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The dynamics of the expanding universe is analyzed in terms of the
quantum geometrodynamical model. It is shown that the equations of
quantum theory in the form of the eigenvalues equation similar to the sta-
tionary Schrödinger equation, complemented by the equations of motion
for the momentum operator and its time derivative in Heisenberg’s form
reduce to the Einstein equations with an additional source of the gravita-
tional field of quantum nature. The spatially closed universe with cosmo-
logical constant, originally filled with a uniform scalar field and radiation,
is considered as quantum cosmological system. The perfect fluid in the
form of radiation defines the material reference frame. The properties of
the averaged scalar field acting like ordinary matter are investigated. Af-
ter averaging over its quantum states, the free scalar field turns into the
Weyssenhoff fluid characterized by the energy density, pressure, and spin
of constituent particles. The cases when the contribution of the quantum
effects into the gravitational interaction becomes significant on macroscopic
scale are analyzed. It is demonstrated that, unless the whole, at least a
part of such matter–energy constituents as dark matter and dark energy
may have a quantum origin.
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1. Introduction

According to the modern view, most of our universe consists of dark
matter and dark energy, whose nature is unknown [1, 2]. One cannot ex-
clude that at least a part of these matter constituents, unless the whole
matter–energy, has a quantum origin, being, in this case, a demonstration
of quantum principles which reveal themselves in the universe on macro-
scopic (cosmological) scales. Another manifestation of quantum nature of
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the universe may be the existence of proper angular momenta (spins) of par-
ticles which compose matter in the universe. It is possible that the observed
universe is a realization of a specific state of a more general cosmological
system described by the wave function which is a superposition of all admis-
sible states satisfying a Schrödinger-type equation. It can be considered as
some implementation of the multiverse hypothesis (see, e.g., Refs. [3, 4]). In
any case, the search for macroscopical effects which give evidence concerning
the quantum nature of our universe as a whole does make sense. For this
purpose, the appropriate quantum model of the universe is required.

A consistent quantum theory of gravity, in principle, can be constructed
on the basis of the Arnowitt–Deser–Misner (ADM) Hamiltonian formal-
ism [5] of general relativity with the application of the canonical quanti-
zation method. The structure of constraints in general relativity is such
that variables which correspond to true dynamical degrees of freedom can-
not be singled out from canonical variables of geometrodynamics. This diffi-
culty is stipulated by an absence of predetermined way to identify spacetime
events in generally covariant theory [6]. The famous Wheeler–DeWitt equa-
tion [7, 8] of canonical quantum gravity does not refer to a time variable.
In principle, time can be reintroduced in the theory [9]. The material ref-
erence frame allows to mark spacetime events. Perfect fluids are a special
case of the relativistic elastic media with clocks proposed by DeWitt [10].
They can be used to define the reference frame as a dynamical system. In
the framework of realistic description of the reference medium, the Dirac
constraint quantization leads to the functional Schrödinger-type equation
with respect to a time variable which describes the evolution of the system
from one spacelike hypersurface to another. In a series of papers [11], the
quantum geometrodynamical approach with a well-defined time variable was
developed for the description of the FRW universe.

In Sect. 2 we give the basic equations of quantum theory reduced to the
form convenient for purposes of this paper. In Sect. 3 the properties of the
scalar field φ in the φα-model of interaction are studied. The equations of
motion for such a model are obtained in Sect. 4. The properties of the aver-
aged scalar field which acts like ordinary matter are investigated in Sect. 5.
Section 6 is devoted to the study of the influence of the quantum source
of the gravitational field on the dynamics of the universe. In Sect. 7 the
exact solution of the non-linear equation for the phase of the wave function
in the model of the free scalar field is found. In Sect. 8 it is shown that
the averaged free scalar field turns into the Weyssenhoff fluid. In a short
conclusion, some obtained results are summarized. Some equations in the
ordinary physical units are given in Appendix for illustration.
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2. Basic equations

The universe which is a homogeneous, isotropic, and spatially closed
quantum system is considered. We assume that such a universe is originally
filled with a uniform scalar field φ and a perfect fluid. After averaging with
respect to appropriate quantum states, the scalar field turns into the effective
barotropic fluid to which we shall refer as the φ-substance. The perfect fluid
defines a material reference frame [10, 11] and it is taken in the form of
relativistic matter (radiation) with the energy density ργ = E/a4, where
E = const., a is the cosmic scale factor, and the equation of state pγ = 1

3ργ ,
pγ is the pressure of radiation. The stationary states of such a quantum
system with a definite value of E are described by the wave function of
two variables ψ(a, φ) = 〈a, φ|ψ〉 which satisfies the eigenvalues equation of
Schrödinger-type. If the density ργ and the scale factor a are measured
in GeV/cm3 and cm, respectively, the eigenvalue E has the dimensions of
GeV cm. It is convenient to pass to the dimensionless quantities using the
modified Planck system of units. We use the lP =

√
2G~/(3πc3) as a unit of

length and the ρP = 3c4/(8πGl2P) as a unit of energy density and pressure.
The proper time τ is taken in units of tP = lP/c and the scalar field is
measured in φP =

√
3c4/(8πG). The mass-energy is taken in units of Planck

mass mPc
2 = ~c/lP. Throughout the paper, the equations are given for

dimensionless quantities, unless otherwise stipulated.
Let us briefly address the introduction of time variable in our approach.

