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This paper presents a quantitative analysis of the relationship between
the stock market returns and corresponding trading volumes using high-
frequency data from the Polish stock market. First, for stocks that were
traded for sufficiently long period of time, we study the return and volume
distributions and identify their consistency with the power-law functions.
We find that, for majority of stocks, the scaling exponents of both distri-
butions are systematically related by about a factor of 2 with the ones for
the returns being larger. Second, we study the empirical price impact of
trades of a given volume and find that this impact can be well described
by a square-root dependence: r(V ) ∼ V 1/2. We conclude that the prop-
erties of data from the Polish market resemble those reported in literature
concerning certain mature markets.
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1. Introduction

Every day millions of individuals all over the world make billions of or-
ders to buy or sell stocks according to their own investment strategies and in
reaction to huge amount of arriving information. These individual decisions
taken together define very complex behaviour of the financial markets [1–5]
and lead to such characteristics of the financial data as multifractality
[6–11], long memory, nonlinear correlations [9, 12, 13], the leverage effect
[14, 15], fat tails of financial data fluctuations [16–30], known together as
the financial stylized facts.

(2035)
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The fat tails of pdfs mean that, for example, the nature of logarithmic
price fluctuations (returns) differs from the Gaussian noise model as the
former can be much larger than the latter expects. The relative magnitude
of the most spectacular events observed in the financial markets is a good
example of this property. Let us assume that we have a bi-variate time
series of price and volume recordings collected over some period of time. In
general, the returns can be defined as

r(∆tk) =
R(∆tk)− 〈R(∆tk)〉

σ
, R(∆tk) = lnQ(tk + ∆tk)− lnQ(tk) ,

(1)
where ∆tk is length of the kth interval of time, Q(t) is stock price, σ is
standard deviation, and 〈·〉 is mean over all the intervals k = 1, ..., T . For
each return r(∆tk), there exists an appropriate trading volume V (∆tk).
The intervals ∆tk can be defined in various ways: they can either cover
a constant number of consecutive transactions nT, be defined by constant
trading volume, or be equal to each other with ∆tk = ∆t for all ks. The
latter definition is the most common one.

It was documented in literature that the non-Gaussian pdfs of the return
can be described in most cases by power-law tails of the form of p(x) ∼
x−(1+α) with α > 0. Exact values of the scaling index α depend on the
return definition and vary from market to market [22, 24, 31–33], and from
past to present [20, 34, 35]. The scaling index αr for the returns depends also
strongly on either ∆t or nT. Typically, one observes a gradual increase of αr

with ∆t and nT from an initial value of 3 ≤ αr ≤ 4.5 (see Ref. [17, 18, 34]),
which is usually maintained over a range of the shortest intervals, towards
higher values for longer intervals or larger number of aggregated transactions.
This increase corresponds to convergence of the distribution of the returns
towards a stable, Gaussian distribution.

From the pure mathematical perspective, speaking about a convergence
is a delicate issue in this context as the convergence towards a Gaussian dis-
tribution induced by the Central Limit Theorem does not alter the power-
law tail slopes. However, the following two remarks have to be made. First,
any empirical data is finite and its pdf/cdf tails do not cover the distant
regions which may reveal the actual power-law tails that are being repelled
towards infinity while CLT exerts its influence. Thus, in econophysics liter-
ature it became commonplace that under the notion of “power-law slope”,
one considers the effective slope of the power function that was best-fitted to
empirical distribution in its non-central region. In this study, we just follow
this approach. Second, one has to keep in mind that financial data is usu-
ally non-linearly correlated and cannot be represented by i.i.d. processes [4].
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This implies that the standard form of CLT may not be completely adequate
in this case, leaving space for its non-extensive generalizations (see Sec. 3).
The exact form of convergence might thus differ from the classic CLT picture.

