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MIXTURE OF ANISOTROPIC FLUIDS
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The recently introduced approach describing coupled quark and gluon
anisotropic fluids is generalized to include explicitly the transitions be-
tween quarks and gluons. We study the effects of such processes on the
thermalization rate of anisotropic systems. We find that the quark–gluon
transitions may enhance the overall thermalization rate in the cases where
the initial momentum anisotropies correspond to mixed oblate–prolate or
prolate configurations. On the other hand, no effect on the thermalization
rate is found in the case of oblate configurations. The observed regularities
are connected with the late-time behavior of the analyzed systems which is
described either by the exponential decay or the power law.
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1. Introduction

The space-time dynamics of soft hadronic matter created in ultrarela-
tivistic heavy-ion collisions is well described by the relativistic viscous hy-
drodynamics [1–13]. Nevertheless, large gradients present in the early stages
of the collisions imply that viscous corrections to the ideal energy momen-
tum tensor are large and the system is highly anisotropic in the momentum
space. Such large momentum-space anisotropies pose a problem for 2nd-
order viscous hydrodynamics [14], since the latter relies on a linearization
around an isotropic background. This has stimulated the development of
reorganizations of viscous hydrodynamics in which one incorporates the pos-
sibility of large momentum-space anisotropies at the leading order [15–21].
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The newly constructed framework has been dubbed anisotropic hydrody-
namics. Recently, it has been demonstrated that for one-dimensional and
boost-invariant systems the results of anisotropic hydrodynamics agree very
well with the predictions of kinetic theory [22, 23].

Anisotropic systems have been studied recently also within the AdS/CFT
correspondence framework [24–33]. The general interest in anisotropic sys-
tems and the issue of fast thermalization of matter produced in heavy-ion
collisions have motivated a recent study of a mixture of two (quark and
gluon) anisotropic fluids [34]. In this paper, we generalize the approach in-
troduced in Ref. [34] by including explicitly the transitions between quarks
and gluons. We find that such processes may enhance the overall thermal-
ization rate in the cases where the initial momentum anisotropies correspond
to mixed oblate–prolate or prolate configurations. On the other hand, they
do not enhance the thermalization rate in the case of oblate configurations.
These regularities are connected with the time development of the systems
which is described either by the exponential decay or by the power law.

2. Kinetic equations

The starting point for our analysis are the two coupled kinetic equations
for quarks and gluons in the relaxation-time approximation

pµ∂µQ = p · U
(
Qeq −Q
τeq

+
G

τg
− Q

τq

)
, (1)

pµ∂µG = p · U
(
Geq −G
τeq

+
Q

τq
− G

τg

)
. (2)

Here Q(x, p) and G(x, p) are quark and gluon phase-space distribution func-
tions1, the parameter τeq is the relaxation time characterizing a typical
timescale for equilibration processes, and Uµ is the (hydrodynamic) flow
of matter,

Uµ = γ(1, vx, vy, vz) , γ =
(
1− v2

)−1/2
. (3)

Compared to Ref. [34], a novel feature of our approach is the introduction
of extra terms on the right-hand sides of Eqs. (1) and (2). However, for sake
of simplicity, we restrict our present study to the case where the relaxation
times for quarks and gluons are the same and the baryon number of the
system is zero. These two aspects have been analyzed in greater detail in
Ref. [34]. The new terms describe the production of quarks (associated with
the reduction of the gluon content in the system) and the production of

1 The quark distribution function Q(x, p) includes in our approach both quarks and
antiquarks.



Mixture of Anisotropic Fluids 2005

gluons (associated with the reduction of the quark content in the system)2.
The production processes are characterized by the two timescale parameters
(transition times) τq and τg. We assume that the quark–gluon transition
processes do not contribute to the thermalization processes characterized by
the relaxation time τeq — the aim of the present study is to check whether
the presence of additional processes may enhance the original thermalization
rate.