The universe under consideration is described by the Robertson–Walker
metric

ds2 = a2(η)
[
N2(η)dη2 − dΩ2

3

]
, (1)

where N is the lapse function that specifies the time reference scale, dΩ2
3 is

a line element on a unit three-sphere. Using the ADM formalism, the action
in the case under study is reduced to the form (see Refs. [11] for details)

I =

∫
dη

{
πa

da

dη
+ πφ

dφ

dη
+ πΘ

dΘ

dη
+ πλ̃

dλ̃

dη
−H

}
, (2)

where πa, πφ, πΘ, πλ̃ are the momenta canonically conjugate with the vari-
ables a, φ, Θ, λ̃,

H =
N

2

{
−π2a − a2 + a4 [ρφ + ργ + ρΛ]

}
+λ1

{
πΘ −

1

2
a3ρ0s

}
+ λ2

{
πλ̃ +

1

2
a3ρ0

}
(3)

is the Hamiltonian,

ρφ =
2

a6
π2φ + V (φ) (4)
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is the energy density of a scalar field φ with the potential V (φ), ργ = ργ(ρ0, s)
is the energy density of a perfect fluid1 which is a function of the density
of the rest mass ρ0 and the specific entropy s, ρΛ is the vacuum energy
density of the field φ with the equation of state pΛ = −ρΛ, ρΛ = Λ

3 , Λ is
a cosmological constant, pΛ is the pressure. Θ is the thermasy (potential
for the temperature, T = Θ, νU

ν). λ̃ is the potential for the specific free
energy f taken with an inverse sign, f = − λ̃, νUν . Uν is the four-velocity.
The momenta πρ0 and πs conjugate with the variables ρ0, and s vanish
identically

πρ0 = 0 , πs = 0 . (5)

The Hamiltonian (3) of such a system has the form of a linear combination
of constraints and weakly vanishes

H ≈ 0 , (6)

where the sign ≈ means that the Poisson brackets must all be worked out
before the use of the constraint equations. The N , λ1, and λ2 are the
Lagrange multipliers. The variation of the action (2) with respect to them
leads to three constraint equations

−π2a − a2 + a4 [ρφ + ργ + ρΛ] ≈ 0 , πΘ − 1
2 a

3ρ0s ≈ 0 , πλ̃ +
1
2 a

3ρ0 ≈ 0 .
(7)

From the conservation of these constraints in time, it follows that the
conservation laws hold

E0 ≡ a3ρ0 = const. , s = const. , (8)

where the first relation describes the conservation law of a macroscopic value
which characterizes the number of particles of a perfect fluid, the second
equation represents the conservation of the specific entropy. Taking into ac-
count these conservation laws and equations (5), one can discard degrees of
freedom corresponding to the variables ρ0 and s, and convert the second-class
constraints into the first-class constraints [11] in accordance with Dirac’s pro-
posal.

The equation of motion for the classical dynamical variable O =
O(a, φ, πa, πφ, . . . ) has the form

dO
dη
≈ {O, H} , (9)

where H is the Hamiltonian (3), {., .} are the Poisson brackets.
1 At this point, an arbitrary perfect fluid is assumed. The subscript γ is used having
in mind the future choice of a perfect fluid in the form of radiation.
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In quantum theory, first-class constraint equations (7) become constraints
on the state vector Ψ . Passing from classical variables to corresponding op-
erators, using the conservation laws (8), and introducing the non-coordinate
co-frame

h dτ = s dΘ − dλ̃ , h dy = s dΘ + dλ̃ , (10)

where h =
ργ+pγ
ρ0

is the specific enthalpy which plays the role of inertial
mass, pγ is the pressure of a perfect fluid, τ is proper time in every point of
space, and y is supplementary variable2, we obtain three equations [11]{

− i ∂τc − 1
2 E0

}
Ψ = 0 , ∂yΨ = 0 , (11){

− ∂2a + a2 − 2aĤφ − a4ρΛ − E
}
Ψ = 0 , (12)

where τc is the time variable connected with the proper time τ by the dif-
ferential relation dτc = h dτ , and a perfect fluid is chosen in the form of
relativistic matter. The operator

Ĥφ =
1

2
a3ρ̂φ with ρ̂φ = − 2

a6
∂2φ + V (φ) (13)

plays the role of a Hamiltonian of the scalar field with the operator of energy
density ρ̂φ, the quantity a3/2 is the proper volume. From equations (11), it
follows that Ψ does not depend on the variable y. The first equation of the
set (11) has a particular solution in the form

Ψ = e
i
2
E(T−T0)|ψ(T0)〉 , (14)

where T is the rescaled time variable, dT = E0
E dτc = Ndη. The state

vector |ψ〉 is defined in the space of two variables a and φ, and determined
by the stationary Schrödinger-type equation(

−∂2a + a2 − 2aĤφ − a4ρΛ
)
|ψ〉 = E|ψ〉 . (15)

The vector |ψ〉 represents the dynamical state of the universe at some instant
of time T0. For the universe without radiation, such a procedure leads to
the Wheeler–DeWitt equation of a ‘minisuperspace model’ which has a form
of Eq. (15) with E = 0.

Considering the vector |ψ〉 as immovable vector of the Heisenberg repre-
sentation, we have the following equation of motion

〈ψ| 1
N

d

dη
Ô|ψ〉 = 1

N

d

dη
〈ψ|Ô|ψ〉 = 1

i
〈ψ|
[
Ô, 1

N
Ĥ

]
|ψ〉 , (16)

2 The corresponding derivatives commute between themselves, [∂τ , ∂y] = 0.
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where [., .] is a commutator, and Ĥ is determined by the expression (3), in
which all dynamical variables are substituted with operators. The observ-
able Ô corresponds to the classical dynamical variable O. Let Ô = a, then

〈ψ| − i∂a|ψ〉 = 〈ψ| −
da

dT
|ψ〉 . (17)

If Ô = −i∂a, then

〈ψ| − i d
dT

∂a|ψ〉 = 〈ψ|a− Ĥφ + 3L̂φ − 2a3ρΛ|ψ〉 , (18)

where the operator Ĥφ is a Hamiltonian (13) and

L̂φ =
1

2
a3p̂φ with p̂φ = − 2

a6
∂2φ − V (φ) (19)

can be interpreted as a Lagrangian of the scalar field, p̂φ is the operator of
pressure.

