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Spontaneous supersymmetry (SUSY) breaking is revealed in all phe-
nomena in which vacuum condensates are physically relevant. The dy-
namical breakdown of SUSY is generated by the condensates themselves,
which lift the zero point energy. Evidence is presented in the case of the
Wess–Zumino model, and the flavor mixing case is treated in detail.
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1. Introduction

Supersymmetry (SUSY) has had an enormous impact on physics in the
last four decades, since it was first proposed in 1971 [1]. From the purely
theoretical side, we mention the many instances of supersymmetric quan-
tum field theories which are highly controllable. These taught us a great
deal about previously poorly understood subjects, such as strongly coupled
dynamics of four dimensional quantum field theories and duality, and also
had a huge influence on mathematics. From the phenomenological point of
view, SUSY has had even bigger effects. In fact, the assumption that SUSY
is a fundamental symmetry of nature gives a very natural solution to the
hierarchy problem, that is of the naturalness of a fundamental scalar Higgs
field, which is impossible to give in the framework of the Standard Model.
This spurred an enormous activity on the construction of phenomenological
models which display SUSY.

The influence of SUSY has been important also on experimental physics,
since much of the research has been geared at the detection of the superpart-
ners which according to SUSY are associated with the ordinary particles we
know. Despite the enormous efforts devoted to this task, no evidence of the
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existence of superpartners has ever been given. The fact that the superpart-
ners are not degenerate with ordinary particles (otherwise they would have
been detected) means that, if SUSY exists as a fundamental symmetry, it
must be spontaneously broken at the scales we can currently probe. As a
consequence, a large part of the above mentioned research activity has been
devoted to the study of SUSY breaking. In this paper, we concentrate on
the spontaneous breaking of SUSY, leaving aside the possibility of explicit
breaking which has also been much considered in the literature.

The first models exhibiting the spontaneous breaking of SUSY were pro-
posed in [2, 3]. In these models, the breaking is classical, i.e. it occurs at tree
level. Another possibility is that the breaking is dynamical, i.e. it is trig-
gered by nonperturbative quantum effects. This most interesting possibility
has been first discussed in [4] (see [5] for a review).

It is very important to stress that, even if SUSY will not be recognized
to be a fundamental symmetry of nature, it can be realized as an emergent
symmetry, e.g. in condensed matter systems [6]. The following discussion is
very general and applies to both fundamental and emergent SUSY.

In an apparently detached line of study, the rôle played by vacuum con-
densates in many Quantum Field Theoretical phenomena has been ana-
lyzed. Examples of systems characterized by the presence of condensates
include QFT in external fields like Unruh [7] and Schwinger effects [8],
condensed matter physics (BCS theory of superconductivity [9], graphene
physics [10], Thermo Field Dynamics [11]), particle physics and cosmology
(flavor mixing [12–19], dark energy [20–22]), and quantization of dissipative
systems [23]. In all cases, vacuum condensates can be effectively described
by using Bogoliubov transformations. The specific details of the mechanism
or of the field that induces the condensate are contained in the coefficients
of such transformations.

The purpose of this paper is to stress the connection between the two
issues outlined above. In fact, it has been recently proposed [24] that, in
a supersymmetric context, vacuum condensates, generated in phenomena
like the above listed ones, provide a new mechanism of spontaneous SUSY
breaking. A particularly interesting system from the phenomenological point
of view is represented by flavor mixing [25] (see also [26]), which appears in
both the hadronic and leptonic sectors of the Standard Model.

In the following, we study a system whose Lagrangian is invariant under
SUSY, namely the free Wess–Zumino model. We then implement the vac-
uum condensation effects by means of a Bogoliubov transformation, which
acts simultaneously and with the same parameters on the bosonic and on
the fermionic degrees of freedom, in order not to break SUSY explicitly. We
conjecture that in this situation SUSY will be spontaneously broken, since
the presence of the condensates shifts the vacuum energy density to a non-
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vanishing value. As well known, indeed, this is a sufficient condition for the
spontaneous breaking of SUSY [4]. The SUSY breaking revealed considering
the free Wess–Zumino (WZ) model should give a qualitative understanding
of the behavior of more complicate systems.

