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Bifurcation analysis of a two-dimensional binary mixture of hard nee-
dles, which due to the second order of the transition character gives directly
the density of the transitions, thus the phase diagram, has been performed
for a complete set of the compositions and the needles lengths ratios within
the framework of the Onsager approach. A limit of a mixture of needles
and dot-like particles has been given. The possible changes in the phase
diagrams caused by modification of the interaction strength of the differ-
ent type particles are discussed. Prognosis of applications for the surfacial
adsorption of the rod-type molecules like fibrinogen has been suggested.
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1. Introduction

Two-dimensional systems are peculiar for many reasons. They are less
popular than three-dimensional systems, nevertheless new technical appli-
cations of adsorption at solid surfaces cause that interest in such systems is
on the increase.

One of the peculiarities is the existence of the so-called topological long
range order. Most 2D systems that exhibit continuous degrees of freedom
lack true long-range order (LRO), i.e. the order that pertains throughout the
whole system. Topological order, which name has been used for the first time
by Kosterlitz and Thouless in [1], describes the case when a well defined order
pertains, more or less constantly, over several particles’ dimensions, but as
the system size is increased, it diminishes and reaches zero value for infinitely
large systems. Thus, on the one side, on the short distance scale there is an
ordered system, on the other side, for infinitely large systems — there is no
long range order. Such type of ordering follows from harmonic or continuous
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theories [1–4] and has been also demonstrated on the basis of the Bogoliubov
inequality for superconductors, superfluids, magnets, translational order in
crystals [5] and certain classes of liquid crystals [6].

Despite the lack of long range order, mechanical or physical properties of
thin films or two-dimensional adsorbed layers may strongly depend on the
short range ordering properties. The fact that ordering can have considerable
impact on covering layers is already widely known [7, 8]. More complex
structures with hard needles like nets can serve as a model for liquid-crystal
polymer mixtures [9]. Additional effects occur when the adsorbed particles
are not spherical. Hence, it rises strong motivation for exploration of such
materials.

In the case of anisotropic particles, there exist a number of theoretical
tools, emerging mainly from the liquid crystals field, that allow to predict
and describe the physical states of the systems. The most powerful approach
are different types of the density functional theories (DFT). For hard bodies
it takes the form of the Onsager theory, which in the case of thick particles
requires amendments like the Parsons Lee re-scaling [10, 11] or y-expansion
of Barboy and Gelbart [12].

In the case of hard needles, which are the subject of the present paper
study, the situation is different. While studying the monodispersed system
of hard needles it has turned out, surprisingly, that the transition point of
the isotropic–nematic transition and the obtained state equation from the
Onsager approach are almost the same as those predicted from the computer
simulations [13–16] for a small and undistorted system. Such a result is
attributed to the presence of negative values of the higher virial coefficients,
which may cancel the influence of the other positive coefficients in such a
way that the second order virial approximation gives accurate predictions.
There is then a real chance that the results of the other DFT models with
hard needles can be directly used to judge about the physical properties.

Hard needles is the system which has been widely studied so far, both by
the DFTapproaches [16–21] and the computer simulations [13, 15, 22–27].
The main benefit of studying this model is the easiness to understand the
mechanisms that lead to different properties, especially useful since the nee-
dles form a natural limit for all anisotropic bodies — they can be obtained
by diminishing the width of spherocylinders, ellipsoids or other shapes. In
view of this, the hard needles properties can be used for comparison with the
properties of the systems where particles exhibit large values of the length
to breadth ratio. This conclusion does not hold as a whole for 3D case where
the hard needles do no form orientationally ordered phases, but can work
very well within the 2D assumption [28].
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The present paper provides the Onsager formalism for a binary mixture
of 2D hard needles, the possible phase diagrams from the bifurcation analysis
and emerging from it conclusions. The paper is organized as follows. The
next section presents the elements of the density functional theory within the
Onsager approach for a two-dimensional mixture: the excluded volume of
2D needles, the free energy of a 2D mesogenic mixture and the formulas for
the self-consistency equations and pressure. Section 3 presents bifurcation
analysis and in Sec. 4 the results, applications and perspectives are discussed.