3. The φα-model

The Hamiltonian Ĥφ can be diagonalized by means of the state vec-
tors 〈x|uk〉, where k is an index of the state, in the representation of some
generalized variable x = x(a, φ). Assuming that the states |uk〉 are orthonor-
malized, 〈uk|uk′〉 = δkk′ , we obtain

〈uk|Ĥφ|uk′〉 =Mk(a)δkk′ , (20)

where the index k can take both discrete and continuous values depending
on the form of the potential V (φ). In general case, the valueMk(a) depends
on a and describes a classical source (as a mass-energy) of the gravitational
field in kth state. Its explicit form is determined by the interaction model
of the scalar field.

Let the potential V (φ) has a form

V (φ) = λαφ
α , (21)

where λα = const., α is an arbitrary non-negative value, α ≥ 0.
We make a scale transformation of the field φ and introduce a variable

(a new field)

x =

(
λαa

6

2

) 1
2+α

φ , (22)
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which changes in the interval −∞ < x < +∞ like the field φ. In new
variables a and x, the Hamiltonian Ĥφ takes the form

Ĥφ =

(
λα
2

) 2
2+α

a
3(2−α)
2+α

[
−∂2x + xα

]
. (23)

The expression for the Lagrangian L̂φ (19) is obtained from Eq. (23) after
the substitution xα → −xα.

We introduce the state vectors 〈x|uk〉 which satisfy the equation(
−∂2x + xα − εk

)
|uk〉 = 0 , (24)

where εk is eigenvalue. For α = 0, this equation is the equation of free
motion of the quantum analogue particle with unit mass and doubled kinetic
energy εk = k2 + 1, where k ≥ 0. For α = 1, Eq. (24) is the equation for
the Airy function. For α = 2, it describes the quantum oscillator. For
α = 4, the asymptotics of the solution of Eq. (24) is expressed through the
cylindrical function, |uk〉 ∼

√
xZ1/6(ix

3/3), where Z1/6 = c1J1/6 + c2N1/6,
Jν and Nν are the Bessel functions of the first and second kind for ν = 1/6,
respectively [12]. Using the explicit form of the asymptotics, one can find
the spectrum of values εk by numerical integration of Eq. (24) with α = 4.

The φ∞-model with extremely strong self-action of the field φ which may
occur in the very early universe (on sub-Planck scales) is of peculiar interest.
Such a matter has only quantum properties. But its eigenstates |uk〉 and
eigenvalues εk cannot be find directly from Eq. (24), since for α = ∞ it is
senseless. This case requires a separate consideration.

We show that the problem here reduces to the equation which describes
the motion of the analogue particle in the infinitely deep potential well with
the zero value of the potential on the interval −ε < x < ε, where ε > 0, and
ε� 1. The potential well is bounded by an infinitely high potential barrier
for |x| > ε. In fact, the potential (21) at α =∞ is equal to V (φ) = λ∞φ

∞ ≡
1
2V0. It becomes infinite for finite values of λ∞. But in the region, where the
coupling constant λ∞ = 0, the quantity V0 may have a finite value, including
zero. The Hamiltonian (13) takes the form

Ĥφ =
a3

4

(
−∂2x + V0

)
, (25)

where x = a6

4 φ, and Eq. (24) is substituted by the equation(
−∂2x + V0 − εk

)
|uk〉 = 0 . (26)

Setting V0 = 0 in the domain |x| < ε, where λ∞ = 0, and V0 = ∞ for
|x| > ε, where λ∞ 6= 0, one can write the general solution of Eq. (26) in the
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form of linear combination

〈x|uk〉 = Ak cos

(
kπ

2ε
x

)
δk,2n+1 +Bk sin

(
kπ

2ε
x

)
δk,2n , (27)

where n = 0, 1, 2, . . . , Ak and Bk are normalization constants for even and
odd states with respect to inversion x → −x (see, e.g. Refs. [13, 14]). This
solution corresponds to the discrete spectrum

εk =

(
kπ

2ε

)2

, k = 0, 1, 2, . . . ,∞ . (28)

Passing in the argument of the function |uk〉 to the variable φ and setting
it equal to kπ

2 φ, we obtain the restriction on the range of values of the scale
factor, where λ∞ = 0, and ε� 1: a� 21/3. Since, in accepted dimensionless
units, the value a = 1 corresponds to the Planck length lP, the domain with
vanishing coupling constant λ∞ may be realized on sub-Planck scales only.

4. The equation of motion in the φα-model

Let us consider the consequences in the equations of motion (15), (17),
and (18), to which the model of the scalar field with the potential (21) leads.
Assuming that the states |uk〉 are orthonormalized, from Eqs. (20), (23), and
(24), we obtain the expression for classical source of the gravitational field

Mk(a) = εk

(
λα
2

) 2
2+α

a
3(2−α)
2+α (29)

(here and below, we do not indicate the explicit dependence of the calculated
quantities on α, assuming that it exists).

