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In this article, we assume that two quarks have unequal masses and
calculate the next-to-leading order contributions to the spectral densities
of the mesonic two-point correlation functions of the vector, axialvector,
scalar and pseudoscalar currents. We take dimensional regularization to
regularize both the ultraviolet and infrared divergences, and use optical
theorem to obtain the spectral densities directly, furthermore, we present
some necessary technical details for readers convenience. The analytical
expressions are applicable in many phenomenological analysis besides the
QCD sum rules.
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1. Introduction

The QCD sum rules is a powerful theoretical tool in studying the ground
state mesons [1, 2| and has given many successful descriptions of the meson
properties. In the case of the interpolating currents consisting of quarks
with equal masses or zero masses, the leading order and next-to-leading
order perturbative contributions to the spectral densities of the mesonic
two-point correlation functions are known |2, 3]. There are few works on the
next-to-leading order perturbative contributions to the spectral densities of
the interpolating currents for unequal quark masses, as the calculations are
very difficult.
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In Refs. [4, 5], Reinders, Rubinstein and Yazaki calculate the next-to-
leading order contributions to the spectral densities of the mesonic two-point
correlation functions for the pseudoscalar and vector currents in the unequal
mass case. Some technical details are presented in Ref. [2]. In the famous
review (see Ref. [2]), Reinders, Rubinstein and Yazaki illustrate how to use
optical theorem to calculate the next-to-leading order contributions to spec-
tral densities of the mesonic two-point correlation functions (for the scalar,
pseudoscalar, vector and axialvector currents) directly, and regularize the
divergences in the massive-gluon scheme. In Ref. [6], Schilcher, Tran and
Nasrallah also resort to the massive-gluon scheme to regularize the infrared
divergence, and use optical theorem to calculate the next-to-leading order
contributions to the longitudinal and transverse spectral densities of the
mesonic two-point correlation functions directly for arbitrary conserved or
non-conserved vector or axialvector currents of the massive quarks, and ob-
tain analytical expressions. Although those works are all performed in the
massive-gluon scheme, the resulting (infrared) divergent terms are different
from each other, the expressions also differ from each other.

In Ref. [7], Generalis calculates the two-loop Feynman diagrams directly
using the dimensional regularization, and obtains the next-to-leading order
contributions to the mesonic two-point correlation functions for the vector
and axialvector currents with unequal quark masses. We have to obtain the
spectral densities through dispersion relation from the cumbersome expres-
sions, it is a difficult task.

In this article, we resort to optical theorem (or Cutkosky’s rule) to cal-
culate the next-to-leading order contributions to the spectral densities of the
mesonic two-point correlation functions for the scalar, pseudoscalar, vector
and axialvector currents in the case of unequal quark masses. In calculations,
we regularize both the ultraviolet and infrared divergences in the scheme of
dimensional regularization, and present the necessary technical details for
the readers convenience, i.e. one can check the calculations. There are two
routines in application of optical theorem. We resort to the routine used
in Refs. |2, 6], not the one used in Ref. [8]. After the present work was
finished and submitted to the net http://arxiv.org/, some friends kindly
draw my attention to Refs. [9, 10]. In Ref. [9], Djouadi and Gambino study
the QCD corrections to the electro-weak gauge boson self-energies and Higgs
self-energies for the arbitrary momentum transfer and for different internal
quark masses, and obtain explicit expressions for both the real and imaginary
parts of the self-energies. They calculate the two-loop Feynman diagrams
directly using the dimensional regularization, the tedious work is difficult
to follow. On the other hand, if we calculate the imaginary parts of the
mesonic two-point correlation functions (or the self-energies) directly via
optical theorem, the calculations are greatly simplified and easier to follow,
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furthermore, we can separate the contributions come from the real and vir-
tual gluon emissions explicitly, which have direct applications in studying
the decays of a polarized W boson into massive quark—antiquark pairs, such
as t — W' — bqrqp, H - W-W*T — W~q1q2, H denotes the Higgs
boson [10].

