algebra are given by4

∆α(a) = Fα ◦ ∆0(a) ◦ F−1
α , Sα(a) = uα S0(a)u−1

α , (8)

with uα =
∑
f(1)S0(f(2)) (we use Sweedler’s notation Fα =

∑
f(1) ⊗ f(2))

and with the twist factor Fα ∈ U (N)
α (NH±) ⊗ U (N)

α (NH±) satisfying the
classical cocycle condition

Fα12 · (∆0 ⊗ 1) Fα = Fα23 · (1⊗∆0) Fα , (9)

and the normalization condition

(ε⊗ 1) Fα = (1⊗ ε) Fα = 1 , (10)

such that Fα12 = Fα ⊗ 1 and Fα23 = 1⊗Fα.
The corresponding quantum space-times are defined as the represen-

tation spaces (Hopf modules) for N -enlarged Newton–Hooke Hopf alge-
bra U (N)

α (NH±). Generally, they are equipped with two spatial directions
4 ∆0(a) = a⊗ 1 + 1 ⊗ a, S0(a) = −a.
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commuting to classical time, i.e. they take the form

[t, x̂i] = [x̂1, x̂3] = [x̂2, x̂3] = 0 , [x̂1, x̂2] = if(t) , i = 1, 2, 3 . (11)
However, it should be noted that this type of noncommutativity has been
constructed explicitly only in the case of 6-enlarged Newton–Hooke Hopf
algebra, with [16]5
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and
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)
and S+/−
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= sinh / sin
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Besides, one can easily check that in τ approaching infinity limit the above
quantum spaces reproduce the canonical (1), Lie-algebraic (2) and quad-
ratic (3) type of space-time noncommutativity, i.e. for τ →∞ we get

fκ1(t) = κ1 ,

fκ2(t) = κ2 t ,

·
·
·

fκ35(t) = κ35 t
11 ,

fκ36(t) = κ36 t
12 . (13)

Of course, for all deformation parameters α = κa running to zero the above
deformations disappear.

5 κa = α (a = 1, . . . , 36) denote the deformation parameters.
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3. Landau energy levels for commutative space-time

In this section, we turn to the derivation of Landau energy levels for
commutative (classical) space. Firstly, it should be noted, that in such a
case the algebra of position and momentum operators takes the form

[xi, xj ] = 0 = [pi, pj ] , [xi, pj ] = i~δij . (14)

Further, we define the following Hamiltonian function

H = H(p̄, x̄) =
1

2m

(
p̄+

e

c
Ā(x̄)

)2
− eφ(x̄) , (15)

which describes an electron moving in the (x1, x2)-plane in the uniform ex-
ternal electric field Ē = −gradφ and in the uniform perpendicular to plane
magnetic field B̄ = rotĀ. Besides, in our considerations, we adopt the so-
called symmetric gauge

Ā(x̄) =

[
−B

2
x2,

B

2
x1

]
, (16)

as well as we take

φ(x̄) = −Ex1 . (17)

Consequently, we get

H(p̄, x̄) =
1

2m

[(
p1 −

eB

2c
x2

)2

+

(
p2 +

eB

2c
x1

)2
]

+ eEx1 . (18)

Let us now turn to the eigenvalue problem for Hamiltonian function (18)
encoded by

H(p̄, x̄)ψ(x̄) = Eψ(x̄) . (19)

In order to solve the above equation, we perform the following change of
variables

x = x1 + ix2 , p = 1
2(p1 − ip2) , (20)

as well as we introduce two families of creation/annihilation operators

a† = −2ip∗ +
eB

2c
x+ λ , a = 2ip+

eB

2c
x∗ + λ , (21)

and

b = 2ip− eB

2c
x∗ , b† = −2ip∗ − eB

2c
x , (α+ iβ)∗ = α− iβ , (22)
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with parameter λ = mcE
B . One can easily check that these two sets commute

with each other and satisfy the following commutation relations[
a, a†

]
= 2m~ω ,

[
b†, b

]
= 2m~ω , (23)

with ω = eB
mc denoting cyclotron frequency. Besides, we observe that the

Hamiltonian H(p̄, x̄) can be written as

H(a, b) =
1

4m

(
a†a+ aa†

)
− λ

2m

(
b† + b

)
− λ2

2m
. (24)

In order to find the eigenvalues E and eigenfunctions ψ(x̄), we separate the
operator (24) into two mutually commuting parts

H(a, b) = H(a) +H(b) , (25)

where H(a) denotes the harmonic oscillator part

H(a) =
1

4m

(
a†a+ aa†

)
, (26)

while H(b) — the part linear in b and b† operators, is given by

H(b) =
λ

2m

(
b† + b

)
+
λ2

2m
. (27)

In the case of the harmonic oscillator part,

H(a)ψn = Enψn , (28)

one can proceed in the standard way and gets the following discrete spectrum

φn =
1√

(2m~ω)nn!
(a†)n|0〉 , En =

~ω
2

(2n+ 1) , n = 0, 1, 2 . . . , (29)

with vacuum state |0〉 such that a|0〉 = 0. For the eigenvalue equation

H(b)ψ = Eψ , (30)

the situation seems to be more complicated. However, by simple calculation
we find the following continuous spectrum

ψα = exp i
(
αx2 +

mω

2~
x1x2

)
, Eα =

~λ
m
α+

λ2

2m
, (31)

with the real parameter α. Consequently, the eigenfunctions and the energy
spectrum of the whole Hamiltonian H(a, b) are given by