2. Density functional theory

The DFT approach is a common and a relatively simple theoretical tool
which allows to calculate the equilibrium states of the system particles. Its
main element is the Helmholtz free energy functional which is expected to
attain minimum for the equilibrium distribution function. In the case of
hard particles, the interaction terms in the energy are governed by the ex-
cluded volume. The minimization procedure gives self-consistent equations
for the density distribution which must be numerically solved. Knowing
these solutions all thermodynamic properties like pressure, energy or chem-
ical potential can be obtained. For hard bodies it takes the form of the
Onsager theory [29].

2.1. Excluded volume of 2D needles

In the case of hard bodies, the excluded volume plays the role of inter-
actions. In general, it is defined as a set of points in space, which are not
accessible to the center of the other body. It is obtained while the other
body with fixed orientation is being moved around the central particle. For
the two-dimensional case of hard needles, it corresponds to the parallelo-
gram area with the sides equal to the lengths of the needles and tilted at
the angle φ. In Fig. 1, it is given by the shadowed area. Here, the central
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Fig. 1. The 2D excluded volume of two different hard needles.
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needle is painted as black and the needle moving around is gray. This area
is given by the formula

Vexcl = LALB| sin(φ)| , (1)

where LA and LB are the lengths of the molecules A and B.

2.2. The free energy of a 2D mesogenic mixture

The total energy of the nematic system Ftot can be given, in general, as
a sum of the following terms

Ftot = Funi + Felastic + Fexter + Fdefects , (2)

where Funi describes the energy of the uniform system, Felastic is the elastic
energy due to the director deformations, Fexter is the energy of the system
interactions with external fields and Fdefects corresponds to the energy of the
possible defects. The first term is the most fundamental for liquid crystals.
It can be directly compared to the simulation data if the simulated system
is small enough to ensure that the director is undeformed and there are no
disclinations.

The Helmholtz free energy functional [30] that describes a binary mixture
in the second order virial approximation takes the form

βF = βF0 +

∫
ρA(1) (logρA(1)− 1) d(1) +

∫
ρB(1) (logρB(1)− 1) d(1)

−
∑

i,j=A,B

1
2

∫ [
e−βUij − 1

]
ρi(1)ρj(2)d(1)d(2) , (3)

where (1) ≡ dr1dφ1. F0 can comprise as well the de Broglie wavelength
term as any shift determined by the choice of the zero level of energy. The
distribution ρi is normalized to the total number of particles Ni of a given
type i as follows ∫

ρi(r1, φ1)dr1dφ1 = Ni . (4)

For the system homogeneous in space, we can introduce a proper prob-
abilistic function fi = ρi/di, where di is the density di = Ni/V = xid,
V denotes the 2D volume and xi is the fraction of the i particles (the com-
position). Now the normalization condition follows

π∫
0

fi(φ)dφ = 1 . (5)
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For hard core interactions, the potential Uij is zero if the particles are
apart and infinite if the particles overlap. Using this property, we can per-
form one of the spatial integrations in the formula (3) and obtain the ex-
cluded area V ij

excl∫ [
e−βUij − 1

]
dr1 dr2 = −V V ij

excl(φ1, φ2) . (6)

Using the function fi and the expression (6), the free energy per particle
can be expressed as

βF

N
=

βF0

N

+xA

∫
fA(φ1) [log fA(φ1)− 1 + log dA] dφ1

+xB

∫
fB(φ1) [log fB(φ1)− 1 + log dB] dφ1

+
∑

i,j=A,B

1
2xixjd

∫
V ij
excl(φ1, φ2)fi(φ1)fj(φ2)dφ1dφ2 . (7)

2.3. Self-consistency equations and pressure

The minimum condition of the Helmholtz free energy requires that

δ
(
βF/N − λA

[∫
fAdφ− 1

]
− λB

[∫
fBdφ− 1

])
δfA

= 0 , (8)

and
δ
(
βF/N − λA

[∫
fAdφ− 1

]
− λB

[∫
fBdφ− 1

])
δfB

= 0 , (9)

where λi, i = A,B are the Lagrange multipliers needed here for the normal-
ization conditions to be fulfilled.