The phase-space distribution functions of quarks and gluons are normal-
ized in the following way:

gq

∫
dP pµQ(x, p) = Nµ

q , gg

∫
dP pµG(x, p) = Nµ

g , (4)

where Nµ
q and Nµ

g are particle number currents (of quarks and gluons, re-
spectively), gq and gg are the degeneracy factors connected with internal
degrees of freedom, and dP = d3p/((2π)3E) is the Lorentz invariant mo-
mentum integration measure. In the numerical calculations, we use the
values gq = 24 (a factor of 2 for antiparticles, 2 for spin, 2 for flavor, and 3
for color) and gg = 16 (a factor of 2 for spin and 8 for color) which lead to
the ratio3

r =
gg
gq

=
2

3
. (5)

In this work, we neglect the effects of quantum statistics of particles. In
equilibrium, the quark and gluon distribution functions are equal and given
by the Boltzmann distribution

Qeq = Geq = exp

(
−p · U

T

)
, (6)

where T is the system’s temperature. The requirement that the equilib-
rium distributions with constant parameters become solutions of the kinetic
equations (1) and (2) leads to the detailed-balance condition

τq = τg = τtr . (7)

On the right-hand side of (7), we have introduced the shorthand notation,
τtr, for both τq and τg.

2 A similar system of kinetic equations but in a different context was used in Ref. [35].
3 In Ref. [34] quarks and antiquarks are treated separately and the degeneracy factor
of quarks includes only spin, flavor, and color. This leads to the value r = 4/3 used
in Ref. [34] which is consistent with the value r = 2/3 used in this paper.
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3. First and second moments of kinetic equation

Integrating Eqs. (1) and (2) over three-momentum and multiplying each
of them by the appropriate degeneracy factor yields

∂µN
µ
q = Uµ

(
Nµ
q,eq −Nµ

q

τeq
+

1

r

Nµ
g

τtr
− Nµ

q

τtr

)
, (8)

∂µN
µ
g = Uµ

(
Nµ
g,eq −Nµ

g

τeq
+ r

Nµ
q

τtr
− Nµ

g

τtr

)
. (9)

On the other hand, if we (i) multiply Eqs. (1) and (2) by pν , (ii) integrate
the two equations over three-momentum, (iii) multiply each equation by the
appropriate degeneracy factor, and (iv) add the two resulting expressions,
then we find

∂µT
µν
q + ∂µT

µν
g = Uµ

(
Tµνq,eq − Tµνq

τeq
+

1

r

Tµνg
τtr
− Tµνq

τtr

)
+ Uµ

(
Tµνg,eq − Tµνg

τeq
+ r

Tµνq
τtr
− Tµνg

τtr

)
. (10)

Here Tµνq and Tµνg are the energy-momentum tensors of quarks and gluons,
respectively,

gq

∫
dP pµpνQ(x, p) = Tµνq , gg

∫
dP pµpνG(x, p) = Tµνg . (11)

It is important to notice that in order to have the energy-momentum con-
servation law

∂µT
µν
q + ∂µT

µν
g = 0 , (12)

the right-hand side of Eq. (10) should vanish. This requirement leads to the
so-called Landau matching condition which is used to determine the effective
temperature of the system4.

4. Anisotropic-hydrodynamics framework

Within the anisotropic-hydrodynamics framework, one assumes that the
distribution functions obtained from the kinetic equations are well approxi-
mated by the Romatschke–Strickland forms [36]

Q(x, p) = exp

[
− 1

Λ

√
(p · U)2 + ξq(p · V )2

]
,

4 The parameter T in the equilibrium distributions has the meaning of the standard
temperature only if the system is close or in equilibrium. Otherwise, T serves as the
measure of the energy density and may be treated as an effective temperature.
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G(x, p) = exp

[
− 1

Λ

√
(p · U)2 + ξg(p · V )2

]
. (13)

Following [34], we assume here that the quark and gluon distribution func-
tions are characterized by the same transverse-momentum scale Λ, however,
their anisotropy parameters ξq and ξg might be different.