ψ(n,α)(x̄) = ψn ⊗ ψα , E(n,α) =
~ω
2

(2n+ 1)− ~λ
m
α− λ2

2m
, (32)

where n = 0, 1, 2 . . . , α ∈ R and where symbol ⊗ denotes the direct product
of two wave functions. The formula (32) defines so-called Landau energy
levels for commutative nonrelativistic space-time (14).
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4. Landau energy levels for twisted N -enlarged
Newton–Hooke space-time

Let us now turn to the main aim of our investigations — to the derivation
of Landau energy levels for quantum space-times (11). In the first step of
our calculation, we extend the described in the second section spaces to the
whole algebra of momentum and position operators as follows

[x̂1, x̂2] = ifκa(t) , [p̂i, p̂j ] = 0 , [x̂i, p̂j ] = i~δij . (33)

One can check that relations (33) satisfy the Jacobi identity and for defor-
mation parameters κa approaching zero become classical.

Next, by analogy to the commutative case (see formulas (15), (16)), we
define the following Hamiltonian operator6,7

Ĥ = Ĥ
(
¯̂p, ¯̂x
)

=
1

2m

(
¯̂p+

e

c
¯̂
A(¯̂x)

)2
− eφ̂(¯̂x) . (34)

In order to analyze the above system, we represent the noncommutative
operators (x̂i, p̂i) by classical ones (xi, pi) as (see e.g. [29])

x̂1 = x1 −
fκa(t)

2~
p2 , x̂2 = x2 +

fκa(t)

2~
p1 , p̂i = pi . (35)

Then, the Hamiltonian (34) in the symmetric gauge (16) takes the form

Ĥ(t) =
1

2m

[(
(1− ακa(t))p1 −

eB

2c
x2

)2

+

(
(1− ακa(t))p2 +

eB

2c
x1

)2
]

+eE

(
x1 −

fκa(t)

2~
p2

)
= Ĥ(p̄, x̄, t) , (36)

with function ακa(t) = efκa (t)B
4~c .

In order to solve the eigenvalue problem

Ĥ(t)ψ = Eψ , (37)

6 The choice of the Hamiltonian (34) (similar to the classical operator (15)) permits
to investigate the (direct) impact of noncommutative space-time on the dynamical
structure of considered system. As we shall see for a moment such a defined Hamil-
tonian in terms of the commutative position operators becomes time-dependent (see
formula (36)). This situation is interpreted by the author as the generating by space-
time noncommutativity (11) of additional (time-dependent) interaction of particle
with some external source.

7 We define the model only in noncommutative (x̂1, x̂2)-plane, i.e. ¯̂p = (p̂1, p̂2) and
¯̂x = (x̂1, x̂2).
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we introduce (similar to the commutative case) two sets of time-dependent
operators

a†(t) = −2ip̄∗(t) +
eB

2c
x+ λ−(t) , a(t) = 2ip̄(t) +

eB

2c
x∗ + λ−(t) , (38)

as well as

b(t) = 2ip̄(t)− eB

2c
x∗ , b†(t) = −2ip̄∗(t)− eB

2c
x , (39)

where p̄(t) = β(t)p = (1 − ακa(t))p and where λ−(t) denotes the real and
arbitrary function which will be fixed for a moment. One can check that
both families of operators (a(t), a†(t)) and (b(t), b†(t)) commute each other
and satisfy the following commutation relations8[

a(t), a†(t)
]

= 2m~ω(t) ,
[
b†(t), b(t)

]
= 2m~ω(t) , (40)

with ω(t) = β(t)ω. Moreover, it is easy to see that Hamiltonian Ĥ(t) can
be written as

Ĥ(a(t), b(t))=
1

4m

(
a†(t)a(t)+a(t)a†(t)

)
−λ+(t)

2m

(
b†(t)+b(t)

)
−
λ2
−(t)

2m
,(41)

where functions λ±(t) are fixed to be

λ±(t) = λ± emEfκ(t)

4β(t)~
. (42)

The solution of eigenvalue problem (37) can be found by direct calculation;
it looks as follows9

ψ(n,α,κa)(t) =
1√

(2m~ω(t))nn!
exp i

(
αx2 +

mω(t)

2~β2(t)
x1x2

)(
a†(t)

)n
|0〉 ,

E(n,α,κa)(t) =
~ω(t)

2
(2n+ 1)− ~β(t)λ+(t)

m
α− m

2
λ2
−(t) , (43)

with n = 0, 1, 2 . . . and α ∈ R. The formula (43) defines the Landau energy
levels for twisted N -enlarged Newton–Hooke space-time (11). Besides, it
should be noted, that for fκa(t) = θ we recover the energy spectrum for
canonical deformation derived in paper [25], while for all parameters κa
approaching zero the above results become the same as in commutative
case, i.e. we get the formula (32).

8 We perform our calculations for such times that ω(t) > 0. Such a situation appears
for “almost” all times for 0 < κa � 1.

9 Similar to the commutative case, we use the formula (41) and pi = −i~∂i.
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5. Final remarks

In this article, we derive the Landau energy levels for twisted N -enlarged
Newton–Hooke space-time. Preciously, we find the time-dependent energy
spectrum for an electron moving in uniform magnetic as well as in uniform
electric (external) fields. It should be also mentioned that the presented in-
vestigation has been performed for the quite general (constructed explicitly)
type of space-time noncommutativity at nonrelativistic level.

This paper has been financially supported by the Polish National Science
Centre grant No. 2011/01/B/ST2/03354.
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