We look for the solution of Eq. (15) in the form of a superposition of
the states with different Mk(a). Within the framework of the multiverse
concept, it could mean that the wave function of the system |ψ〉 is considered
as a superposition of the state vectors of the ‘parallel’ universes which all
exist simultaneously, but every of them is characterized by the proper source
of the gravitational field in the particular kth state. Assuming that the set
of vectors |uk〉 is complete,

∑
k |uk〉〈uk| = 1, we can write

|ψ〉 =
∑
k

|uk〉|fk〉 . (30)

Substituting Eq. (30) into Eq. (15), multiplying from the left by 〈uk′ |, and
integrating with respect to the variable x, we obtain the equation for the
coefficients 〈a|fk〉 = 〈uk|ψ〉(

−∂2a + a2 − 2aMk(a)− a4ρΛ − E
)
|fk〉 = 0 . (31)
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The coefficient |fk〉 is the probability amplitude that the multiverse is in the
particular state |uk〉.

According to the well-known rule, the time derivative of the quantum
mechanical mean value of a given operator is equal to the mean value of the
time derivative of this operator [15]. Thus, taking into account Eq. (17), we
reduce Eq. (18) to the form

〈ψ|
(
− d

2a

dT 2
− a+ Ĥφ − 3L̂φ + 2a3ρΛ

)
|ψ〉 = 0 . (32)

After integrating with respect to x, using the expansion (30), we obtain

〈fk|
(
− d

2a

dT 2
− a+Mk(a) + 2a3ρΛ

)
|fk〉 − 3

∑
k′

〈fk|〈uk|L̂φ|uk′〉|fk′〉 = 0 .

(33)
We introduce the energy density of classical source (φ-substance) of the

gravitational field as follows

ρm =
2Mk(a)

a3
= 2εk

(
λα
2

) 2
2+α

a−
6α
2+α . (34)

The quantity Mk(a) =
1
2a

3ρm is the proper energy of the φ-substance in the
comoving volume 1

2a
3. The pressure pm of this φ-substance is determined as

the derivative of the proper energy with respect to volume taken with the
minus sign [16]

pm = − 2

3a2
dMk(a)

da
. (35)

On the other hand, using Eqs. (13), (20), and (23), we find that the density
ρm is the mean value of the density operator ρ̂φ

ρm = 〈uk|ρ̂φ|uk〉 . (36)

Analogously, the pressure of such a substance can be defined as the mean
value of the pressure operator p̂φ

pm = 〈uk|p̂φ|uk〉 . (37)

As a result, Eqs. (31) and (33) take the form

〈fk|
(
−∂2a + a2 − a4ρ

)
|fk〉 = 0 , (38)

〈fk|
(
− d

2a

dT 2
− a+ a3

2
(ρ− 3p)

)
|fk〉 −

3

2
〈fk|a3

∑
k′ 6=k
〈uk|p̂φ|uk′〉|fk′〉 = 0 ,

(39)
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where we denote

ρ = ρm + ργ + ρΛ , p = pm + pγ + pΛ , (40)

and take into account the explicit forms of the operator L̂φ in the variables
a and x (see remark after Eq. (23)) and the energy density of radiation
ργ = E/a4, and the equations of state pγ = 1

3ργ , pΛ = −ρΛ.
Having in mind the future passage to a classical limit, without loss of

generality, we choose the function 〈a|fk〉 in the form

〈a|fk〉 =
Ck√
∂aSk(a)

eiSk(a) , (41)

where Ck is the constant and, generally speaking, the phase Sk can be com-
plex. Substituting it into Eqs. (38) and (39), we arrive at the equations

(∂aSk)
2 + a2 − a4ρ =

3

4

(
∂2aSk
∂aSk

)2

− 1

2

∂3aSk
∂aSk

, (42)

d2a

dT 2
+ a− a3

2
[ρ− 3(p+ pQ)] = 0 , (43)

where

pQ =
∑
k′ 6=k
〈uk|p̂φ|uk′〉

Ck′

Ck

√
∂aSk
∂aSk′

ei(Sk′−Sk) (44)

is a quantum correction to the pressure of the φ-substance stipulated by the
fact that the wave function |ψ〉 (30) is the superposition of all possible states
of the classical source of the gravitational fieldMk(a). Within the framework
of the multiverse concept, the pressure (44) describes the influence of the
‘parallel’ universes in the states k′ 6= k on the universe under consideration
(singled out from the rest) in the kth state. In our approach, pQ is the only
quantity which takes into account that the probability amplitudes (41) mix.
Let us note that the general solution of Eq. (38) will have the form of the
superposition of the state (41) and its conjugate one.

Equations (42) and (43) are exact. They reduce to the equations in the
Einstein–Friedmann form, but with quantum correction terms to the energy
density ρ and pressure p.

Equations (17), (30), and (41) determine the relation between the phase
Sk and the momentum πa = −da/dT

∂aSk +
i

2

∂2aSk
∂aSk

= − da
dT

. (45)
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Then, Eq. (42) takes the form(
da

dT

)2

+ a2 − a4ρ− i∂2aSk −
1

2

[(
∂2aSk
∂aSk

)2

− ∂3aSk
∂aSk

]
= 0 . (46)

Passing in Eqs. (43) and (46) to the proper time τ and using a dot to denote
the time derivative, we obtain(

ȧ

a

)2

+
1

a2
= ρ+ ρQ , (47)(

ȧ

a

)2

+
1

a2
= − ä

a
+

1

2
[ρ− 3(p+ pQ)] , (48)

where
ρQ =

2MQ(a)

a3
(49)

is the correction from the quantum source of the gravitational field

MQ(a) =
Qk(a)

2a
(50)

to the energy density of matter, where

Qk(a) = −∂2aSE +
1

2

[(
∂2aSE
∂aSE

)2

− ∂3aSE
∂aSE

]
. (51)