The article is arranged as follows: we calculate the next-to-leading or-
der contributions to spectral densities of the mesonic two-point correlation
functions in Sect. 2; in Sect. 3, we present the final analytical expressions;
Sect. 4 is reserved for our conclusions.

2. Explicit calculations of the spectral densities
at the next-to-leading order

In the following, we write down the mesonic two-point correlation func-
tions in the QCD sum rules

Tup) = i [ atac i {7,()5(0)} 10).

pHp” pHp”
= HV/A( )<_g,u«l/+ p2 >+HS/P(p) pg )
2
mipFm ~
Hyyelr) = " ).

syp(p) = i [ a0 {3)70)} 0}, (1)

where JH(x) = Ji(x), ) () and J(z) = Js(x), Jp(x). The lower indexes
denote the scalar (S), pseudoscalar (P), vector (V) and axialvector (A) cur-
rents, respectively. The correlation functions can be expressed in the follow-
ing form through dispersion relation

1 7 ImI(s
R @)
Az

where i =S, P, V, A, the A? = (m, + m,)? is the threshold parameter, and

Imﬂi(s)

= s) o)+ s+ (3)

the p{(s), pi(s), p?(s), ... are the spectral densities of the leading order,
next-to-leading order, and next-to-next-to-leading order, ... At the leading
order, the perturbative spectral densities are rather simple
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P(\]//A(S) = 32

A (s m?2,m3
my F m2 LA B 2
P(S)/P<S) = ( S {S— (ma im2)2} ) (4)
where
A (s,m7, m%) = s+ m] +mj — 2sm? — 2sm3 — 2mim3 . (5)

At the next-to-leading order, there are three Feynman diagrams con-
tributing to the correlation functions, see Fig. 1. We calculate the imaginary
parts (or the spectral densities) using Cutkosky’s rule or optical theorem —
the two approaches lead to the same results — then use the dispersion rela-
tion to obtain the correlation functions. There are ten possible cuts, six cuts
attributed to virtual gluon emissions, see Fig. 2, and four cuts attributed to
real gluon emissions, see Fig. 3.

OO D

Fig.1. The next-to-leading order contributions to the correlation functions.

Fig. 2. Six possible cuts correspond to virtual gluon emissions.

Fig. 3. Four possible cuts correspond to real gluon emissions.
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2.1. Contributions of the virtual gluon emissions

The six cuts shown in Fig. 2 are attributed to virtual gluon emissions and
correspond to the self-energy corrections and vertex corrections, respectively.
The first four cuts corresponding to one-loop fermion’s self-energy correc-
tions, we calculate the Feynman diagrams directly using the dimensional
regularization and choose the on-shell renormalization scheme to subtract
the divergences so that to implement the wave-function renormalization and
mass renormalization. Then, we can take into account all contributions com-
ing from the six cuts shown in Fig. 2 by the following simple replacement
for each vertex in the interpolating currents’

a(p1)vuu(p2) — a(p1)yu(pe) + a(p1)Hu(ps)

V21 Zyt(pr ) yu(p2) + @lpy) Iu(ps)
a(pr)yuu(pz) (1 + 3021 + 5622) + a(p1) Luu(ps) , (6)

where
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is the ith quark’s wave-function renormalization constant due to the self-
energy correction, see Fig. 4, and

1
4
'Yugg?/dx
0

+2(1 —2)(1 — )
1

1 _
4 dPk
+2y(1 —y) }+3g§/dx/d / E
0 0

" AT (3) { [#*m1 — y(1 — x)ma| p1u + [¥Pma — (1 — y)ma] pou } ()

(k2 + (zp1 +yp2)?]”

l—x

O/d /deE (k2 + (x];f?’l ypg)Q]S{k% (1_;€UV)

—m? — m%)+2 (z + y)mimg + 22(1 — z)m?

is the vertex correction after performing the Wick rotation, see Fig. 5. Here,
7 is the Euler constant, p? is the renormalization scale, and the Euchdean
momentum kg = (k1, k2, ks, kq). In this article, we take the dimension
D = 4—2eyy = 4+2¢1R to regularize the ultraviolet and infrared divergences

! Here, we use the vector current to illustrate the procedure. Other currents can be
treated analogously.
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respectively, and add the renormalization scale factors p?UV or p~2® when
necessary. In the limit mq = mo = m, the I, can be reduced as

1

Ly="s gﬁ/dm / dy / de:E (:;i)L T {/.g]%: (1 — ;auv>

0 0

+2(1 = (z +y) + 2y) (s — 2m?) + 4(z + y)m* — 2(z + y)*m* + daym?

