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We present a new method in the framework of non-relativistic quantum
mechanics for mapping of exact analytic s-wave solutions for hyperbolic
central potentials from the angular wave functions of already known quan-
tum systems with exactly solvable ring-shaped potentials. The method is
based on a coordinate redesignation and a coordinate transformation sup-
plemented by a functional transformation. Invocation of plausible ansatz
is indispensable to (re)generate hyperbolic central potentials, and the ra-
dial wave functions for the generated central potentials are shown to be
normalizable elegantly.
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1. Introduction

The Schrödinger stationary-state wave equation in non-relativistic quan-
tum mechanics can be solved exactly only for a very limited number of physi-
cal quantum systems (QSs). Therefore, the approximation schemes, e.g. the
WKB analytical method, perturbation theory, variational technique, etc.
have been used to procure information on the physical QSs with non-exactly
solvable potentials (non-ESPs). However, the effectiveness of an approxima-
tion scheme in gathering information from a physical QS depends largely
on the solutions of ESP which is found to be the potential of the QS hav-
ing some sort of perturbation. This warrants the construction/generation
of more and more number of ESPs for the successful implementation of the
† Corresponding author: arup.brp@gmail.com
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approximate methods. The study of exactly solvable QSs again provokes
new mathematical techniques and/or physical ideas to quantum mechan-
ics. Many authors have reported various types of non-ESPs with appended
conditions, e.g. quasi-ESPs [1, 2], conditionally ESPs [3, 4], conditionally
quasi-ESPs [5], etc.

Again, the extended transformation (ET) [6] is applied successfully by
Ahmed et al. and others for the generation of exactly solvable central poten-
tials (ESCPs) in an Euclidean space of any desired dimension from already
known ESCPs (power law and non-power law) [7–12]. The ET includes
a coordinate transformation (CT) required to modify the spatial charac-
ter of an already known ESCP to generate a new ESCP and a functional
transformation (FT) for manipulation of the dimensionality of the space to
which the known QS gets transformed. Invocation of plausible ansatz is an
integral part of the method to accomplish the energy eigenvalues of the gen-
erated QS. Here, we report on a new mapping method based on the ET [6]
entailing a coordinate redesignation mechanism for the (re)generation of
ESCPs (hyperbolic) in the three dimensional Euclidean space from already
known QSs with exactly solvable ring-shaped potentials (ESRPs). The polar
angle in the Schrödinger angular equation with a known ESRP is redesig-
nated exclusively in the mathematical sense by radial coordinate to obtain
a second-order radial differential equation. The ET is then performed on the
second-order radial differential equation to retrieve the Schrödinger radial
equation form and by invoking plausible ansatz, an ESCP (hyperbolic) is
(re)generated. The quantum numbers, different parameters etc. related to
the original potential have lost their usual meaning in the transformation
and new parameters, quantum numbers, etc. have been reformulated by
reshuffling those for the original potential so as to have a (new) physical
central potential. The striking point in the present method is that the so-
lutions of the Schrödinger radial equation, i.e. the radial wave functions for
the generated potentials are not gathered by solving any differential equa-
tions, but they are mapped in a very straightforward manner from those
for the already known ESRPs in the spirit similar to that of the supersym-
metric (SUSY) approach [13–15], and the transformed radial wave functions
are shown to be normalizable, solving the pertinent issue of normalizability
elegantly.

The arrangement of the paper is as follows — Sec. 2 is devoted to de-
scribe the formalism of the method, the normalizability property of the
transformed wave functions is discussed in Sec. 3, the method is demon-
strated with examples in Sec. 4 and lastly, concluding remarks are included
in Sec. 5.
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2. Formalism

The Schrödinger stationary-state wave equation in natural units ~ =
2m = 1 for a QS with a non-central potential V (r, θ) = V (r) + 1

r2
V (θ),

where V (r) is central potential and V (θ) is ring-shaped potential, is given by

∇2Ψ (~r ) + [En − V (r, θ)]Ψ (~r ) = 0 . (1)

We take a solution of the second-order differential equation (1) as

Ψ (~r ) = R (r)χ (θ)Φ (φ) (2)

and the separation variable method is applied in equation (1) to have

R (r)
′′

+
2

r
R (r)