The paper is organized as follows. In Sec. 2, we discuss the effects of Bo-
goliubov transformations in QFT on vacuum energy and we show the SUSY
breaking for free WZ model induced by condensates. In Sec. 3, we treat the
specific case of particle mixing, and Sec. 4 is devoted to the discussion of
our results and to conclusions.

2. Vacuum condensate, WZ model and SUSY breaking

In the following, we summarize different aspects of Bogoliubov transfor-
mations in the context of quantum field theory [27] and we study the effects
of vacuum condensates in the free Wess–Zumino model [28]. We start by
treating the bosonic case. The fermion case is analogous and will be consid-
ered when the Wess–Zumino Lagrangian will be analyzed explicitly.

Any physical degree of freedom of a bosonic field is described by a
set of ladder operators ak with canonical commutation relations (CCRs),
[ak, a

†
p] = δ3(k− p) , with all other commutators vanishing. To such a set a

vacuum |0〉 is associated, defined by ak|0〉 = 0, and a Fock space is given as
an irreducible representation of the CCRs algebra.

A general Bogoliubov transformation acts on these bosonic modes as
ãk(ξ) = Uk(ξ) ak − Vk(ξ) a†k , with the condition, |Uk|2 − |Vk|2 = 1 , which
ensures the invariance of the CCRs. The parameter ξ which, in general,
depends on the mode is associated to the physics which is implemented by
the transformation, e.g. the temperature in the TFD case, or the accelera-
tion in the Unruh case. The Bogoliubov transformation can be expressed
by means of a generator J(ξ) in the form ãk(ξ) = J−1(ξ) ak J(ξ) , with
J(ξ) = exp

[
i
2

∑
k ξk

(
a2k − (a†k)2

)]
. The transformed modes ãk(ξ) annihi-

late a state |0̃(ξ)〉, i.e. ãk(ξ)|0̃(ξ)〉 = 0, which is related to the vacuum |0〉 by
|0̃(ξ)〉 = J−1(ξ)|0〉 . Such a state is called itself a vacuum, for the following
reason. The generator J is a unitary operator if k assumes a discrete range
of values; in this case, the Fock spaces built on the states |0〉 and |0̃(ξ)〉 are
equivalent. On the other hand, if k assumes a continuous infinity of values,
which is what happens in the case of QFT, J is not a unitary operator any
more. This implies that the state |0̃(ξ)〉 cannot be expressed as a superpo-
sition of vectors belonging to the Fock space built over |0〉. Rather, it is a
new vacuum, over which a whole new Fock space can be built by using the
tilded creation operators. The two Fock spaces are unitarily inequivalent
and describe different physical situations.
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The above described Bogoliubov transformation acts on the modes of a
single field. A second type of Bogoliubov transformation mixes the modes
of two fields, and its effects are essentially the same as in the single field
case. Such is, for example, the one which is involved in the case of particle
mixing, as we shall see later.

Let us now consider the free Wess–Zumino model. The Lagrangian is
given by

L =
i

2
ψ̄γµ∂

µψ +
1

2
∂µS∂

µS +
1

2
∂µP∂

µP − m

2
ψ̄ψ − m2

2

(
S2 + P 2

)
, (1)

where ψ is a Majorana spinor field, S is a scalar field and P is a pseu-
doscalar field. This Lagrangian is invariant under supersymmetry transfor-
mations [28]. By quantizing the fields in the usual way and denoting with αrk,
bk and ck the annihilator of ψ, S and P respectively, we define the vacuum
|0〉 = |0〉ψ ⊗ |0〉S ⊗ |0〉P as the state annihilated by such annihilators.