1
4 dPkg 2I'(3 +
+g§/da;/dy/ g 20E)m (@ +y) = @)l Gt on) g
0

37 (k2 + (zp1 + yp2)?]°

then, the resulting expression is greatly simplified.

Fig. 4. The quark self-energy correction.

Fig.5. The vertex correction.

We carry out the integral over the variables xz, y and kg, and observe
that the ultraviolet divergent terms % in the I',,, 021 and 0 Z3 are canceled
out with each other, which is a consequence of the Ward identity. The net
contributions have no ultraviolet divergence

~ las

Fu = 5200) + 32 o+ 32 () (10)
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where

2 A 2 (s—m2—m?2
f(s) = f(s)+ — +log e +2fy—3+310gm1m22_ ( {—m3)
€IR Amp

& 1—w €IR 4,u

Fi(s) = V(s)+2(s—mi—m3) [Voo(s) — Vio(s) — Vor(s) + Vir(s)]
+2mimz [Vio(s) + Voi (s)] + 2m7 [Vio(s) — Vao(s)]
+2m3 [Voi (s) — Voa(s)]

J1+(s) = 4mqVao(s) F 4maVp1(s) & 4maVi(s),

fox(s) = £4maVia(s) — 4my1Vip(s) + 4m1Vii(s),

s — (m1 +ma)?
w = ( 1+ 2) ’ (11)

s — (m1 —ma)?
and s = p?, the V(s), Voo(s) and V;;(s) with i, = 0, 1,2 are given explicitly
in Appendix. Here, we introduce the lower-indexes + to denote the corre-
sponding expressions of the vector (4) and axialvector (—) currents respec-

tively. The infrared divergence - L comes from the wave-function renormal-

A (s,m%mg)

ization constants Z; in Eq. (7), Whlle the infrared divergence log G*z) %
comes from the term
1

4 dPkg 2I(3) (s — m? 2
w?)gf,/dfv/d / = 3) (s = mi - m2) (12)
; + (zp1 +yp2)?]’

in Eq. (8). The infrared divergent terms obtained in the present work are
consistent with that obtained by Groote, Kérner and Tuvike in Ref. [10]. If
we regularize the infrared divergences with a supposed gluon mass my in the

2
quantum field theory, the infrared divergent terms appear as log 71;’ instead
of Where the A has a dimension of mass. So in the massive-gluon scheme,

we expect that the infrared divergences 5 and log (HZ) % appear in

m2

2
the forms log —<— and log (H‘“) log —9_  yvespectively. In Ref. [2], there

mi1mse mimsa’

2
only exists the infrared divergence log - ;’1 ~; while in Ref. [0], there exist

In this
article, we calculate the vertex correctlons using the conventional Feynman

parameters, while in Ref. [6], Schilcher, Tran and Nasrallah calculate the
vertex corrections using the optical theorem and dispersion relation.

2 2
the infrared divergences log (H“) log g e and log % log mmg
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The total contributions of the virtual gluon emissions (see Fig. 2) to

imaginary parts of the correlation functions can be expressed in the following
form

T 3T

o) _dewd [ AOIR AP o050y —
(2r)D-12E,, (27)D-12E,, Pmh—p

2
S — M1 — My
X {f(s) |:plup2u + P2uP1v — ( 9 ) g;w:|

+ f1(s) (mip1up2y — map1upiv) + f2(s)(mapaupry — m1p2,up2u)} . (13)

In this article, the upper indexes V and R denote the contributions coming
from the virtual and real gluon emissions respectively. We carry out the
integrals in Eq. (13) directly in D = 4 + 2e1g dimension as there is no
ultraviolet divergence, and obtain the following results