On the other hand, tail shape of the aggregated trading volume or trade
size distributions was a matter of some dispute in literature [36], there is nev-
ertheless, substantial evidence that, for at least the American and Chinese
stock markets, the trade size and aggregated volume pdfs can be described
by a scale-free tails with the exponent 1.5 ≤ αV ≤ 2.8 [22, 24, 31–33], i.e.,
around the Lévy limit of α = 2. This implies that the volume pdf conver-
gence towards a Gaussian distribution is rather slow [32]. One of interesting
empirical findings is that, for a given market, sometimes a simple relation
between both scaling indices exists [18, 24, 31, 32]

αr

αV
' ξ , (2)

where specific value of ξ depends on a study. For example, Ref. [24–26]
and [24] reported ξ ≈ 2. This relation was found empirically for those data,
for which the effective power-law tails were observed. How it behaves for
large time scales for which the distributions converge closer to a Gaussian
distribution, has not been studied since the data samples are in such cases
rather small. The above relation between the returns and trade sizes or
volume (depending on a definition of the returns) can be related to the em-
pirical price impact function r = f(V ) describing how a trade or aggregated
volume of a given size modifies the price. This function is known to be con-
cave, but its exact form is debatable with possible logarithmic [39] or (wider
documented) power-law relation [25, 26, 28, 36, 40]. The latter one can be
written as

r(V ) = cV β , 0 < β < 1 , (3)

where c is some positive constant. For example, Gabaix et al. [25, 26] who
considered the American stock market argued that β ≈ 1/2, while Farmer
and Lillo [28, 36] reported β ≈ 0.3 for the London market. It was also seen
that this function changes its form under a change of the aggregation time
scale, going from strongly nonlinear for small ∆t or nT to rather linear for
larger scales [41].

Based on results of their empirical study, Gabaix et al. [25, 27] formulated
a simple theory that was able to explain why both the returns and volume
are power-law distributed. They assumed that large market participants
— mutual funds, whose activity effectively govern the prices, are power-law
distributed and that those funds optimize their trading strategies. Their
approach allowed them to derive Eq. (3). This theory opened a debate,
in which both the model assumptions and the empirical evidence, which it
was grounded on, was criticised [28, 36, 42, 43] and an alternative approach
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was proposed pointing out to fluctuations of liquidity, and not the volume
distribution as a principal cause of the form of the return pdf [41]. However,
since the authors of the original model were able to rebut the main objections
against it [26], it now seems that the two approaches may be complementary
and point out to phenomena that in fact coexist.

Here, we do not want to consider empirical data in the light of either
theory, but we rather aim at considering statistical distributions of the
returns and trading volume for a market which was not analysed before
in this context and compare results with those known from literature for
other markets. The Warsaw Stock Exchange (WSE) has total capitaliza-
tion of about 180 billion USD (August 2013) and, as such, is still counted
among the small markets. However, many properties of data from the WSE
are similar to the respective properties of data from the mature markets
[44–46]. Therefore, taking all this into consideration, it is interesting to
verify whether any relation similar to Eq. (2) can also be identified on the
WSE.

2. Results

We study the distribution of trading volumes and returns based on high-
frequency data from the largest 14 companies listed in the WSE. Our data
cover a time interval starting on November 17, 2000 and ending on March 6,
2008. The data comprises basically information on all trades which took
place in this period but, unfortunately, it does not offer data from the order
book. Therefore, we cannot distinguish trades which were buyer- or seller-
initiated and have to treat all trades together, which is similar to an approach
of Ref. [31, 32], but different from those in Ref. [24, 36].

We start our analysis with creating the cumulative distribution functions
of the returns and volumes, separately for each company. In this case, we
consider evenly sampled data with ∆t = 1 min. Figure 1 exhibits typical
results, which indicate that all the return distributions possess power-law
tails, while this property is also observed for volume distributions, even
though sometimes in a less clear form (like in the case of Pekao, see the
bottom right graph).