Now, we perform a Bogoliubov transformation on the ladder operators
corresponding to all three fields

α̃rk(ξ, t) = Uψk α
r
k(t) + V ψ

−k α
r†
−k(t) ,

α̃r†−k(ξ, t) = Uψ∗−k α
r†
−k(t) + V ψ∗

k αrk(t) , (2)

b̃k(η, t) = USk bk(t)− V S
−k b

†
−k(t) ,

b̃†−k(η, t) = US∗−k b
†
−k(t)− V S∗

k bk(t) , (3)

c̃k(η, t) = UPk ck(t)− V P
−k c

†
−k(t) ,

c̃†−k(η, t) = UP∗−k c
†
−k(t)− V P∗

k ck(t) . (4)

Since the Bogoliubov coefficients of scalar and pseudoscalar bosons are the
same, USk = UPk and V S

k = V P
k , we denote them as UBk and V B

k , respectively.
The constraints satisfied are Uψk = Uψ−k, V

ψ
k = −V ψ

−k, and |U
ψ
k |

2+ |V ψ
k |

2 = 1

for fermions and UBk = UB−k, V
B
k = V B

−k, and |UBk |2 − |V B
k |2 = 1 for

bosons. Thus, the forms of the coefficients are Uψk = eiφ1k cos ξk(ζ), V ψ
k =

eiφ2k sin ξk(ζ), UBk = eiγ1k cosh ηk(ζ), V B
k = eiγ2k sinh ηk(ζ), respectively,

where ζ is the parameter which controls the physics underlying the trans-
formation. We neglect the phases φik, γik, i = 1, 2, since they are irrelevant
in the following.

At any time t, the transformations (2)–(4) can be written as: α̃rk(ξ, t) =
J−1 (ξ, η, t)αrk(t) J(ξ, η, t), and similar relations for the other operators,
where the generator is

J(ξ, η, t) = Jψ(ξ, t)JS(η, t)JP (η, t)
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with

Jψ = exp

[
1
2

∫
d3k ξk(ζ)

(
αrk(t)αr−k(t)− αr†−k(t)αr†k (t)

)]
,

JS = exp

[
−i
∫
d3k ηk(ζ)

(
bk(t)b−k(t)− b†−k(t)b†k(t)

)]
,

and
JP = exp

[
−i
∫
d3k ηk(ζ)

(
ck(t)c−k(t)− c†−k(t)c†k(t)

)]
.

The new annihilators define the tensor product vacuum |0̃(t)〉 = |0̃(t)〉ψ ⊗
|0̃(t)〉S ⊗ |0̃(t)〉P , where |0̃(t)〉ψ = J−1ψ (ξ, t)|0〉ψ, |0̃(t)〉S = J−1S (η, t)|0〉S and
|0̃(t)〉P = J−1P (η, t)|0〉P . Then |0̃(t)〉 = J−1(ξ, η, t)|0〉 . The vacuum |0̃(t)〉
is the relevant, physical vacuum for the systems listed above when they
are studied in a supersymmetric context. It has the nontrivial structure
of a condensate of couples of particles and antiparticles as can be seen ex-
plicitly by looking at the condensation densities of fermions and bosons,
〈0̃(t)|αr†k α

r
k|0̃(t)〉 = |V ψ

k |
2 , and 〈0̃(t)|b†kbk|0̃(t)〉 = 〈0̃(t)|c†kck|0̃(t)〉 = |V B

k |2.
Such vacuum condensates are responsible for the energy density of |0̃(t)〉
being different from zero.