For 2D, needles Eq. (8) and Eq. (9) give the following equations

log fA(φ1) = − log dA + λA

−xAd
∫
V AA
excl(φ1, φ2)fA(φ2)dφ2 − xBd

∫
V AB
excl (φ1, φ2)fB(φ2)dφ2 , (10)

log fB(φ1) = − log dB + λB

−xBd
∫
V BB
excl (φ1, φ2)fB(φ2)dφ2 − xAd

∫
V BB
excl (φ1, φ2)fA(φ2)dφ2 , (11)
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where
V ij
excl = LiLj | sin(φ1 − φ2)| , (12)

and where the Lagrange multipliers λi can be treated as the chemical po-
tentials µi/xi.

Due to the definition of the pressure P ,

βP = −∂βF
∂V

, (13)

one can give also an explicit formula for P

βP = d+ 1
2

∑
i,j=A,B

d2
∫
V ij
exclfi(φ1)fj(φ2)dφ1dφ2 . (14)

3. Bifurcation analysis

Bifurcation analysis is the simplest and the best tool by the use of which
one can gain insight into the possibilities of the structural changes and the
symmetries of the new phases. Because of the second order of the tran-
sition in the 2D hard needles system, it can directly give the transition
points. In the case of liquid crystals, the recommended literature that pro-
vides the principles how to perform the bifurcation analysis is given in many
papers [31–35].

Following the line of notation from [31], let us rewrite the free energy as

βF = xA 〈fA, ln fA〉+xB 〈fB, ln fB〉+1
2λxixj

∑
i,j=A,B

〈
fi,K

ij [fj ]
〉
−βµA−βµB ,

(15)
where 〈. . .〉 =

∫
. . . dφ, and K[f ] =

∫
K(φ1, φ2)f(φ2)dφ2. In this notation,

λ has the same meaning as the density d.
The minimization condition together with the appropriate normalization

leads to the equations

fA =
exp

(
−λxAKAA[fA]− λxBKAB[fB]

)
〈1, exp (−λxAKAA[fA]− λxBKAB[fB])〉

, (16)

fB =
exp

(
−λxBKBB[fB]− λxAKAB[fA]

)
〈1, exp (−λxBKBB[fB]− λxAKAB[fA])〉

, (17)

where the terms K[f ] play the role of the self consistent “mean field”.
To proceed now with the bifurcation analysis, one needs explicit forms

of the symmetry adapted functions. As given in [16] for 2D nematic, they
take simply the form of ∆n = cosnφ, where n = 0, 2, 4 . . . .
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∆n’s obey the normalization condition∫
∆n∆n′dφ = 1

2πδnn′ . (18)

The interaction kernels can be cast as a series

Ki
(
φ̃
)

=
∑
n

2

π
kin∆

n
(
φ̃
)
. (19)

The symmetry adapted functions fulfill the following mathematical for-
mulas:∫
∆n(φ1)∆

n′(φ2 − φ1)dφ1 = 1
2π∆

n(φ2)δnn′ , (20)∫
Ki(φ2 − φ1)∆n(φ1)=

∑
n′

∫
2

π
kin′∆

n′(φ2 − φ1)∆n(φ1)dφ1=
∑
n

kin∆
n(φ2) .

