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For many-particle quantum systems, calculating thermodynamic quan-
tities in the canonical ensemble is a very hard task, while this is tractable
in the grand canonical ensemble. The second ensemble is then used. The
results are supposed to be the same, at least in the thermodynamic limit.
Is this actually the case? In this work, we consider a system of N non-
interacting bosons distributed among few energy levels. We can calculate
the canonical partition function in this case and deduce the canonical mean
energy. We compare it to the mean energy deduced from the grand canon-
ical ensemble for the same number of particles. We consider the case of a
large number of particles.
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1. Introduction

For many-particle quantum systems (bosons and fermions), calculating
the canonical partition function is a very hard task. This is due to the indis-
tinguishability of identical quantum particles. The use of canonical ensemble
is then avoided. As the grand canonical partition function is more tractable,
thermodynamic quantities are calculated using the grand canonical ensem-
ble. The results are supposed to be the same, at least in the thermodynamic
limit [1]. Is this actually the case? Furthermore, there is many systems with
fixed number of particles, where the canonical description is more appropri-
ate [2].

It is usually stated in textbooks that the different statistical ensembles
are equivalent, at least in the thermodynamic limit [3, 4]. These ensembles
are supposed to give the same thermodynamic quantities in this limit. But
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during the last two decades, this equivalence has been subject to a renewed
interest. It has been shown first that the microcanonical and the grand
canonical ensembles are not equivalent for the calculation of the ground
state population in the Bose–Einstein condensate [5].

Later, the equivalence between the microcanonical and the canonical
ensembles has been studied deeply [6–17]. In particular, it has been proved
that these ensembles are equivalent only when the microcanonical entropy
is a concave function of the energy. For systems of interacting spins, it has
been shown that the equivalence is realized only for short range interactions.

In this work, we are interested in testing the equivalence of the canon-
ical and grand canonical ensembles for systems of non-interacting bosons.
For this aim, we compare the mean energy obtained in the canonical en-
semble to that of the grand canonical one. We consider a system of bosons
without interactions, distributed among few energy levels, that is a system
with a bounded spectrum. For such systems, the equivalence between these
ensembles cannot be taken for granted [18].

We can calculate the canonical partition function in this case and deduce
the canonical mean energy. We compare it to the result obtained by use of
the grand canonical ensemble in order to test the equivalence of the two
ensembles.

For our calculations, we use the following notations: the subscript is for
the ensemble (GC for grand canonical and C for canonical) and the super-
script is for the levels number; for example, Q(n)

C is the canonical partition
function for a system of n energy levels and Q(n)

GC the grand canonical par-
tition function for n energy levels.

2. Two energy levels system

We consider a system where N identical spinless bosons without interac-
tion are distributed among two energy levels. Without a loss of generality,
we can take the energy values of these levels as 0 and ε respectively. The
system is in thermal equilibrium with a heat bath of temperature T . We
want to calculate the mean energy using the canonical and grand canonical
ensembles and compare the obtained values.

2.1. Canonical ensemble

Generally, the calculation of the canonical partition function is difficult.
We can evaluate it easily in this case. For this aim, we distribute N indis-
tinguishable bosons among these two levels. We put i bosons on the level
of energy ε and (N − i) bosons on the level of energy 0. A distribution is
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represented in figure 1. The energy of the system is iε. We obtain all the
possible configurations by varying i from 0 to N .

Fig. 1. A distribution of N indistinguishable bosons among two energy levels. The
energy of this distribution is iε.

Then, the canonical partition function can be written in the form [19]

Q
(2)
C =

N∑
i=0

e−iβε , (1)

where β = 1/kT , and k is the Boltzmann constant. This sum is a geometric
series, with the result

Q
(2)
C =

1− e−(N+1)βε

1− e−βε
. (2)

The mean energy of the system is given by the relation

Ē
(2)
C = −

∂LogQ
(2)
C

∂β
. (3)

It takes the form

Ē
(2)
C =

ε

e−βε − 1
− (N + 1)ε

e−(N+1)βε − 1
, (4)

where Ē(2)
C /ε is a function of N and βε. We notice that this energy is not

additive; this is due to quantum correlations between bosons.

2.2. Grand canonical ensemble

For this system, the grand canonical partition function is [20]

Q
(2)
GC =

1

(−1 + eβε−βµ)

1

(−1 + e−βµ)
, (5)

where µ is the chemical potential. The mean number of particles is given by
the relation

N̄
(2)
GC =

1

(−1 + eβε−βµ)
+

1

(−1 + e−βµ)
. (6)



1952 S.K. Mehdi, N. Daoudi, S. Kessal

This relation determines µ when N̄
(2)
GC is fixed, for a given βε. N̄

(2)
GC is a

function of βε and βµ. The grand canonical mean energy has the form

Ē
(2)
GC =

ε

(−1 + eβε−βµ)
, (7)

where Ē(2)
GC/ε is a function of βε and βµ.