In fact, denoting with H = Hψ+HB the free Hamiltonian corresponding
to the Lagrangian (1), where HB = HS + HP , one has 〈0̃(t)|Hψ|0̃(t)〉 =

−
∫
d3k ωk (1 − 2|V ψ

k |
2) , for fermions and 〈0̃(t)|HB|0̃(t)〉 =

∫
d3k ωk(1 +

2|V B
k |2) , for bosons. Then the expectation value of the Hamiltonian H on

|0̃(t)〉 is [24]

〈
0̃(t)

∣∣H ∣∣0̃(t)
〉

= 2

∫
d3k ωk

(∣∣∣V ψ
k

∣∣∣2 +
∣∣V B

k

∣∣2) (5)

which is different from zero and positive because of the presence of the
fermion and boson condensates, both of which lift the vacuum energy by a
positive amount. This result, together with the fact that the true vacuum is
the transformed one |0̃(t)〉, implies, in supersymmetric context, the sponta-
neous breaking of SUSY induced by phenomena in which condensation takes
place.

The above result, Eq. (5), holds for disparate physical phenomena; the
explicit form of the Bogoliubov coefficients V ψ

k and V B
k specifies the par-

ticular system. For example, in the case of Thermo Field Dynamics, the
parameter ζ is the temperature, the physical vacuum is the thermal one,
and the result is that SUSY is spontaneously broken at any nonzero tem-
perature, as is well known [29, 30].
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3. Flavor mixing and SUSY breaking

Now, we consider explicitly the specific case of flavor mixing because
of the phenomenological interest of this system. Our starting point is the
Wess–Zumino Lagrangian for two massive free chiral supermultiplets

L=
2∑
i=1

{
i

2
ψ̄iγµ∂

µψi+
1

2
∂µSi∂

µSi+
1

2
∂µPi∂

µPi−
m

2
ψ̄iψi−

m2

2

(
S2
i +P 2

i

)}
(6)

with ψi denoting two free Majorana fermions, Si two free real scalars and
Pi two free real pseudoscalars (i = 1, 2). We assume that m1 6= m2, since
this is a necessary condition to have nontrivial mixing. It is clear that both
the 1 and 2 sectors of the above Lagrangian are separately invariant under
SUSY transformations.

Consider now the mixing transformations for the Lagrangian (6):

ψf = Uψ , Sf = US , Pf = UP , (7)

where U =

(
cos θ sin θ
− sin θ cos θ

)
, ψ = (ψ1, ψ2)

T , ψf = (ψa, ψb)
T = (cos θ ψ1 +

sin θ ψ2,− sin θ ψ1 + cos θ ψ2)
T , etc. The Lagrangian (6) takes then the form

L=
i

2
ψ̄f ( 6∂+M)ψf+ 1

2∂µSf∂
µSf− 1

2S
T
f M

2Sf+ 1
2∂µPf∂

µPf− 1
2P

T
f M

2Pf ,

(8)

withM =

(
ma mab

mab mb

)
, where ma = m1 cos2 θ+m2 sin2 θ, mb = m1 sin2 θ+

m2 cos2 θ, and mab = (m2 − m1) sin θ cos θ. This Lagrangian is invariant
under the same SUSY transformations as the unmixed one, but this time
referring to the mixed field. A careful discussion of this fact can be found
in [10].

Let us now proceed as in the previous section. We quantize the fields ψi,
Si and Pi and we express the mixing transformations (7) in terms of gen-
erators as ψσ(x) ≡ G−1ψ (θ) ψi(x) Gψ(θ), Sσ(x) ≡ G−1S (θ) Si(x) GS(θ) and
Pσ(x) ≡ G−1P (θ) Pi(x) GP (θ), respectively, where (σ, i) = (a, 1), (b, 2), and
the generators G−1ψ (θ), G−1S (θ), G−1P (θ), are given in Refs. [12–14, 19, 31].