(21)

The main task of the bifurcation analysis is to find the solutions that
branch off from the isotropic solution f0 = 1/π. In the vicinity of the bifur-
cation point, the elements of Eq. (16) and Eq. (17) can be expressed in a
perturbative manner as expansions in the arbitrary small parameter ε:

f = f0 + εf1 + ε2f2 . . . ,

λ = λ0 + ελ1 + ε2λ2 . . . , (22)

where due to the normalization < 1, fk >= 0 for k ≥ 1.
Applying formulas of the form like in (22) to Eq. (16) and Eq. (17) and

equating terms of the equal order in ε, it is obtained(
fA0 + εfA1

) 〈
1, e(−λ0−ελ1)(xAK

AA[fA0 +εfA1 ]+xBKAB[fB0 −εfB1 ])
〉

= e(−λ0−ελ1)(xAK
AA[fA0 +εfA1 ]+xBKAB[fB0 +εfB1 ]) , (23)

and further

fA0

〈
1, e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))

e(−ελ1(xAK
AA[fA0 ]+xBKAB[fB0 ])−ελ0(xAKAA[fA1 ]+xBKAB[fB1 ]))

〉
+ εfA1

〈
1, e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))
〉

= e(−λ0−ελ1)(xAK
AA[fA0 +εfA1 ]+xBKAB[fB0 +εfB1 ]) . (24)
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Applying next the expansion ex = 1 + x+ x2 + . . . one obtains

fA0

〈
1, e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))(
1−ελ1

(
xAK

AA
[
fA0
]
+xBK

AB
[
fB0
])
−ελ0

(
xAK

AA
[
fA1
]
+xBK

AB
[
fB1
]))〉

+εfA1

〈
1, e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))
〉

= e(−λ0(xAK
AA[fA0 ]+xBKAB[fB0 ]))(

1−ελ1
(
xAK

AA
[
fA0
]
+xBK

AB
[
fB0
])
−ελ0

(
xAK

AA
[
fA1
]
+xBK

AB
[
fB1
]))

.

(25)

The zero order term follows

fA0 = e(−λ0(xAK
AA[fA0 ]+xBKAB[fB0 ]))〈

1,e(−λ0(xAK
AA[fA0 ]+xBKAB[fB0 ]))

〉 (26)

and must be equal to 1/π. The first order term, which is of our interest, is

fA0

〈
1, e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))(
−ελ1

(
xAK

AA
[
fA0
]
+xBK

AB
[
fB0
])
−ελ0

(
xAK

AA
[
fA1
]
+xBK

AB
[
fB1
]))〉

+εfA1

〈
1, e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))
〉

= e(−λ0(xAK
AA[fA0 ]+xBKAB[fB0 ]))(

−ελ1
(
xAK

AA
[
fA0
]
+xBK

AB
[
fB0
])
−ελ0

(
xAK

AA
[
fA1
]
+xBK

AB
[
fB1
]))

.

(27)

First term on the left-hand side and first term on the right-hand side
of Eq. (27), taking into account Eq. (26), are equal to each other. Also
averages (like 〈1, f1〉 = 0) from the perturbation terms must vanish, so
finally one obtains

εfA1

〈
1, e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))
〉

= e(−λ0(xAK
AA[fA0 ]+xBKAB[fB0 ]))(

−ελ0
(
xAK

AA
[
fA1
]

+ xBK
AB
[
fB1
]))

. (28)

Rewriting this formula as

fA1 =
(
−λ0

(
xAK

AA
[
fA1
]
+xBK

AB
[
fB1
])) e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))〈
1, e(−λ0(xAK

AA[fA0 ]+xBKAB[fB0 ]))
〉

(29)
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and taking into account that uniform isotropic distributions like Eq. (26)
are equal to 1/π the bifurcation formulas are finally obtained as

fA1 =
(
−λ0

(
xAK

AA
[
fA1
]

+ xBK
AB
[
fB1
])) 1

π
,

fB1 =
(
−λ0

(
xBK

BB
[
fB1
]

+ xAK
AB
[
fA1
])) 1

π
.