2.3. Comparison for fixed N

In this case, for a fixed N and for a value of βε, we calculate Ē(2)
C

(equation (4)). To compute the mean energy Ē(2)
GC, we first determine the

chemical potential µ which leads to the fixed number N̄ (2)
GC (equation (6))

taken equal to N and then use this value to obtain Ē(2)
GC. It is convenient to

consider the relative discrepancy of the mean energy

R =

Ē(2)
GC − Ē

(2)
C


Ē

(2)
GC

. (8)

We have computed the relative discrepancy R as a function of βε forN = 103

and N = 105. The results are shown in figure 2. The curves have a Gaussian
shape with a maximum of R equal to 21%. We notice that this maximum
is the same for different values of N .

Fig. 2. (Colour on-line) The relative discrepancy R as a function of βε for a two
levels system with a fixed value of N (indicated on the curve).
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2.4. Comparison for a general case

We want to compare the canonical and grand canonical mean energies
for systems of the same number of particles (at least on average) for different
values of βε and βµ. To realize this, we take the number N of particles in
the canonical ensemble (equation (4)) equal to the average particles number
of the grand canonical ensemble (equation (6))

N = N̄
(2)
GC(βε, βµ) (9)

with this choice, Ē(2)
C /ε becomes a function of βε and βµ

Ē
(2)
C

ε
=

1

−1 + eβε
−

N̄
(2)
GC(βε, βµ) + 1

−1 + e

((
N̄

(2)
GC(βε,βε)

)
+1

)
βε
. (10)

The relative discrepancy R of these mean energies is then a function of βε
and βµ. We can write it in the form

R(βε, βµ) =

Ē(2)
GC(βε, βµ)− Ē(2)

C (βε, βµ)


Ē
(2)
GC(βε, βµ)

. (11)

To understand the behaviour of R(βε, βµ), we plot the contours of the same
values of R(βε, βµ) as a function of the two variables βε and βµ. The result
is shown in figure 3.

We see in figure 3 that the contours of constant values of R(βε, βµ) are
straight lines which pass by the origin. These lines are such that

βε = −λβµ , (12)

where λ is a positive parameter, which represents the slope of the line. It
can be seen as the ratio of the energy gap ε on the chemical potential µ.
We notice that the relative discrepancy is varying strongly with λ. So it is
interesting to write R as a function of λ and βµ noted Rp(λ, βµ)

Rp(λ, βµ) = R(−λβµ, βµ) . (13)

When the slope of the line increases, the value of R increases and reaches
a maximum (around 21%) and then decreases. The interesting case is the
thermodynamic limit as it is stated in textbooks that the different statistical
ensembles are equivalent in this limit [3, 4].
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Fig. 3. (Colour on-line) Contours of constant values of R(βε, βµ) as a function of
βε and βµ for a two levels system. These contours are straight lines which pass by
the origin. The values of R(βε, βµ) are indicated on the corresponding lines. The
value 21% concerns the lines of both sides.

For N particles in a box of volume V , this limit is written: N → ∞,
V →∞, and N

V = constant. Taking V →∞ makes the level energy spacing
ε′ in the box go to zero. The constant particle density gives Nε′3/2 con-
stant for a box in three dimensions (3D case) and Nε′ constant for a two
dimensional box (2D case).

In our system of two energy levels, the volume V is not involved, so we
cannot consider a particle density and speak of a thermodynamic limit in a
strict sense. However, we can define a “thermodynamic limit-like approach”
when we take: N → ∞, ε → 0, and Nε = constant. This looks like the
thermodynamic limit in the 2D box case. This limit is obtained when βµ goes
to zero. Then, equation (12) gives βε → 0 and equation (6) ensures that
Nε is constant. In this “thermodynamic limit-like approach”, the relative
discrepancy of the mean energy depends only on λ

Rth(λ) = lim
βµ→ 0

Rp(λ, βµ) . (14)

For a system of two energy levels, the expression of Rth(λ) is

Rth(λ) =
1

λ
− λ+ 2

eλ(λ+2)(λ+1) − 1
. (15)
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We plot Rth(λ) as a function of λ. The result is shown in figure 4.