′
+

[
En − V (r)− λ

r2

]
R (r) = 0 , (3)

(Schrödinger radial equation)

χ (θ)
′′

+ cot θχ (θ)
′
+

[
λ− m2

sin2 θ
− V (θ)

]
χ (θ) = 0 , (4)

(Schrödinger θ equation)

Φ (φ)
′′

+m2Φ (φ) = 0 . (5)

(Schrödinger φ equation)

The prime symbolizes differentiation with respect to the argument. λ and m
appear in the above equations (3)– (5) from the imposition of separation vari-
able method in equation (1). In the case of central potential, λ = l (l + 1)
and the admissible values for orbital quantum number l and magnetic quan-
tum number m are l = 0, 1, 2, 3, . . . , (n− 1) and m = 0,±1,±2,±3, . . . ,±l,
if R (r) is to be the wave function for a physical system. However, in the pres-
ence of the ring-shaped potential V (θ), l needs to be redefined [16], but m is
fixed through the solution of equation (5), i.e. Φ (φ) = exp(± imφ) and the
periodicity condition Φ (φ) = Φ (φ+ 2π). The boundary conditions demand
that radial wave function R (r) vanishes as r →∞ and if R (r) = r−1U (r),
then boundary conditions should be U (0) = 0 = U (∝) [17]. The angular
wave function χ (θ) at θ = 0 and θ = π are finite, but it does not require
any periodicity condition.
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Here, we start with the Schrödinger θ equation (4) for a known physical
QS with an ESRP VES (θ) , henceforth called parent potential, where the
polar angle (θ) is redesignated by the radial coordinate (r) exclusively in
the mathematical sense to construct a second-order radial differential equa-
tion as

χ (r)
′′

+ cot r χ (r)
′
+

[
λ− m2

sin2 r
− VES (θ = r)

]
χ (r) = 0 . (6)

The above equation does not represent the standard Schrödinger radial
equation (3) and at present keeping aside its physical meaning, if there is
any in the deep root level, the equation is treated simply as a second-order
homogeneous differential equation of the radial coordinate r.

The ET is followed to mold the constructed radial equation (6) to the
Schrödinger radial equation form in an Euclidean space of any desired di-
mension. The ET consists of a CT as

r → g (r) (7)

and a FT as
R (r) = f (r)−1 χ [g (r)] , (8)

where the transformation function g (r), required for generation of potential
by modifying the spatial character of the parent potential, is a differentiable
function of at least class C2 and f (r)−1 is the modulating function that
plays a role in dealing with the dimensionality of the space to which the
parent system gets transformed. Application of the CT on equation (6)
yields an intermediate auxiliary differential equation as

d2

dg2
χ (g) + cot g

d

dg
χ (g) +

[
λ− m2

sin2 g
− VES (θ = g)

]
χ (g) = 0 .

Using the relations d
dg ≡

1
g′

d
dr and

d2

dg2
≡ 1

g′2
d2

dr2
− g′′

g′3
d
dr in the intermediate

equation and then subjecting it to the FT, we have

R (r)
′′

+

(
d

dr
ln
f2 sin g

g′

)
R (r)

′
+

{(
d

dr
ln f

)(
d

dr
ln
f
′
sin g

g′

)

+g
′2

[
λ− m2

sin2 g
− VES (θ = g (r))

]}
R (r) = 0 . (9)

We require the coefficient of the first derivative equal to D−1
r to cast the

above equation (9) to the form of the standard Schrödinger radial equation
in D-dimensional Euclidean space [6], i.e.

d

dr
ln
f2 sin g

g′
=
D − 1

r
,
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fixing the functional form of f (r) as

f (r) = constant× r
D−1
2 g

′ 1
2 sin−

1
2 g , (10)

and changes equation (9) to

R (r)
′′

+
D − 1

r
R (r)

′
+

{
1

2
{g, r}+

(
D − 1

2

)(
D − 3

2

)
1

r2
+ g

′2

×

[(
λ+

1

4

)
−
m2 − 1

4

sin2 g
− VES (θ = g (r))

]}
R (r) = 0 , (11)

where the Schwartzian derivative symbol {g, r} = g′′′

g′ −
3
2

(
g′′

g′

)2
.