In order to compare the scaling exponents of both distributions, we esti-
mated their values by two independent methods: least square fits of power-
law functions f(x) = ax−α and the Hill estimators [47]. For a given time
series X with its values sorted by their size X1 ≥ X2 ≥ . . . ≥ XN , the Hill
estimator is defined by

HEα =

(
1

k

k∑
i=1

log(Xi)− log(Xk+1)

)−1

. (4)
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Fig. 1. Log–log plot of the cumulative distributions of absolute returns |r(∆t)|
(left column) and normalized trading volume V (∆t) (right column) for ∆t = 1 min.
for three Polish companies: PKN Orlen, Prokom, and Pekao over the period Novem-
ber 17, 2000–March 6, 2008.

Using both methods for each company, we obtained results that are col-
lected in Table I. For the returns, the exponents are in the range of 3.4 ≤
αr ≤ 5.8, while for the volumes, the exponents are significantly smaller:
1.6 ≤ αV ≤ 2.4. It is important that both methods give comparable results.
(We also employed the third method of calculating the scaling exponents,
namely the Meerschaert–Scheffler estimator [48], but it provided us with
rather unreasonable estimates, similar for both quantities, so we excluded it
from our analysis.)
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TABLE I

The tail empirical scaling exponents of the cumulative distributions of absolute
returns |r(∆t)| (second column) and normalized trading volume V (∆t) (third col-
umn) for 14 Polish companies. The fourth column represents relation (2). The
remaining three columns represent the tail exponents and their ratio as given by
the Hill estimator [47].

Company name αr αV αr/αV HEαr
HEαV

HEαr
/HEαV

Agora 4.3 2 2.15 4.04±0.01 1.64±0.02 2.46
BRE 4.1 1.9 2.16 4.17±0.015 1.74±0.02 2.40

Comarch 4.6 2 2.3 5.00±0.06 1.85±0.05 2.70
Kęty 5.5 2.4 2.3 5.77±0.04 2.09±0.03 2.76

KGHM 4.6 2.4 1.92 5.15±0.02 2.23±0.05 2.31
Mostostal Exp. 4.6 2.4 1.92 4.64±0.01 2.22±0.01 2.09

Netia 3.4 1.7 2 3.55±0.02 1.66±0.01 2.14
Orbis 3.8 1.8 2.11 4.05±0.01 1.59±0.03 2.35
Pekao 4.2 2.1 2 5.05±0.03 1.86±0.01 2.72

PKN Orlen 4.7 2.4 1.96 5.11±0.04 2.25±0.02 2.27
Prokom 4.2 1.9 2.21 4.45±0.04 1.77±0.03 2.51

Stalexport 4.7 2.4 1.96 5.12±0.02 2.16±0.02 2.37
Softbank 3.9 1.8 2.17 3.73±0.01 1.76±0.01 2.12
TP S.A. 4.6 2.1 2.19 5.13±0.04 1.68±0.03 3.05
〈·〉 4.37 2.1 2.09 4.64 1.89 2.45
σ 0.5 0.26 0.14 0.66 0.25 0.27

Interestingly, although the power law relation for the returns and volumes
is different than in Ref. [18, 31, 32], the approximate dependence (2) seems
to be similar: αr/αV = 2.09±0.14 (see the third column in Table I). The Hill
estimator on average gives numbers that are larger than those of the power-
law fitting (HEαr/HEαV = 2.45± 0.27) which is rather a typical relation of
these two methods (see also [22]).

To check whether similar value of ξ holds for different time scales, we
constructed analogous time series for longer lags. Figure 2 shows the cumu-
lative distributions for two lags: ∆t = 1 min. and ∆t = 120 min. for all the
companies taken together. It is now clear that, for the Polish stock market,
ξ ≈ 2 holds also for larger values of scaling exponents than αr = 3 and
αV = 1.5 discussed in Ref. [25, 26] in the context of the American markets.