Fig. 4. Relative discrepancy Rth(λ) in the “thermodynamic limit-like approach” as
a function of λ for a two levels system.

From figure 4, we see that the relative discrepancy is not vanishing. It
takes a maximum value of 21% for a value of λ around 2. It diminishes
slowly towards zero when λ increases. We can conclude that, for a system
with two energy levels, the canonical and grand canonical ensembles are
not equivalent for the mean energy even in the “thermodynamic limit-like
approach”.

3. Three and more energy levels systems

We consider a system of N ideal spinless bosons distributed among three
energy levels, equally spaced. The energy values are taken as 0, ε, 2ε, respec-
tively. We show in figure 5 a distribution of particles among these levels.

Fig. 5. Simple representation of a system with N ideal bosons distributed among
three equidistant energy levels.
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3.1. Canonical ensemble

A particle distribution is, for example, i bosons in the ground state (0),
j bosons in the first state (ε), and (N − i − j) in the second excited state
(2ε).

To describe all reachable states to the system, we sum over i varying
from 0 to N and, for a given i, we sum over j varying from 0 to (N − i).
The canonical partition function can be written then as

Q
(3)
C =

N∑
i=0

N−i∑
j=0

e−(0×i+βε×j+2βε×(N−i−j)) . (16)

This gives the result

Q
(3)
C =

1− e−βε(N+1)

1− e−βε
× 1− e−βε(N+2)

1− e−2βε
. (17)

The mean energy takes the form

Ē
(3)
C =

ε

(−1 + eβε)
− (N + 1)ε

−1 + e(N+1)βε
+

2ε

(−1 + e2βε)
− (N + 2)ε

−1 + e(N+2)βε
, (18)

where Ē(3)
C /ε is a function of N and βε.

3.2. Grand canonical ensemble

For this system, the grand canonical partition function is

Q̄
(3)
GC =

1

(1− eβµ)

1

(1− eβµ−βε)
1

1− eβµ−2βε)
. (19)

The chemical potential µ is related to the mean particle number by the
relation

N̄
(3)
GC =

1

−1 + e−βµ
+

1

−1 + eβε−βµ
+

1

−1 + e2βε−βµ . (20)

The mean energy has the form

Ē
(3)
GC =

ε

(−1 + eβε−βµ)
+

2ε

−1 + e2βε−βµ . (21)

In order to compare the canonical and grand canonical mean energies,
we follow the same procedure as done for the two levels system: we take the
number of particles in the canonical ensemble equal to the average number of
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particles in the grand canonical ensemble. We plot the relative discrepancy
as a function of βε and βµ. As for the previous case, the contours of constant
relative discrepancy are also straight lines passing by the origin. We impose
also a linear relationship between βε and βµ (equation (12)). We calculate
the relative discrepancy in our “thermodynamic limit-like approach”.

We develop similar calculations for systems with four and ten equidistant
energy levels.

In figure 6, we present the relative discrepancy derived from the two
ensembles in the “thermodynamic limit-like approach”.

Fig. 6. (Colour on-line) Relative discrepancy Rth(λ) in the “thermodynamic limit-
like approach” as a function of λ for a system with two, three, four and ten levels.
The curves are labelled by the numbers of energy levels. The maximum value of
Rth(λ) diminishes when the level number increases.

4. Summary and discussion

We have considered systems of N non-interacting spinless bosons dis-
tributed among a small number of energy levels. We have determined the
mean energy in the canonical ensemble and in the grand canonical one. We
have calculated the relative discrepancy in a “thermodynamic limit-like ap-
proach” we have defined. This relative discrepancy proved to be non-zero
and can reach 21% for a two levels system. We have considered also systems
with 3, 4 and 10 levels. The relative discrepancy is not zero but its maxi-
mum decreases as the number of levels increases. It is 7% for a system of 10
equidistant energy levels.

We conclude that these two ensembles are not equivalent for systems
with a small number of energy levels (systems with a bounded spectrum).
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In view of the regular decrease of the relative discrepancy as the number
of levels increases, we can expect that this discrepancy will be null when
the number of levels is infinite. Therefore, the equivalence between these
two ensembles will be effective for systems with an infinite number of levels
(this is the case for bosons in a box and for bosons trapped in a harmonic
potential). This is then in agreement with the statement in textbooks.

Until now, we do not know experimental work to study the equivalence
of canonical and grand canonical ensembles. We believe that a system of
bosonic atoms interacting with magnetic field (the Zeeman effect) can be
used for this purpose.

We thank B.G. Giraud from Saclay (Paris) for his helpful discussions.
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