Here SE = −iSk is the Euclidean phase (the index k is omitted). The
quantity MQ(a) =

1
2a

3ρQ is the proper energy of the quantum source. The
extra multiplier 1/a in Eq. (50) exhibits the relativistic nature of this source.
The pressure produced by it

PQ = − 2

3a2
dMQ(a)

da
≡ pQ + pQγ (52)

is the sum of the pressures

pQ = − 1

3a3
dQk(a)

da
, pQγ =

1

3
ρQ , (53)

where the pressure pQ is the quantum correction (44), and pQγ is a correction
for relativity. Substituting Eq. (47) into (48), we obtain the equation

ä

a
= −1

2
[ρ+ ρQ + 3(p+ PQ)] . (54)
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Differentiating Eq. (47) with respect to time τ and using Eq. (54), we find
the local law of the energy conservation in the expanding universe in the kth
state

ρ̇+ 3
ȧ

a
(ρ+ p) = −ρ̇Q − 3

ȧ

a
(ρQ + PQ) . (55)

It describes the transfer of energy between the ordinary matter with the
density ρ and the effective matter with the density ρQ represented by the
quantum corrections. The substitution of the explicit expressions for the
densities and the pressures from Eq. (40), on the one hand, and the quantum
corrections (49) and (52), on the other hand, leads to identity.

The two equations from the three (47), (54), and (55) determine the
dynamics of the quantum universe defined by the stress-energy tensor of the
perfect fluid which has classical and quantum components with the energy
densities ρ and ρQ, and the pressures p and PQ, respectively.

Equations (47)–(54) rewritten for dimensional physical units (see Ap-
pendix) demonstrate that quantum corrections to the density ρ and pres-
sure p are proportional to ~. The function Qk(a), remaining dimensionless,
contains the term with the higher derivatives of the phase SE proportional
to ~. Therefore, quantum corrections make contributions ∼ ~ and ~2 to
the dynamics of the expanding universe. The part of the pressure pQγ re-
lated to the relativity of the quantum correction ρQ is proportional to ~c,
as well as the energy density of the ordinary relativistic matter ργ , and,
in principle, the first cannot be distinguished from the latter. According
to (45), the Hubble expansion rate H = 1

a2
da
dT = ȧ

a contains the term with
the higher derivatives of the phase Sk(a) which is proportional to ~. The
basic equations of the quantum theory written in the form of the Einstein
equations are expressed via real-valued functions. This leads with necessity
to the higher derivatives of the Euclidean phase SE(a). This phase can be
calculated by considering the dynamics of the universe in imaginary time,
i.e. in the so-called Euclidean part of space-time continuum [11] or directly
from Eq. (42) (see below).

5. The properties of matter in the φα-model

In the model of interaction (21), from Eqs. (29), (34), and (35) for clas-
sical source of the gravitational field, it follows that after averaging with
respect to appropriate quantum states (36) and (37), the scalar field turns
into the effective barotopic fluid with the equation of state

pm =

(
α− 2

α+ 2

)
ρm . (56)
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This equation reproduces known equations of state of matter [17, 18] with
the only difference that they should be assigned to the particular quantum
kth state of the scalar field.

Let us consider a few cases of definite values of α in (56). From Eqs. (34)
and (56), for α = 0, we have

pm = −ρm with ρm = λ0εk . (57)

This equation describes the vacuum (dark energy) in the kth state |uk〉 =
eikx, where k = ±

√
εk − 1. Equation (56) for α = 1 corresponds to the

strings in the kth state

pm = −1

3
ρm with ρm =

(
λ1
2

)2/3 2εk
a2

, (58)

where the constant εk takes arbitrary values, εk ≷ 0, and |uk〉 is the Airy
function. Matter in the form of dust is reproduced at α = 2

pm = 0 with ρm =

(
λ2
2

)1/2 2εk
a3

, (59)

where εk = 2k + 1, and k = 0, 1, 2, . . . is a number of non-interacting iden-
tical particles with masses

√
2λ2 in the state with the wave function |uk〉 of

quantum oscillator [11]. The relativistic matter is described by Eq. (56) for
α = 4

pm =
1

3
ρm with ρm =

(
λ4
2

)1/3 2εk
a4

. (60)

This matter component is in the state |uk〉 ∼
√
xZ1/6(ix

3/3) (see Sect. 3)
and εk < ∞. Equation (56) for α = ∞ corresponds to the model with
extremely strong self-action of the field φ

pm = ρm with ρm =
2εk
a6

. (61)

This equation describes the stiff Zel’dovich matter. The wave function |uk〉
of such a matter has a form (27). As it was noted in Sect. 3, the equation of
state (61) may be realized in the very early universe, namely on sub-Planck
scales. If it was the case in that epoch, while the modern state of matter in
our universe is a mixture of φ0 (dark energy) and φ2 (dust) states [1, 2], then
one can make a conjecture that the index α in the φα-model of interaction
bears the information about time, so that α decreases with an increase of τ .
The foregoing can be summarized in Table I.
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TABLE I

The correspondence between the different epochs in the expanding universe and
the values of α in the φα-model.

Epoch Interaction Comments

sub-Planck φ∞ vanishing coupling constant
radiation φ4 before recombination

dust φ2 non-relativistic matter
strings φ1 cosmological cellular structure
vacuum φ0 accelerating expansion

Such a scheme represents correctly the modern views on a whole sequence
of changes (transitions from one form to another) of the dominating matter
component in the universe during its evolution, except the epoch of strings
which also should be observed, if the modern state of matter in our universe
is, in fact, a mixture of three states φ2, φ1, and φ0. The observations on
distances R & 3× 1017REarth reveal the cellular structure [19–21]. Galaxies,
groups and clusters of galaxies are distributed along the chains which form
the borders of cells filled with voids. The length of the filaments which
connect such a network of galaxies, groups and clusters of galaxies are greater
than their width and much greater than the thickness. Therefore, such
structures may be interpreted as φ1-states of matter.