The four-vector V µ appearing in (13) defines the beam direction. It is
defined by the formula

V µ = γz(vz, 0, 0, 1) , γz =
(
1− v2z

)−1/2
. (14)

The four-vectors Uµ and V µ satisfy the following normalization conditions:

U2 = 1 , V 2 = −1 , U · V = 0 . (15)

In the local-rest-frame of the fluid element, one finds

Uµ = (1, 0, 0, 0) , V µ = (0, 0, 0, 1) . (16)

The Lorentz structure of the Romatschke–Strickland form implies the
following decomposition of the particle number currents and the energy-
momentum tensors:

Nµ
i = ni U

µ , (i = q, g) , (17)

Tµνi = (εi + Pi⊥)U
µUν − Pi⊥gµν +

(
Pi‖ − Pi⊥

)
V µV ν , (18)

where

ni =
gi
π2

Λ3

√
1 + ξi

, (19)

and

εi =
3giΛ

4

π2
R(ξi) . (20)

The function R(ξ) appearing in (20) has the form [16]

R(ξ) = 1

2(1 + ξ)

[
1 +

(1 + ξ) tan−1
√
ξ√

ξ

]
. (21)

Below, we shall need also the expressions for the sum of the energy density
and the longitudinal pressure (the longitudinal enthalpy)

εi + Pi‖ = −
6giΛ

4

π2
(1 + ξi)R′(ξi) . (22)
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In equilibrium, the energy-momentum tensors have the well-known struc-
ture

Tµνi,eq = (εi,eq + Pi,eq)U
µUν − Pi,eqgµν , (23)

where

ni,eq =
gi
π2
T 3 , (24)

and

εi,eq =
3giT

4

π2
, Pi,eq =

εi,eq
3

. (25)

We note that in Eqs. (17)–(20) and (22)–(25) the index i takes the values
i = q for quarks and i = g for gluons.

5. Dynamic equations

In this section, we derive four equations for the two anisotropy param-
eters, ξq and ξg, the transverse-momentum scale, Λ, and the effective tem-
perature, T , which can be used to determine the time dependence of these
quantities in the case of one-dimensional and boost-invariant expansion.

We start with the analysis of the zeroth moments of the kinetic equations.
Substituting Eqs. (17) into Eqs. (8) and (9), we find

∂µ(nqU
µ) =

nq,eq − nq
τeq

+
1

r

ng
τtr
− nq
τtr

,

∂µ(ngU
µ) =

ng,eq − ng
τeq

+ r
nq
τtr
− ng
τtr

. (26)

For the one-dimensional and boost-invariant expansion, one may check that
∂µU

µ = 1/τ and Uµ∂µ = d/dτ , where τ =
√
t2 − z2 is the longitudinal

proper time. Hence, Eqs. (26) may be rewritten as

d

dτ
lnnq +

1

τ
=

1

τeq

(
nq,eq
nq
− 1

)
+

1

τtr

(
1

r

ng
nq
− 1

)
,

d

dτ
lnng +

1

τ
=

1

τeq

(
ng,eq
ng
− 1

)
+

1

τtr

(
r
nq
ng
− 1

)
. (27)

Using the expressions for the quark and gluon densities (19) in (27), we find

3

Λ

dΛ

dτ
− 1

2(1 + ξq)

dξq
dτ

+
1

τ
= Sq ,

3

Λ

dΛ

dτ
− 1

2(1 + ξg)

dξg
dτ

+
1

τ
= Sg , (28)
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where the right-hand sides are given by the formulas

Sq =
κq − 1

τeq
+
rq − 1

τtr
,

Sg =
κg − 1

τeq
+
rg − 1

τtr
, (29)

with

κi =
T 3

Λ3

√
1 + ξi (i = q, g) , rq =

√
1 + ξq√
1 + ξg

, rg =

√
1 + ξg√
1 + ξq

. (30)

In the next step, we turn to discussion of the first moment of the kinetic
equation. The condition that the right-hand side of (10) is zero leads us to
the constraint for the energy-densities

εq,eq + εg,eq = εq

(
1 +

τeq
τtr

(1− r)
)
+ εg

(
1 +

τeq
τtr

(
1− 1

r

))
. (31)

In the limit τtr →∞, Eq. (31) is reduced to the standard Landau matching
condition stating that the energy density of the system, ε = εq+ εg, is equal
to the energy density obtained from the thermal (background) distributions,
εeq = εq,eq + εg,eq. We note that Eq. (31) reproduces the standard Landau
matching condition also in the case of r = 1.