Il ,,(s) 4 1 7
v/als Qs ¢
— A — —2logdm + 2y — ~
- =3 Pv/als) p— og4m +27 — 5
1 22 S,mQ,m2 mim3  1_ —m?2 — m2 1
+- log ( = 32) 2 4 SFu(s) - log< +w)
2 ues 2 )\(s,m%,m%) 1w

1
X [—210g47r+2fy—2+10g

EIR

A (s,m}, m3) L4 4oy A3/2 (s, m2, m3)
s 3w 52

X{ 1|, s—mi-m] log<1+W> _(mlimz)[fli(5)+f2i(8)]}’

2 — 2
127 A (s, m%, m%) 1—w 327
(14)
ImITg,p(s) 4 1 7
S/P Qs
L = 2logdm + 2y — +
- =3 Pspls ){sm ogdm +2y — g
2 2 .2\, 3. 3
—|—llog)\ (s,ml,gmg) mims *fi s —m?2 —m3 1Og(l—i— )
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{ (s mt —m3) (s +m3 = md) [fra(s)m = fou (s)m]
Ffr+(s)ma (s + m3 — m%)2 — fox(s)my (s + m3 — m%)2 } , (15)

where we have used the 5 symmetry of the interpolating currents to obtain
ImITY (s) and ImITY (s)
™ ™ :

the spectral densities

2.2. Contributions of the real gluon emissions

The four cuts shown in Fig. 3 correspond to real gluon emissions. The
scattering amplitudes for the real gluon emissions are shown explicitly in
Fig. 6. From the figure, we can write down the scattering amplitude T}, (p)

A® i ; Al
— YoV + Vu—————1gs— v ,
9s 5 Vog gy e T W T 9 e (p2)
(16)
where A? is the Gell-Mann matrix. Then, we obtain the corresponding con-

tributions ImI13}(s) and ImII&(s) to the imaginary parts of the correlation
function with the optical theorem

T () =u(p) {
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x (2m) P8P (p — k — p1 — po)Tr {T“ (DT3P )}9 < gWer#p )
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2 / dP7k APy dPTp
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m? m2 s —m2—m2
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s— K2 9 )\(s,m%,m%) 9
o _ _ _ 2T )y _ _
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2
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s

(k-p1)? (k-p2)? k-pik-p2| k-pik-p2
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2m)PsP(p —k —p1 — p2)

B 293/ dD—l]z dD_lﬁl dD_lﬁQ
B (2m)P-12E; (2m)P-12E,, (27)P-12E,,
(m1 — ma)? 2 [ m} m3
X—" < 2|s—(m1+m +
s R (oA s
_s—m%—m% s — K? ]_(S—KQ)Q (18)
k-pik-p2 k-pik - p2 k-pik-p2

where we have used the identities > u(p1)u(p1) =p1 +m1 and Y v(p2)v(p2)
= po—my for the particle and antiparticle respectively, and take the notation
K? = (p1 + p2)2. We carry out the integrals in Egs. (17) and (18) in
D = 4+ 2¢e1g dimension as there is only infrared divergence, and obtain the
contributions of the real gluon emissions (see Fig. 3) to spectral densities
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€IR mim3s®pu

(20)
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the expressions of the Ry1(s), Raa(s), Ri2(s), Riy(s) and R3,(s) are given

explicitly in Appendix. We have used the 5 symmetry of the interpolating
. . ImIIR(s) ImITE(s)

currents to obtain the spectral densities and .

< <

Fig. 6. The amplitudes for the real gluon emissions.