From Table I given above, it follows that if one does not take quantum
corrections into account, matter in the universe will tend to the vacuum
φ0-state approaching the point of the infinite future τ → ∞, so that the
expansion of the universe will be accelerating.

6. The quantum source of the gravitational field

Let us consider the influence of the quantum source (50) on the evolution
of the universe. If one neglects the quantum correction pQ (53), then in
such an approximation Qk is constant, while Eqs. (47) and (54) contain
only quantum corrections ρQ = Qk/a

4 and PQ = 1
3ρQ to the energy density

and pressure of radiation. Thus, the φ-substance is characterized by the
non-zero energy density ρm (34) and pressure pm (35). From Eq. (44), it
follows that the approximation pQ = 0 means the replacement of the wave
function |ψ〉 by one term from the sum (30). Since both the energy density
of radiation ργ and quantum correction ρQ ∼ 1/a4 are proportional to ~c
(see Sect. 8 and Appendix), the contribution from ρQ cannot be singled out
against a background of ργ .

The condition pQ = 0 is a rough approximation, because it discards the
possible quantum effects on the macro-scale of the universe. Let us consider
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these effects on a few examples. Using Eq. (13), the operator (19) can be
represented in the form

L̂φ = −1

2
a3
(
ρ̂φ +

4

a6
∂2φ

)
. (62)

Then, the corresponding term in Eq. (33) reduces to∑
k′

〈fk|〈uk|L̂φ|uk′〉|fk′〉 = −〈fk|Mk|fk〉+
∑
k′

〈fk|a3〈uk| −
2

a6
∂2φ|uk′〉|fk′〉 .

(63)
Here, the second term is the state-summed combination of matrix elements
of the operator of the doubled kinetic energy of the field φ between the states
〈uk| and |uk′〉. If the energy which corresponds to this combination compen-
sates the first mass-energy term (the mass of the φ-substance averaged over
the states |fk〉), the left-hand side of Eq. (63) vanishes and Eq. (43) takes
the form

d2a

dT 2
+ a− a3

2
[ρm + 4ρΛ] = 0 . (64)

Since 4ρΛ = ρΛ − 3pΛ, while ργ − 3pγ = 0, then this equation describes the
universe with pressure-free φ-substance (dust with pm = 0), radiation and
cosmological constant. The second equation (46) still contains the quantum
correction in the form of Qk-term (51) proportional to ~ (see Appendix).

Let us consider another case, when the second term in (63) containing
the sum over k′ vanishes. In this case, the φ-substance can be considered
as a condensate of particles (quanta of the field φ) with zero kinetic energy
averaged over all states. Equation (43) has a form

d2a

dT 2
+ a− a3

2
[ρm + 4ρΛ] + 3

a3

2
ρm = 0 , (65)

where the last term is singled out and written separately, since there are two
opportunities to interpret it.

At first, we associate this term with the action of the pressure pm of a
condensate. Then, Eq. (65) transforms into

d2a

dT 2
+ a− a3

2
[ρ− 3p] = 0 , (66)

where the energy density ρ and pressure p are determined according to (40),
but with the equation of state of a condensate

pm = −ρm , (67)
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which demonstrates that, in the approximation under consideration, the
φ-substance will be antigravitating matter. It, in principle, can play the role
of dark energy which has a dynamic quantum nature.

Another opportunity is to assume that the φ-substance is the pressure-
free matter (pm = 0). In this case, the quantum correction in Eq. (65) can be
interpreted as dark matter with the energy density ρdm = 3ρm. From such
a viewpoint, the mass of this ‘dark matter’ exceeds by a factor of 3 that of
the non-relativistic φ-substance. The total energy density ρm + ρdm = 4ρm
is 4 times greater than the energy density (36) obtained after averaging
of the Hamiltonian (13) over the states of the scalar field. The additional
source of the gravitational field with the energy density ρdm arises as a result
of the summation of the matrix elements of the operator L̂φ (19), when the
averaged kinetic energy term is neglected. This additional condition provides
zero pressure of dark matter.

According to (65), in the approximation, when the second term in (63)
containing the sum over k′ vanishes, the second equation should have the
form (

da

dT

)2

+ a2 − a4(ρ+ ρdm) = 0 . (68)

Comparing Eq. (68) with Eq. (47), we find the relations between ρdm and
the quantum correction ρQ, and between the masses MQ and Mk

ρQ = ρdm = 3ρm , MQ = 3Mk = const. (69)

From Eq. (50), it follows that

Qk = 6Mka , and PQ = 0 . (70)

Using Eq. (70), one can restore the Euclidean phase SE from Eq. (51). Ne-
glecting the term proportional to ~ (see Appendix) gives

SE ' −Mka
3 . (71)

Then, the wave function |fk〉 has the form

|fk〉 '
Nk

a
exp

(
−Mka

3
)
, (72)

where Nk is the normalization constant which in the approximation under
consideration is to be determined by integrating over the domain from the
Planck length to infinite a.