To generate a central potential in the above equation, we invoke the
following ansatz

g
′2

(
m2 − 1

4

sin2 g

)
= −ε , (12)

which is the integral part of the mapping method and where ε is a constant,
fixing the functional form of the transformation function g (r) as

g (r) = 2 arctan (C exp ηr) , (13)

where

η = ±
√

−ε
m2 − 1

4

. (14)

Invocation of the ansatz is the only approach to achieve a suitable trans-
formation function g(r), which will work in the generation of potential and
an educative guess only helps us to identify an expedient ansatz. The square
root of r.h.s. of the ansatz must be integrable to obtain g(r) and at present,
the r.h.s. is chosen as a constant so as to have a transformation function of
simplest form, which will simplify the subsequent mathematical exercise.

Applying expression (13) for the transformation function g (r) with the
selection C = 1 to satisfy the local property as g (0) = π

2 required for
checking normalizability of the transformed radial wave functions for the
(re)generated central potential, the equation (11) becomes

R (r)
′′
+
D − 1

r
R (r)

′
+

[(
ε− 1

4
η2
)
−
{

η2

cosh2 ηr
VES [θ=g (r)]− λη2

cosh2 ηr

}

+

(
D − 1

2

)(
D − 3

2

)
1

r2

]
R (r) = 0 , (15)
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and to retrieve the standard Schrödinger radial equation for the s-wave in
D = 3 dimensional Euclidean space, the following identity is applied

En − V (r) =

(
ε− 1

4
η2
)
− η2

cosh2 ηr
{VES [θ = g (r)]− λ} . (16)

Putting the expressions for the known parent potential VES (θ) and trans-
formation function g (r) given by equation (13) in the above identity (16),
the constant terms altogether in the right-hand side of the above identity
are assembled to procure the energy eigenvalues En, while the remaining
r-dependent terms are clubbed together to generate the central potential
V (r). Using equations (10) and (13) in (8), the radial wave function for the
generated potential becomes

R (r) ≈ r−1χ (g) (17)

and is known, since angular wave function χ (θ) for the parent potential and
the transformation function g(r) are known.

3. Normalizability of the transformed radial wave functions

Since the transformation method maps the generated central potentials
from the already known ESRPs, the transformed radial wave functions given
by (16) are always normalizable. The normalization condition for radial wave
function R (r) in D dimensional Euclidean space is

I [r = 0, r =∞] =

∞∫
0

[R (r)]2 rD−1 dr = finite . (18)

Under equations (13) and (17), the normalization integral becomes

I [r = 0, r =∞] =

π∫
π
2

(
1

sin2 θ

)
| χ (θ) |2 sin θ dθ = I

[
θ =

π

2
, θ = π

]
.

If χ (θ) is the normalized angular wave function for the parent ring-
shaped potential VES (θ) containing a term like 1

sin2 θ
, the quantity

I [θ = 0, θ = π] = 〈 1
sin2 θ
〉 necessarily exits. Since

[
π
2 , π

]
⊆ [0, π] , I

[
π
2 , π

]
will be finite and hence the transformed radial wave function R (r) will be
normalizable.
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4. Applications

4.1. Mapping of exact analytic solutions for regenerated hyperbolic central
potentials in the Pöschl–Teller and Scarf family

For the implementation of the method, we consider exactly solved
θ-dependent ring-shaped potential from the Hartmann non-central poten-
tial [18] as the parent potential, which is

VES (θ) =
A

sin2 θ
. (19)

For this ring-shaped potential l = n±
√
m2 +A, where n, | m |= 0, 1, 2, 3, . . .

and angular wave functions are

χml (θ) = sinδ θP (δ,δ)
n (cos θ) , (20)

where δ =
√
m2 +A and P (a,b)

n represents the Jacobi polynomial.
Using equations (13) and (19) in the identity (16) and selecting α =

− (n+ δ) (n+ δ + 1) η2, the central potential in the three dimensional Eu-
clidean space (D = 3) is generated as