Next, we compare our data with those studied by Zhou [24] by fixing
nT = 1. We thus look at time series constructed from the returns caused by
individual transactions and the corresponding time series of trade volumes.
As we can observe in Fig. 3, the relation between αr and αV is still preserved
with ξ ≈ 2 once again. This outcome is different than that for the Chinese
stock market reported in Ref. [24], where the ratio was ca. 1.5, but it is again
close to the result for the American stock market [18, 31, 32].
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Fig. 2. Log–log plot of the cumulative distribution of absolute returns |r(∆t)| (left)
and of normalized trading volume V (∆t) (right) for ∆t = 1 and 120 min. over the
period November 17, 2000–March 6, 2008. The distributions were averaged over
the largest 14 companies.
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Fig. 3. Log–log plot of the cumulative distribution of absolute transaction returns
for nT = 1 (left) and the corresponding normalized transaction volume (right) for
the tick-by-tick data over the period November 17, 2000–March 6, 2008, averaged
over the largest 14 companies.

It can be easily shown that relation (2) is valid always if both the return
and the volume distributions have power-law tails and the price impact
function r(V ) is deterministic with a power-law form as in Eq. (3). Let
r ∼ V β , then we get

x−αr∼P (|r| > x) ' P
(
cV β > x

)
=P

(
V >

(
xc−1

)1/β) ∼ x−(1/β)αV , (5)
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so
ξ ≡ 1/β = αr/αV . (6)

To make our results more complete, we have to mention that in the
period considered there was a company (Internet Group) with apparently
different dynamics. It developed scale-free tails of the pdfs neither for the
returns nor the volume (Fig. 4). We suspect that this was because it was a
highly speculative stock that went through a phase of bankruptcy, followed
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by a spectacular recovery and then again collapsed towards bankruptcy with
no serious institutional investors involved. It is curious, however, that the
locally defined slopes of the pdfs are also approximately equal to 2 in this
case. Whether this is purely coincident or rather indicates that the power-
law tails are not a necessary condition for the constant ratio of local slopes,
we cannot determine at present, but this phenomenon is doubtlessly worth
further studies.
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Fig. 5. (Left) Absolute returns as a function of volume for three different companies:
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total number of data points. (Right) The cumulative distributions of absolute
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Having shown that, typically, both the return and the volume distribu-
tion has scale-free tails, now let us look more closely at the price impact
given by Eq. (3). We address a question if existence of such a price impact
can be postulated based on empirical data at our disposal. First, we seek
any dependence of the return distribution on the volume size. We create
a scatter plot r–V for three exemplary companies from different stock sec-
tors (left panels of Fig. 5). By increasing the trading volume, we observe
the increasing variance of the absolute returns. To better visualize this, we
divide the whole volume range into three parts: V ≤ 100, 100 < V ≤ 1000
and V > 1000, and calculate the return cdfs conditioned on V for each part
separately. The resulting distributions are shown in right panels of Fig. 5.
For majority of stocks, αr is noticeably dependent on V in such a way that
the larger trading volumes are considered, the gentler is the slope.

Now, we can consider the expectation E(r2|V ) which was proposed in
Ref. [25, 26] as an indication of possible square-root dependence r(V )

E
(
r2|V

)
= a+ bV ⇒ r(V ) ∼ V 1/2 . (7)

Since ξ ≈ 2 suggests that the relation described by Eq. (5) holds for the
WSE data, we are motivated to look at the empirical form of the price impact
function. We compare the expectation E(r2|V ) calculated for real (Fig. 6)
and surrogate data (Fig. 7). By following Ref. [28], the latter are constructed
by assuming the existence of exact price impact function with some exponent
0 < β < 1 in Eq. (3) and by calculating the artificial returns r(V (t)) from
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the real time series of volumes V (t). If the empirical price impact r(V ) is
square-root indeed, we expect that E(r2|V ) will qualitatively be similar for
the actual and the artificial data if we take β = 1/2. On the other hand,
after taking β 6= 1/2, the results in each case have to be different.
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In Fig. 7, we show the results obtained for different choices of β. In
agreement with the above arguments, for all the considered ∆t or for large
enough nT, the expectation E(r2|V ) shows linear behaviour for β = 1/2,
while for β 6= 1/2 no obvious linear dependence is seen. These results
convince us that the square-root price impact function takes place for Polish
stocks, indeed.