Matter in the universe mainly consists of antigravitating dark energy and
gravitating dark matter. It follows from the analysis above that one cannot
exclude that if not the whole matter-energy, at least a part of its constituents,
has a quantum origin. Dark energy as a condensate and dark matter in the
form of the φ-substance appear here as evidence of the quantum nature of
the universe manifesting itself on macroscopic scales.
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7. The exactly solvable φ2-model

It is of interest to consider the influence of the quantum source (50) on
the dynamic properties of the universe in the model which allows to obtain
the exact analytical solution of Eq. (42) for the phase Sk(a) and to calculate
on its basis the function Qk(a) (51). The simplest model is the φ2-model
with vanishing cosmological constant, Λ = 0, when the field φ oscillates
near the point of its true vacuum. The φ-substance is in the form of dust
with the equation of state and the energy density (59). It is an aggregate of
k identical particles with the total mass M =

√
2λ2(k +

1
2). Then, Eq. (42)

takes the form

(∂zSE)
2 − z2 + 2n+ 1 = −3

4

(
∂2zSE
∂zSE

)2

+
1

2

∂3zSE
∂zSE

, (73)

where we pass to the Euclidean phase SE and introduce the variable
z = a−M , M is a constant3. It was taken into account that Eq. (31)
with Mk(a) = M and ρΛ = 0 has the solution, belonging to the discrete
spectrum, which decreases at infinity for the eigenvalues E = 2n+ 1−M2,
where n = 0, 1, 2, . . . numbers the states of the universe with given value
of mass-energy M . For the values z 6= 0, it is convenient to look for the
solution of Eq. (73) in the form

SE(z) =
1

2
ln

2 z∫
0

dx ex
2
f(x)

+ const. (74)

Substituting Eq. (74) into Eq. (73), we obtain the nonlinear equation for the
unknown function f(z)

1

2

∂2zf

f
− z ∂zf

f
− 3

4

(
∂zf

f

)2

= 2n . (75)

By substituting
f(z) = H−2n (z) , (76)

it reduces to the equations for the Hermitian polynomials Hn(z)

∂2zHn − 2z∂zHn + 2nHn = 0 . (77)

From Eqs. (74) and (76), we find the derivative of SE with respect to z

∂zSE =
ez

2
H−2n (z)

2
∫ z
0 dx e

x2H−2n (x)
. (78)

3 Throughout this section, the index k is omitted.
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Passing in Eq. (51) to the variable z, using (78) and the properties of the
Hermitian polynomials, we obtain

Qn(a) = −1− 2nχn(a−M) , (79)

where we denote
χn(z) = 1− Hn−1(z)Hn+1(z)

H2
n(z)

. (80)

The quantum correction ρQ (49) to the energy density ρ (40) and the pressure
pQ (53) are

ρQ = − 1

a4
− n

a6
µn(z) , pQ = − 2n

3a6
bn(z) , (81)

where
µn
µ1

= 2z2χn(z) ,
bn
b1

= −z3dχn(z)
dz

, (82)

and
µ1 =

(a
z

)2
, b1 =

(a
z

)3
. (83)

At the point z = 0, the functions µn
µ1

and bn
b1

vanish for even values of n and
equal to a constant for odd n. In the region |z| � 1, the functions µn ' 1
and bn ' 1. We give the explicit forms of these functions for small n

µ2
µ1

=
z2
(
z2 + 1

2

)(
z2 − 1

4

)2 ,
µ3
µ1

=

(
z4 + 3

4

)(
z2 − 3

2

)2 ,
µ4
µ1

=
z2
(
z6 + 3

2z
4 + 9

4z
2 + 9

8

)(
z4 − 3z2 + 3

4

)2 , (84)

b2
b1

=
z4(

z2 − 1
4

)2
[
2
z2 + 1

2

z2 − 1
4

− 1

]
,

b3
b1

=
z4(

z2 − 3
2

)2
[
3

(
z4 + 3

4

) (
z2 − 1

2

)
z4
(
z2 − 3

2

) − 2

]
, (85)

and so on.
Using the properties of the Hermitian polynomials, for both asymptotic

cases |z| → ∞, n <∞ and n→∞, |z| <∞, we find that Qn(a) ∼ −1 and

ρQ ∼ −
1

a4
, pQ ∼ 0 . (86)

The mass-energy of the quantum source turns out to be negative

MQ(a) ∼ −
1

2a
. (87)

In the state n = 0, the relations (86) and (87) become exact equalities.
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8. The Weyssenhoff fluid

Using the explicit form of ρQ and pQ (81), we rewrite Eqs. (47) and (54)
for ρΛ = 0 as follows(

ȧ

a

)2

+
1

a2
= ρm +

E − 1

a4
− n

a6
µn , (88)

ä

a
= −1

2

[
ρm + 3pm + 2

E − 1

a4
− 2n

a6
(µn + bn)

]
. (89)

In order to establish the physical meaning of the terms with a−6, we convert
these equations to ordinary units taking a and τ in cm, ρm and pm in
GeV/cm3, and leaving E, µn, and bn dimensionless(

ȧ

a

)2

+
1

a2
=

8πG

3c4

[
ρm +

~c
4π2

E − 1

a4
− 2πG

c2
σ2
]
, (90)

ä

a
= −4πG

3c4

[
ρm + 3pm +

~c
2π2

E − 1

a4
− 4πG

c2
σ′2
]
, (91)

where

σ2 =
~2

12π4
nµn
a6

, σ′2 = σ2 +
~2

12π4
nbn
a6

. (92)

Up to quantum correction which contributes to σ′2, Eqs. (90) and (91) may
be recognized as the equations of the Einstein–Cartan theory of gravity with
torsion for the FRW universe [22–24]. According to Cartan, the antisymmet-
ric part of the affine connection coefficients (torsion) becomes an independent
dynamic variable which can be associated with the spin density of matter
in the universe [25]. Equations (90) and (91) can be considered as describ-
ing the homogeneous, isotropic and spatially closed universe filled with the
φ-substance in the form of a perfect fluid with spin. Such a fluid, often
called the Weyssenhoff fluid [26], is a perfect incompressible fluid (continuous
medium) every element of which is interpreted as a particle with spin. Such a
spin fluid is characterized by the energy density ρm, pressure pm and proper
angular momentum density, or spin density sµν . In the Einstein–Cartan
theory, the value σ2 is the square of the spin density σ2 = 1

2〈sµνs
µν〉, where

the suitable space-time averaging is performed in order to make a transition
to macroscopic scales. It is assumed that the spins are not polarized, but
are randomly oriented, so that the average 〈sµν〉 = 0.