V (r) =
α

cosh2 ηr
, (21)

which is the potential in hyperbolic Pöschl–Teller family [19] and its energy
eigenvalues are found to be

En = −δ2η2 = −

[(
n+

1

2

)
η −

√
η2

4
− α

]2
, (22)

where n = 0, 1, 2, 3, . . . and η2 ≥ 4α.
Using equations (13) and (20) in (17), the radial wave functions for the

generated Pöschl–Teller potential for s-wave is found to be

Rn (r) = r−1 cosh−σ ηr P (σ,σ)
n (tanh ηr) , (23)

where σ = −
(
n+ 1

2

)
±
√

1
4 −

α
η2
.

The generated central potential can also be reshaped to the form of
potential of the hyperbolic Scarf family [19] as

V (r) = α
sinh2 ηr

cosh2 ηr
, (24)
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for which the energy eigenvalues and radial wave functions for s-wave in the
three dimensional Euclidean space become

En = −

[(
n+

1

2

)
η −

√
η2

4
+ α

]2
+ α ; n = 0, 1, 2, 3, . . . (25)

using the identity (16) and

Rn (r) = r−1 cosh−ρ ηr P (ρ,ρ)
n (tanh ηr) , (26)

using equations (13) and (20) in equation (17), where ρ = −
(
n+ 1

2

)
±√

1
4 + α

η2
.

4.2. Mapping of exact analytic solutions of the regenerated hyperbolic
central Rosen–Morse potential

The θ-dependent ring-shaped potential in the Makarov non-central po-
tential [15, 16] is given by

VES (θ) =
A

sin2 θ
+
B cos θ

sin2 θ
, (27)

for which

l = n±

√
1

2

(
m2 +A+

√
(m2 +A)2 −B2

)
; n, | m |= 0, 1, 2, 3, . . .

and angular wave functions are

χml (θ) = cos2p
θ

2
sin2q θ

2
2F1

(
−n,−n+ 2l + 1; 2p+ 1; cos2

θ

2

)
, (28)

where p = 1
2

√
m2 +A−B and q = 1

2

√
m2 +A+B, and 2F1 (a, b; c;x) rep-

resents hypergeometric function.
Using equations (13) and (27), and choosing α = η2B and β = −λη2 in

identity (16), the generated central potential (D = 3) emerges as

V (r) =
α sinh ηr

cosh ηr
+

β

cosh2 ηr
, (29)

which is the hyperbolic Rosen–Morse potential [19] and the energy eigenval-
ues with the selection δ = η

√
m2 +A come out as

En = −δ2 = −

 α2

4η2
(
n+ 1

2 ±
√

1
4 −

β
η2

)2 + η2

(
n+

1

2
±

√
1

4
− β

η2

)2
 ,
(30)
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where η2 ≥ 4β and n = 0, 1, 2, 3, . . . Again, by using equations (13) and
(28) in (17), the radial wave functions (l = 0) for the generated hyperbolic
potential are found as

Rn (r) = r−1 (1− tanh ηr)p (1 + tanh ηr)q 2F1

(
a, b; c; 1

2 (1− tanh ηr)
)
,
(31)

where
p =

1

2η

√
δ2 + α , q =

1

2η

√
δ2 − α

and

a = −n = p+ q +
1

2
∓

√
1

4
− β

η2
,

b = p+ q +
1

2
±

√
1

4
− β

η2
,

c = 2p+ 1 .

The radial wavefunctions in equation (23) for hyperbolic potential in the
Pöshl–Teller family, (26) for hyperbolic potential in the Scarf family and (31)
for hyperbolic Rosen–Morse potentials are normalizable as per Sec. 3.