3. Analytical expressions of the total contributions

We add the contributions of the virtual and real gluon emissions together,

and obtain the total perturbative spectral densities at the next-to-leading
order

4das

pyyals) = STrlOV/A<3>{;f:I:(S) — Ru1(s) — Raa(s) + (s — mi — m3) Rua(s)

4 T 7 2 _ 2 2
i 2tog L 2l M) (1)
A (s,m},m3) X (s,m3,m3)

s,m7,mj

A (5, m%v m%) 9 ( 9 (m1 T m2)2 1 R ( ) )\3/2 (3, m%a m2)
16572 12(s) |2+ s T2 5 52
U ambomd <1+W> _ (mutmy) (f1a(s) +fo(5))
2 2 ’
127 i\ (S, m%’ m%) 1—w 327
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4 o 1- — — _
phyo(s) = 5 2 pl9) { 57(6) ~ Fon(s) ~ R + (5 = i = ) oo
_§+210g 1 mIQmZSQ 2 (s —m? —m3) Io (1 —|—w>lo A (s,m3,m3)
2 A (s,ml, m2) \ (s,m%,m%) 1—w mi1mes

Rl () + B 1 4o, 3 A (smimi)

12 2 s—(my+tmy)? 3 7 3272 52
x{ (s +mi—m3) (s+m3 —mi) [fie(s)m1 £ for(s)mo]

2 2

Ffre(s)ma (s + m3 — m%) — for(s)my (s + m3 — m%) } . (22)
The infrared divergences %, log (i’—z) % from the virtual and real gluon

emissions are canceled out with each other, which is guaranteed by the Lee—
Nauenberg theorem [11]. The spectral densities at the next-to-leading order
do not have renormalization scale dependence, although the strong coupling
constant ag(p) is energy scale dependent quantity. In Appendix, we present
some necessary technical details for readers convenience, one can follow the
necessary steps to check the calculations if one does not feel confident with
the final expressions.

We compare the spectral densities of the order of O(as) numerically to
other results in Refs. |9, 10| by taking the energy scale u = 5 GeV, pole
masses m1 = my = 4.8 GeV, mo = m, = 1.5 GeV, and observe that there
are differences that cannot be neglected. We can use the present expressions
to study the masses and decay constants of the scalar, pseudoscalar, vector
and axialvector B, mesons with the QCD sum rules in a systematic way.

4. Conclusion

In this article, we calculate the next-to-leading order perturbative contri-
butions to the spectral densities of the mesonic two-point correlation func-
tions of the vector, axialvector, scalar and pseudoscalar currents. In cal-
culations, we assume that the quarks have unequal masses and use optical
theorem to obtain the spectral densities directly, furthermore, we take the
scheme of the dimensional regularization to regularize both the ultraviolet
and infrared divergences. The ultraviolet and infrared divergent terms are
canceled out with each other separately, the net spectral densities are free of
divergences. The analytical expressions are applicable in many phenomeno-
logical analysis besides the QCD sum rules.
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Appendix

Firstly, we write down the fundamental integrals in calculating the vertex
corrections

11—
D a b['
Vap(s) = 167r2/dx / dy/ d kg 2y I'(3) 3
T (2m)7 [k + (zp1 + yp2)?]
11—z

1
D k2T
V(s) = 167 <1 3 >/dx dy /d i Bl (3) ,
2 2 4 213
J (k2 + (zp1 + yp2)?]

0
(23)

and carry out the integrals to obtain the following analytical expressions

1 1 1
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0
Secondly, we take the notation

dell_{' delﬁl delﬁQ
= SP(p—k—p —
/ dps / 2E, 2E, 2B, (p P1—D2)

for simplicity, and write down the analytical expressions of the three-body
phase-space integrals
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2
1
Rur(s) = —— =2 (oo [ps
72\ /X (s, m3, m3) (k- p1)
1 A3/2 (s, m2, m2 2 _ 2
=— —logdmr +~v—1+log (sm1 mz)_ S+ my - my

2e1R mimasp? 24/ A (s,m3, m3)

x10g<1+w1>— m3 — m3 10g<1+w1)_ s —m3 + m} 10g<1+w)
e N smtmg) AN N s md) AT

A3/2 (s,m3, m3)

— 1
:R11(8)+2——10g47r+’y—1+10g

€IR mlmgs,u2
R22(8) = R11(8)|mysms »
1
Rua(s) = s (2) 4w ~2em / dps———
2 )\(s,m%,mg) k-pik - pa

1 1 1
= log <—|—w> [—210g47r+27—2
A (s,m2,m3) l-w/ [er

s,mj,mj
A3/2 (s, m2, m2 M 1
+2log ( ! 5 2> — 2logmllog< —i—w) — log? (—l—w)
M1masi mo M—-w 1—w