(30)

The first two terms of the ODF functions are

fA = a0 + a2∆2 ,

fB = b0 + b2∆2 , (31)

so fA1 = a2∆2 and fB1 = b2∆2, and

KAA
[
fA1
]

= a2

∫
KAA (φ2 − φ1)∆2 (φ1) dφ1 = a2

∑
n

kAAn ∆2(φ2) ,

KBB
[
fB1
]

= b2

∫
KBB (φ2 − φ1)∆2(φ1)dφ1 = b2

∑
n

kBBn ∆2(φ2) . (32)

The set of the bifurcation equation emerges from Eq. (30) as

a2∆2 = −λ0
π

(
a2xAk

AA
2 ∆2 + b2xBk

AB
2 ∆2

)
,

b2∆2 = −λ0
π

(
b2xBk

BB
2 ∆2 + a2xAk

AB
2 ∆2

)
. (33)

To get rid of the functional form, we can multiply both sides by ∆2 and
integrate over the angle φ

a2 = −λ0
π

(
a2xAk

AA
2 + b2xBk

AB
2

)
,

b2 = −λ0
π

(
b2xBk

BB
2 + a2xAk

AB
2

)
. (34)

From this set of equations, one obtains the relation

xBk
AB
2

−π/λ0 − xBkBB2

=
−π/λ0 − xAkAA2

xAkAB2

(35)

which is a square equation for the unknown λ0

xAxB
(
kAB2

)2
=

(
π

λ0

)2

+
π

λ0

(
xAk

AA
2 + xBk

AB
2

)
+ xAk

AA
2 xBk

BB
2 . (36)
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From this equation, one obtains finally the expression for the bifurcation
point density

2π

λ1,2bif

=

−
(
xAk

AA
2 +xBk

BB
2

)
±
√(

xAkAA2 +xBkBB2

)2−4xAxB
(
kAA2 kBB2 −kAB2 kAB2

)
.

(37)

For the Onsager particles interacting accordingly to the formula K(φ̃) =

LiLj | sin(φ̃)|, the needed coefficients are kij2 = −LiLj 23 , k
ij
4 = −LiLj 2

15 , k
ij
6 =

−LiLj 2
35 .

If we put that the particles are of the same kind then from the formula
Eq. (37), one obtains the known expression for the monodispersed system

π

λbif
= −k2 . (38)

4. Results, applications and perspectives

The formalism presented in the previous section has been used to obtain
the phase diagram for a binary mixture of two-dimensional system, which
because of the only one anisotropic phase — nematic phase, is simplified.
In Fig. 2, the transition line is given that separates the isotropic from the
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Fig. 2. Density of the bifurcation, ρ∗ = ρL2
A , versus composition xA obtained for

different values of χ.
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nematic phase versus composition xA. The monodispersed system is repre-
sented here by the straight bottom line at ρ∗ = 4.71. The length difference
between the needle A and B describes the coefficient χ = LA/LB. At the
left side of the diagram, the bifurcation lines reach the values of the density
bifurcation for a pure B system, and at the right side — the A system. The
lines connecting these points are, however, far from linear. It is noticeable
that its character is dominated by the longer needles — the curves are bent
downwards with the curvature apparently depending on χ = LA/LB.

If the particles B are as short, that they can be regarded as dots one still
observes the transition line (thick dashed lines in Fig. 2 and Fig. 3), which
escapes to infinity if the composition xA− > 0. Yet at the composition
xA = 0.5, which corresponds to the mixture composed of 50 percent of the
needles and 50 percent of the dot-like objects, the bifurcation density is not
very much increased — it is ρ∗ = 9.12, which is about twice the density of
the pure needles system. While diminishing the number of the hard lines
as compared to the dots, below xA = 0.5, the area of the isotropic phase
rapidly increases. Fig. 3 presents a part of the phase diagram at very small
numbers of xA. One sees that for the anisotropy ratio χ > 0.5 all the density
lines of the bifurcation are smaller than ρ∗ = 20, i.e. 5 times larger than the
transition density of the pure needle system.
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Fig. 3. Density of the bifurcation, ρ∗ = ρL2
A , versus composition xA obtained for

different values of χ.
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Let us assume now a binary mixture, where the coefficients of the mole-
cules of the type A are kAA2 = −LALA 2