3. q-Gaussian fits to volume distributions

Among the distributions considered in the context of financial fluctua-
tions, there are lognormal distributions, stretched exponentials, truncated
Lévy distributions, and the q-Gaussian distributions [45, 49–53]. Our previ-
ous research has proved that q-Gaussians are a good theoretical representa-
tion of the empirical return distributions (not only for the stock markets but
also for the currency ones) [54, 55]. Based on this experience, we prefer to
fit the financial data with the q-Gaussians. There are also valid theoretical
arguments supporting the use of these distributions in this case [4].

The q-Gaussians were discovered in the field of nonextensive statisti-
cal mechanics which is a candidate theory to generalize the traditional
Maxwell–Boltzmann–Gibbs statistical mechanics to nonequilibrium systems
with long-range power-law correlations [56, 57]. Since from a physicist’s
point of view it seems that the financial markets can be thought of as sys-
tems of this kind, applying the distributions associated with the nonexten-
sive statistics looks natural in this case. The q-Gaussians are a family of
distributions that maximize the nonextensive Tsallis entropy [56] given by

Sq = kB
1−

∫
[p(x)]qdx

q − 1
, (8)

where p(x) is a probability distribution and kB is the Boltzmann constant,
under the conditions∫

x
[p(x)]q∫
[p(x)]qdx

dx = µq ,

∫
(x− µq)2

[p(x)]q∫
[p(x)]qdx

dx = σ2q . (9)

Up to a normalization constant, the formula for q-Gaussians reads [57, 58]

Gq(x) ∼ expq
[
−Bq(x− µq)2

]
, (10)

where expq x = [1 + (1 − q)x]
1

1−q and Bq = [(3 − q)σ2q ]−1. The q-Gaussians
are defined for 0 < q < 3. Unlike e.g. the Pareto and other already-listed
distributions, the q-Gaussians can consistently fit the whole range of fluc-
tuations, not only the tails. The asymptotic behaviour of q-Gaussians is of
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the power-law type with the scaling exponent α ≡ αqG uniquely determined
by q according to the relation

αqG =
3− q
q − 1

. (11)

In particular, q ≥ 5/3 corresponds to αqG ≤ 2, i.e. to the Lévy-stable regime.
We consider trading volume distributions for different stocks listed in

the WSE. For each stock, we compare the cumulative distributions obtained
for different time scales ∆t or different number of aggregated trades nT. All
the cumulative distributions are fitted by appropriate q-Gaussian cdfs [45].
Exemplary results are shown in Fig. 8. The agreement between the empirical
data and the fits is encouraging: for all the time lags considered in our study
(shown and not shown), one obtains a good theoretical representation of the
data over the whole range of values. In each case, the inaccuracy does not
exceed a few largest events. The q-Gaussian fits to the tick-by-tick data are
also quite good. Moreover, all values of the empirical scaling exponents (αV)
are similar to values of αVqG

for appropriate qs.
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4. Summary

In the present contribution, we focused our attention on a relationship
between large returns and trading volume based on data from the Warsaw
Stock Exchange, which is an emerging market. Our intention was to inves-
tigate whether any systematic relation between the distributions of returns
and volumes exists in this case, similar to outcomes of earlier works which
were focused on larger markets like the American, Chinese, London, and
Paris ones.

We have shown that relation (2) with ξ ≈ 2 (or ≈ 2.5 based on the Hill
estimator) holds for majority of the analysed the WSE stocks. We also ob-
served that the price impact of trading volume can be modelled by a square-
root function (as described by Eq. (3) with β = 1/2). These outcomes go
in parallel with some earlier studies (see especially Ref. [18, 25, 26, 31, 32]).
Another curious result of our study worth further investigation is that one
can observe a relation between the local slopes of both types of the distribu-
tions even if they do not display any power-law tails. However, this result
was obtained only for a single company and, therefore, we do not want to
draw any decisive conclusions based on it yet.

An additional interesting observation done in our work is that not only
the distributions of returns but also the distributions of trading volumes can
be well described by the q-Gaussian functions.
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