Since in our case r < 1, the second term on the right-hand side of
Eq. (31) may be negative and, in special cases, the whole right-hand side
of this equation may become smaller than zero (in the latter case Eq. (31)
has no solutions since its left-hand side is always positive). To avoid such
situations, we impose the following condition on the relaxation and transition
times

τeq <
r

1− r
τtr . (32)

Clearly, this constraint reflects limitations of our simple kinetic model. Using
Eqs. (20) and (25) in (31), one finds

T 4 = Λ4 [wqR (ξq) + wgR (ξg)] , (33)

where the coefficients wq and wg (satisfying the normalization condition
wq + wg = 1) are defined by the expressions

wq =
1 + δ (1− r)

1 + r
,

wg =
r
(
1 + δ

(
1− 1

r

))
1 + r

. (34)
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On the right-hand sides of Eqs. (34), we have introduced the ratio of the
equilibration and transition times

δ =
τeq
τtr

. (35)

The condition (32) implies that δ should satisfy the inequality 0 ≤ δ ≤ 2.
We note that Eq. (33) allows us to calculate the ratio T 3/Λ2 needed

in (28). The last required equation is obtained from the energy-momentum
conservation law (12) which is reduced to the single equation, namely

d

dτ
(εq + εg) = −

1

τ

(
εq + Pq‖ + εg + Pg‖

)
. (36)

Using Eqs. (20) and (22), one may rewrite Eq. (36) in the form

d

dτ

[
Λ4 (R(ξq) + rR(ξg))

]
=

2Λ4

τ

[
(1 + ξq)R′(ξq) + r(1 + ξg)R′(ξg)

]
. (37)

6. Results

In this section, we present our numerical solutions of Eqs. (28), (33), and
(37). To allow for easy comparisons with earlier studies, we use the same
initial conditions as those used in Ref. [34].

In Fig. 1, we show the proper-time dependence of the anisotropy param-
eters ξg (three upper curves) and ξq (three lower curves) obtained with the
initial conditions ξg(τ0) = 100 and ξq(τ0) = 0, and with the initial time
τ0 = 0.1 fm/c. The initial momentum anisotropy is oblate for gluons and
isotropic for quarks (this may be regarded as an overall oblate configura-
tion). The solid, dashed, and dotted curves correspond to the three cases:
δ = 2, 1 and 0, respectively.

The case δ = 0 (τtr → ∞) describes the situation analyzed previously
in Ref. [34]. We observe that the presence of the quark–gluon transitions
speeds up the convergence of the two anisotropies to each other — if δ > 0,
they become equal within a shorter time interval than in the case δ = 0. On
the other hand, the time needed for the overall thermalization of the system
(defined as the time when ξq ≈ ξg ≈ 0) is not changed. Similar situation is
shown in Fig. 2, where the calculations are done with the initial conditions
ξg(τ0) = 100 and ξq(τ0) = 10. In this case, the initial momentum anisotropy
is oblate for both gluons and quarks.

A new qualitative behavior is shown in Fig. 3, where the calculations
are done with the initial conditions ξg(τ0) = 100 and ξq(τ0) = −0.99. This
situation corresponds to the initial momentum anisotropy which is oblate
for gluons and prolate for quarks. The results shown in Fig. 3 indicate that
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Fig. 1. (Color online) The time dependence of the anisotropy parameters ξg (three
upper curves) and ξq (three lower curves) for the initial conditions ξg(τ0) = 100

and ξq(τ0) = 0, and with the initial time τ0 = 0.1 fm/c. The initial momentum
anisotropy is oblate for gluons and isotropic for quarks (an overall oblate configura-
tion). The solid, dashed, and dotted curves correspond to the three cases: δ = 2, 1