14w 2w w—1 w—1
21 71 —— | —4Liy (| ——— 2L 2L
ree Og<1 w) 12<1+w>+ 12<W—M>+ 12<w+M>
. w+1 . w+1 1_. 1+w 1_. 1+ wo
—2L — 2L — =L —-L
12<W—M> 12<W+M> 2 12< 2 > 2 12( 2 >

—Lip (w1) — Liz (w2) + og2log (1 +wi)(1+wz)] log s
2 2 12
= Ria(s) + log< +w> [—210g47r+27_2
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1-w 14w 14w 14w
ig | —— ) — 2Lis [ —— 2Li 2Li
+2L12< 5 ) 2L12< 5 )—i— 19 (1+M> + 2Lig (1—M>

S—K2

W/ "k pik - p2
s? 1+w

— {log (1 — w) — log? (1—i—w)+2log—lo (1>

A (s,mi,m3)
1+w 1+w
Miy [~ ) 4 2Li
" 12<1+M>+ 12<1—M>

1 —
+9Liy <2”> — 9Li, (

—_
o |+
€
~_

where 5 = s — (m1 — ma)?.

In the following, we present some necessary technical details in calculat-
ing the integrals for both the virtual and real gluon emissions, one can check
the calculations; here, we smear the lower index IR in erg for simplicity

1 1—x 1 1—x

b re r(1-
/dx/dy/dkg /dx/dy 2) ( 2)25
; ; (2) [k + (azpl + yp2)? , J 167%(xp1 + ypo)

i / 4m)~¢I'(1
:/dz/dtt ( W()l >( - () |}
w1 (14w wi(l—w
5 D 1672 {t28 {z ST ] {z — o } }

1 1+w) /1 s log? (1—w?
= {—10g<1 ><+log42+’y>+g(41)
16721/ X (s,m3, m3) - € TH

log? (1 — w%)
4

—log w1 1 1 2) — 1o lo 1 L 2

o) o) w i

gwi log 1 ) g wa log 1 . 2\ 7 .
. 2wo 9

I + 27
12<1+w2) W}’ ( )

— 10g2(1 +wi)+

1
—log? (1 4 wa) + 2log(wy + wy) log <1i—:)>
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/d M_QE ﬂ.g-‘rQEM—QE /S UK (5 i K2)1+25
S = )
b k-pik-ps  T'(1+e)(3+e¢) (4s)t+e
(m1+ma2)?
1
M (K2 ) [
X (4K2)1+e cos
21
(1 — cos? 9)6
X
2 —m M K2,m2,m32 m2—m M K2,m2,m2
{32_\5{52] [KH;@E E o 2K fim3) COS‘Q] [K2+21§ i + ( K ) COSG]
3+2¢ -2 h 1 A (K2, m?,m3
= 37T ’ 3 / dK* -2 1+slog(—122)
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1 +u 2 772
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16sK?

1+ ¢€log

g OB @ ) ks (1_“2)1

0
/ 1 1
U . + up . + us . .
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4
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—+2logm+2y—2+42log 5
g mimoSu

mq M+ w o (14w s 1+w . 2w
—2log —1 —1 e 2log —1 ——— ) —4L —_—
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where

/\(KQ,m%,mg)
= K2+m?—-m3 "’
A(K%m%,m%)

Ug =
K2+ m3—m? '

u = \/ ot (29)

K2 — (m1 — m2)2

and we have neglected the imaginary terms. The infrared divergent terms of

the form log (%) % come from the diagrams of the virtual gluon emissions

(vertex corrections) and real gluon emissions are canceled out with each
other.
In calculating the divergent integrals, we have used the following trick

0
o dwe L f@ @) =g [, S
_/d (w_x)l_a—ks/d P +5/d (w—a)i—=
0 0 0
o we) ] el
_O/d (w_x)15+eo/d e (30)

the functions f(z,e) and g(x) have no poles in the range x = 0 — w and
e— 0%,
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