4.3. Mapping of exact analytic solutions for the regenerated hyperbolic
central Scarf potential

We consider the ESRP [20]

VES (θ) =
A cos θ

sin θ
, (32)

of which A = −λ (2λ+ 1) and the redefined azimuthal quantum number
l = −1

2 +
(

1
16 −

A
2

)1/4. Its angular wave functions are

χml (θ) =
(
1 + ω2

)−λ/2
exp (−λ arctanω)R

(λ+ 1
2
,−2λ)

n (ω) , (33)

where ω = − cot θ, n = λ − m and the symbol R(a,b)
n represents the Ro-

manovski polynomial.
Inserting equations (13) and (32) into identity (16), and selecting α =

−Aη2 and β = −λη2, we generate the following central Scarf potential

V (r) =
α sinh ηr

cosh2 ηr
+

β

cosh2 ηr
. (34)
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The characteristic constants of this potential satisfy the following constraint
relation

α = β − 2

(
β

η

)2

. (35)

The energy eigenvalues for the central potential are

En = −
(
β

η
− nη

)2

(36)

and using equations (13) and (33) in (17), the radial wave functions for the
s-wave are found to be

Rn (r) = r−1
(
1 + ν2

)−λ/2
exp (−λ arctan ν)R

(
− β

η2
+ 1

2
,2 β

η2

)
n (ν) , (37)

where ν = sinh ηr.
Since the normalization integral for the wave function is equivalent to

the expectation value of a term in the square of the parent potential in
equation (32) in the range

[
π
2 , π

]
, the integration must yield a finite value,

indicating that the wave function is normalizable.

4.4. Mapping of exact analytic solutions for the regenerated hyperbolic
central Pöschl–Teller potential

We now consider an ESRP of the following form [21]

VES (θ) =
A+B cos2 θ + C cos4 θ

sin2 θ cos2 θ
(38)

and
λ = l (l + 1) = (1 + 2n+ p) (1 + 2n+ p+ q) +A− C , (39)

where p =
√
m2 +A+B + C and q =

√
1 + 4A, and the angular wave

functions are

χml (θ) = (sin θ)p (cos θ)(1+q)/2 2F1

(
a, b; c; cos2 θ

)
, (40)

where a = −n, b = n+ p+ q
2 + 1 and c = q

2 + 1.
Using equations (13) and (38) in the identity (16) and selecting α =

Aη2 and β = − (C + λ) η2, the following hyperbolic central Pöschl–Teller
potential is generated

V (r) =
α

sinh2 ηr
+

β

cosh2 ηr
(41)
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and the energy eigenvalues are

En = −δ2 = −

[(
1 + 2n+

√
1

4
+
α

η2

)
η ±

√
η2

4
− β

]2
. (42)

Using equations (13) and (40) in (17), the radial wave functions for
s-wave of the generated potential are found to be

Rn (r) = r−1 (sinh ηr)(1+q)/2 (cosh ηr)−p−(1+q)/2 2F1

(
a, b; c; tanh2 ηr

)
,
(43)

where p = δ
η and q =

√
1 + 4α

η2
.

The normalization integral for the above radial wave functions is equiv-
alent to the expectation value of a term in the parent potential in equa-
tion (38) in the range

[
π
2 , π

]
, so, the integration must yield a finite value,

indicating that the radial wave function for the generated potential in (41)
is normalizable.

5. Conclusions

We present a new mapping method, in the spirit similar to that of the
SUSY approach, to generate exact analytic s-wave solutions for ESCPs (hy-
perbolic) from the angular wave functions of the already known ESRPs. The
mapping method includes a redesignation of coordinate required to trans-
form the Schrödinger angular equation with an ESRP to a second-order
radial differential equation on which a CT followed by a FT is performed
to retrieve the Schrödinger radial equation form. A plausible ansatz is in-
voked to generate central potential and its energy eigenvalues and instead
of solving the Schrödinger radial equation for the generated potentials, the
solutions are mapped from those for the original ring-shaped potentials. The
method is exemplified by mapping the solutions of the Schrödinger radial
equation for the regenerated well-known hyperbolic central Pöschl–Teller,
Rosen–Morse and Scarf potentials and potentials in the Pöschl–Teller and
Scarf family from those for ESRPs. The wave functions of the generated po-
tentials are normalizable and verified analytically. Since the functional form
of the transformation function in the present method is specified through
the initiation of an ansatz resulting in tangent inverse of an exponential
function, the method always maps a ring-shaped potential no other than to
a hyperbolic central potential. Presently, we are trying to devise mapping
methods to generate exact analytic solutions of new central power law and
trigonometric potentials from those of the exactly solvable ring-shaped po-
tentials.
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