and 0, respectively.
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Fig. 2. (Color online) The same as Fig. 1 but with the initial anisotropies
ξg(τ0) = 100 and ξq(τ0) = 10. The initial momentum anisotropy is oblate for
both gluons and quarks.
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the transition processes increase the convergence of the two anisotropies to
each other and speed up the overall thermalization time. Similar behavior
is shown in Fig. 4, where the initial anisotropies are ξg(τ0) = −0.10 and
ξq(τ0) = −0.99. In this case, the initial momentum anisotropy is prolate for
both gluons and quarks.
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Fig. 3. (Color online) The same as Fig. 1 but with ξg(τ0) = 100 and ξq(τ0) = −0.99.
The initial momentum anisotropy is oblate for gluons and prolate for quarks.
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Fig. 4. (Color online) The same as Fig. 1 but with ξg(τ0) = −0.10 and ξq(τ0) =

−0.99. The initial momentum anisotropy is prolate for both gluons and quarks.
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7. Conclusions

In order to conclude our study, we comment in more detail on the connec-
tion between initial configurations and the role of the transition processes. It
has been found already in [34] that the late-time behavior is characterized by
the exponential decay (for prolate or mixed oblate–prolate configurations)
or power law (for oblate configurations). Below, in Appendix, we give an-
alytic arguments that the presence of transition processes does not change
the qualitative character of the solutions — we again deal either with the
exponential decay or the power law. However, our new finding is that the
exponential decay is characterized by the timescale parameter τeq/(1 + 2δ).
This leads to a shorter overall thermalization rate in the prolate and oblate–
prolate cases with the quark–gluon transitions included (where δ > 0). We
must emphasize, however, that all exponential solutions are characterized by
very short timescales. Much larger differences exist between the exponential
and power-law cases.

Finally, we want to make a remark that the appearance of the exponential
solutions in the highly non-linear system of equations might be directly
connected with the fast thermalization problem but this issue deserves a
separate and more general study.

This work was supported in part by the Polish National Science Center
with Decision No. DEC-2012/06/A/ST2/00390.

Appendix

Late-time behavior

Equations (28), (33), and (37) form a closed system which can be used to
determine the time evolution of four parameters: ξq, ξg, Λ, and T . We may
reduce this system of equations to two equations if we determine the ratio
T/Λ from Eq. (33) and calculate the proper-time derivative dΛ/dτ from (37)
and substitute these two quantities into Eq. (28). In this way, we obtain two
coupled differential equations for the anisotropy parameters

∆(ξq, ξg)

[
dξq

2(1 + ξq)dτ
− 1

τ

]
= Pq(ξq, ξg) , (38)

∆(ξq, ξg)

[
dξg

2(1 + ξg)dτ
− 1

τ

]
= Pg(ξq, ξg) . (39)

Here,

∆ = 4 [R(ξq) + rR(ξg)] + 6
[
(1 + ξq)R′(ξq) + r(1 + ξg)R′(ξg)

]
, (40)
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Pq = 6r(Sg − Sq)(1 + ξg)R′(ξg)− 4Sq [R(ξq) + rR(ξg)] , (41)

and

Pg = 6(Sq − Sg)(1 + ξq)R′(ξq)− 4Sg [R(ξq) + rR(ξg)] . (42)

Equations (38) and (39) are convenient to analyze the late-time behavior
of the anisotropy parameters. As the system approaches thermal equilib-
rium, ξq and ξg tend to zero. Hence, to study the late-time behavior of the
system, we include the terms up to second order in ξq and ξg on both sides
of (38) and (39). The expansion of the function ∆ starts with the linear
terms

∆ =
8

15
(ξq + rξg)−

24

35

(
ξ2q + rξ2g

)
+ . . . , (43)

therefore, we neglect ξq and ξg in the terms (1 + ξq) and (1 + ξg).
Instead of using (38) and (39) directly, we consider now their difference

and the sum. For the difference, we obtain

∆(ξq, ξg)

[
dξq
2 dτ

− dξg
2 dτ

+
κq − κg
τeq

+
rq − rg
τtr

]
= 0 . (44)