In a similar way, the flavor annihilation operators are written in terms
of free fields annihilators, αrk,i, bk,i and ck,i as αrk,σ ≡ G−1ψ (θ) αrk,i Gψ(θ),
bk,σ ≡ G−1S (θ) bk,i GS(θ), and ck,σ ≡ G−1P (θ) ck,i GP (θ). They annihilate the
flavor vacuum (in the following, we suppress the explicit time label) |0〉f ≡
|0〉ψf ⊗ |0〉

S
f ⊗ |0〉Pf , where, |0〉ψf ≡ G−1ψ (θ) |0〉ψm , |0〉Sf ≡ G−1S (θ) |0〉Sm , and
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|0〉Pf ≡ G−1P (θ) |0〉Pm , are the flavor vacua of the fields ψσ(x), Sσ(x), Pσ(x),
respectively, and |0〉ψm, |0〉Sm, |0〉Pm denote the vacua for free fields.

As before, the vacuum |0〉f is a condensate. We have, in fact, [22]

f 〈0|αr†k,iα
r
k,i|0〉f = sin2 θ

∣∣∣V ψ
k

∣∣∣2 ,
and

f 〈0|b†k,ibk,i|0〉f = f 〈0|c†k,ick,i|0〉f = sin2 θ
∣∣V B

k

∣∣2 ,
where i = 1, 2 and the reference frame in which k = (0, 0, |k|) has been
adopted for convenience. The Bogoliubov coefficients V ψ

k and V B
k are∣∣∣V ψ

k

∣∣∣ =
(ωk,1 +m1)− (ωk,2 +m2)

2
√
ωk,1ωk,2(ωk,1 +m1)(ωk,2 +m2)

|k| ,

∣∣V B
k

∣∣ =
1

2

(√
ωk,1
ωk,2

−
√
ωk,2
ωk,1

)
. (9)

The expectation value of the fermionic and bosonic parts of H are given
by

f 〈0|Hψ|0〉f = −
∫
d3k (ωk,1 + ωk,2)

(
1− 2

∣∣∣V ψ
k

∣∣∣2 sin2 θ

)
,

and

f 〈0|HB|0〉f =

∫
d3k (ωk,1 + ωk,2)

(
1 + 2

∣∣V B
k

∣∣2 sin2 θ
)
,

respectively. Then, we have [25]

f 〈0|(Hψ +HB)|0〉f = 2 sin2 θ

∫
d3k(ωk,1 + ωk,2)

(∣∣∣V ψ
k

∣∣∣2 +
∣∣V B

k

∣∣2) (10)

which is different from zero and positive when θ 6= 0 and m1 6= m2. Eq. (10)
shows that SUSY breaking is induced by particle mixing phenomenon. This
situation should show up in any supersymmetric model in which mixing is
turned on before SUSY is spontaneously broken by some other mechanism.

4. Discussion and conclusions

We have shown that, in a supersymmetric field theory, different phe-
nomena may spontaneously break SUSY because of the presence of vacuum
condensates. For many of such systems the nontrivial dynamics makes the
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naive vacuum of the theory unstable in favor of a new vacuum which con-
tains the vacuum condensates1. The real vacuum of the system is obtained
from the original one by applying an appropriate Bogoliubov transformation.
Besides BCS theory, this is expected to happen in the mixing case as well.
In fact, while particle mixing is put by hand in the standard model or in
neutrino physics, it is expected to result from some dynamical effect which
is still unknown, whose result will be a shift of vacuum. In other situations,
such as the Unruh or the Schwinger effects, the system is put in an external
field. This makes the original vacuum unstable again (Schwinger effect), or
even inaccessible to the observer (Unruh effect), in favor of a new vacuum
which is again obtained by means of a Bogoliubov transformation controlled
by the external field. In the remaining case, that is TFD, the Bogoliubov
transformed vacuum is called thermal vacuum, and it is the appropriate one
to use at finite temperature in place of the naive one which is valid at zero
temperature. The discussion then boils down to the point that, in any situa-
tion in which the physics is described by a vacuum with condensates, SUSY
is spontaneously broken. We have given evidence of SUSY breaking in the
case of the free Wess–Zumino model, however our result can be extended
to more complex and physically relevant situations. In particular, a well
established feature of the Standard Model, namely flavor mixing, emerges
as a possible trigger of spontaneous SUSY breaking.
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