3 and of the type B kBB2 = −LBLB 2
3 ,

but their mutual preferred orientations are perpendicular according, for in-
stance, to the potential of the form KAB = LALB| cos(ϕ)| leading to the
coefficient kAB2 = LALB

2
3 . This condition may seem a bit unrealistic at first

glance, although some suggestions toward obtaining similar situation would
be to add the dipol interactions, for the particle A along their orientation
and for the particles B — perpendicularly. On the theoretical grounds, how-
ever, any strength can be considered just to observe the properties produced
by the equations of interest.

First observation, which is a bit surprising, is that due to the structure
of the Eq. (37), the bifurcation lines will be exactly the same. The possible
differences may occur in the order parameters.

In Fig. 4 and Fig. 5, an influence of the cross term on the phase di-
agram is presented. Figure 4 shows the situation when the parameter
kAB2 (modified) = αkAB2 is gradually diminished while the particles A and B
are kept the same. It causes and increase in the bifurcation density with the
maximum at xA = 0.5 and while the term vanishes this maximum takes the
form of a cusp at the level twice higher than the original bifurcation density
ρ∗ = 4.71. Figure 5, on the other hand, presents the effect of strengthening
of the interaction cross term. It substantially lowers the bifurcation density
profiles, dominating the influence of KAA and KBB terms.
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Fig. 4. Density of the bifurcation, ρ∗ = ρL2
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Bifurcation Analysis of a Two-dimensional Binary Mixture of Hard Needles 103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x

A

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

b
if

u
rc

at
io

n
 d

en
si

ty
α=1.0

α=1.1

α=1.2

α=1.3

α=1.4

α=1.5

α=1.6

α=1.7

α=1.8

α=1.9

α=2

Fig. 5. Density of the bifurcation, ρ∗ = ρL2
A , versus composition xA obtained for

different values of α.

All the above profiles can be useful as a guide for studying the problem of
adsorption of long rod-like molecules at surfaces. An example of such process
is the adsorption of fibrinogen [36, 37], which has been recently intensively
studied because of its possible medical applications for the surfaces of the
implants. Fibrinogen is a soluble plasma glycoprotein that is converted by
thrombin into fibrin during blood coagulation. As far as human body is
concerned it is biologically friendly. Other applications of protein coverages,
especially structured, indicate their high potential also for pharmaceuticals,
cosmetics industries and food sciences [38].

In the studies of adsorption, a crucial subject is then a two-dimensional
ordered arrangement. In the experiments with fibrinogen, the molecules are
being adsorbed from a liquid solution onto the solid surface. As a result,
some molecules are adsorbed as lying flat on the surface, the rest are being
attached to it only with one of the ends and protrude from the surfaces. The
arrangement of the molecules within the plane can be regarded then as a
binary mixture of rod-like molecules and small spheres.

Generally, the process of adsorption concerns a random packing problem
which, in principle, despite the fact that it depends on the solution prop-
erties like composition, features of the solid surface and the kinetics itself,
it produces an isotropic arrangement. Newly adsorbed molecules increase
surface density till a saturated value is obtained. To still accept particles the
layer of the adsorbed particles must have the possibility to reorient. If the
particles can reorient, which process is not obvious from experiment, then
one may even talk about thermodynamically stable 2d phases.



104 A. Chrzanowska

The current paper on needles provides the limits for the particles density
to obtain an ordered phase. Since there is no much difference between inter-
actions of a long needle with a very short needle and a long needle and an
appropriately small sphere, one can even expect that the above given lim-
its can be of help to explain experimental results for fibrinogen adsorption.
Besides this example, the model refers also to a number of a many types of
2D binary mixtures.
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