This equation is fulfilled up to the second order if the equation in the square
brackets is fulfilled in the first order. This leads to the equation

d

dτ
(ξq − ξg) = −

1 + 2δ

τeq
(ξq − ξg) ≡ −α (ξq − ξg) , (45)

which for a constant relaxation time has the simple exponential solution

d ≡ ξq − ξg = d0 exp(−ατ) , (46)

where d0 is an integration constant. Another useful quantity to consider is
the linear combination of the two anisotropies

ξ ≡ ξq + r ξg
1 + r

. (47)

Adding Eqs. (38) and (39) multiplied by 1 and r, respectively, and keeping
again all the terms up to second order gives

∆(1)

2

dξ

dτ
− ∆(1) +∆(2)

τ
= P (2) , (48)

where P (2) includes the second-order terms of the quantity

P =
Pq + rPg
(1 + r)

. (49)

Below, we show that the linear terms are absent in the expansion of P .
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Similarly, ∆(1) and ∆(2) denote the linear and quadratic terms in the
expansion of ∆. Straightforward calculations yield (below, for simplicity of
notation, we present the results obtained with r = 2/3)

∆(1) =
8

9
ξ , (50)

∆(2) = −8

7
ξ2 − 48

175
d2 , (51)

and

P (2) =
1

τeq

(
54 + 225 δ + 5δ2

450
d2 − 4δ

45
ξ d− 2

9
ξ2
)
. (52)

In Eq. (48), we may drop the term ∆(2)/τ , since ∆(1)/τ is the leading
term in the whole expression. In this way, we obtain

ξ

(
dξ

dτ
− 2

τ

)
=

1

τeq

[
a1 d

2 + b1 ξ d+ c1 ξ
2
]
, (53)

where a1 = (54 + 225 δ + 5δ2)/200, b1 = −δ/5, and c1 = −1/2.
In the next step, we search for the solutions of Eq. (53) in the form

ξ(τ) = z(τ)e−ατ . It is also convenient to introduce a dimensionless param-
eter s = ατ . In this way, we obtain

dz

ds
=

2es

s
+
a+ bz + cz2

z
, (54)

where a = a1d
2
0/(1 + 2δ), b = b1/(1 + 2δ)d0, and c = c1/(1 + 2δ) + 1. One

may check that the numerator of the last fraction on the right-hand side
of Eq. (54) is always positive. Hence, if z is positive at s = s0, it will
further increase with s. On the other hand, if z is negative at s = s0, the
competition of the two terms on the right-hand side of Eq. (54) forces z to
approach zero.

To see this behavior in more detail, we observe that Eq. (54) has two
characteristic asymptotic solutions. In the first case, z is very small and
negative, so the terms bz and cz2 may be neglected compared to a. The
approximate equation

dz

ds
=

2es

s
+
a

z
(55)

has the asymptotic solution of the form

z(s) = −as
2
e−s , (56)
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which supports our assumptions leading from (54) to (55). In the second
case, z is positive and grows with s, hence Eq. (54) may be approximated
by the equation

dz

ds
=

2es

s
+ cz , (57)

whose solution is

z(s) = Cecs + 2ecsEi ((1− c)s) , (58)

where C is an integration constant. Using the relation ξ = ze−s, we find

ξ(s) = Ce(c−1)s + 2e(c−1)sEi ((1− c)s) . (59)

Since c < 1, the first term in (59) vanishes in the limit s→∞. On the other
hand, the asymptotic expansion Ei(x) ∼ ex/x (for x → ∞) indicates that
the second term in (59) behaves like 1/s.

Consequently, we expect two types of behavior of the anisotropy param-
eters at large times: exponential decay or power law. Our numerical studies
indicate that the first possibility is realized for the cases where one or two
anisotropy parameters are negative. Such cases correspond to mixed oblate–
prolate or prolate configurations. The power law characterizes the systems
which are initially oblate (the first anisotropy parameter is very large and
positive, while the second parameter is positive or equals 0).
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