If the spin fluid consists of baryons with spin ~
2 , the average total spin

density is equal to s = ~
2n, where n = N

V is the average baryon number
density, N is the number of baryons contained in the volume V ∼ a3. In
this case, the square of the spin density σ2 has a simple form σ2 = ~2

8 n
2 [23],
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i.e. σ2 ∼ ~2
a6
. Identifying this quantity with σ2 of Eq. (92), we obtain the

expression for the number of spin particles in the volume V = 2π2a3

N =

√
8

3
nµn . (93)

Equation (31) for ρΛ = 0 has the solution decreasing at infinity for the
values E − 1 = 2n −M2, where M is the total mass of φ-substance in the
universe taken in units of the Planck mass mP, i.e. the number of particles
with masses mP. For the epoch (E − 1)/M2 � 1, we have 2n 'M2 and

N ' 2M

√
µn
3
. (94)

Let us estimate the number N for the observed part of our universe. Setting
the energy density of radiation ργ ∼ 10−10 GeV /cm3, the quantity of matter
M ∼ 1057 g, the radius a ∼ 1028 cm, we find that E ∼ 10118, M ∼ 1061.
Thus, (E−1)/M2 ∼ 10−4 and the formula (94) is valid. Supposing that the
main contribution into the massM is made by baryons with masses ∼ 1 GeV
(protons) and taking µn ∼ O(1), we obtain that today the equivalent number
of baryons in the observed part of the universe is N ∼ 1080. This estimation
coincides completely with estimation of the number of baryons which follows
from the equations of general relativity for closed universe [27], with the only
addition that these baryons are particles with spin ~

2 . Since bn ∼ µn, the
quantum correction pQ (81) makes the same contribution into Eq. (91) as
the correction ρQ to the energy density, σ′2 ∼ 2σ2. The identification of σ2
(92) with the square of the spin density reveals the quantum nature of this
characteristic of matter in the universe.

9. Conclusion

The study of the dynamics of the expanding universe with regard for
possible quantum effects is of interest in view of evidence from astronomical
data about the matter–energy content in our universe interpreted in favour
of the existence of the mysterious dark matter and dark energy [1, 2]. In the
present paper, by the example of the FRW universe with cosmological con-
stant, originally filled with a uniform scalar field φ and radiation, it is shown
that the equations of the quantum theory can be formally reduced to the
exact Einstein-type equations with an additional source of the gravitational
field of quantum nature. Quantum corrections to the energy density and
pressure are proportional to ~ and ~2. After averaging with respect to ap-
propriate quantum states, the scalar field turns into the effective barotopic
fluid whose properties are determined by the form of the primordial scalar
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field potential. They are summarized in Table I (see Sect. 5). By modify-
ing the contribution from the kinetic term of the averaged scalar field, both
pressure-free matter and matter with the vacuum-type equation of state can
be reproduced by the effective matter–energy brought about by quantum
corrections. It is shown that quantum effects into the gravitational interac-
tion can be significant on macroscopic scale: unless the whole, at least a part
of such matter–energy constituents as dark matter and dark energy may have
a quantum origin. Quantum equations of the universe in the pure quantum
state in the φ2-model are identical to the equations of the Einstein–Cartan
theory of gravity with torsion. After averaging over its quantum states, the
free scalar field in the φ2-model turns into the Weyssenhoff fluid character-
ized by the energy density, pressure, and spin of constituent particles. The
correspondence between the equivalent number of baryons (protons) in the
observed part of the universe and the value of spin of these particles being
equal to ~2/2 is found.

Appendix

Measuring the scale factor a and time τ in cm, the energy density and
pressure in GeV/cm3, and the phase Sk(a) in cm2, we reduce Eqs. (42) and
(45) to the form

(∂aSk)
2 + a2 − 8πG

3c4
a4ρ = l4P

[
3

4

(
∂2aSk
∂aSk

)2

− 1

2

∂3aSk
∂aSk

]
, (95)

∂aSk + i
l2P
2

∂2aSk
∂aSk

= − da
dT

,
da

dT
= aȧ , (96)

where lP =
√
2G~/(3πc3) is the Planck length and the time variable T is

dimensionless, G is the Newtonian gravitational constant and the ratio c4/G
is measured in GeV/cm. In these units, Eqs. (43) and (46) are

d2a

dT 2
+ a− 4πG

3c4
a3[ρ− 3(p+ pQ)] = 0 , (97)(

da

dT

)2

+ a2 − 8πG

3c4
a4ρ− l2PQk(a) = 0 , (98)

where the pressure

pQ = − ~c
12π2a3

dQk
da

, (99)

and

Qk(a) = −∂2aSE +
l2P
2

[(
∂2aSE
∂aSE

)2

− ∂3aSE
∂aSE

]
(100)
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is the dimensionless function of a. It contains the term proportional to ~.
Equations (47) and (54) have the same form as the equations of general
relativity for the FRW universe. Using Eqs. (49) and (50), they can be
written as(

ȧ

a

)2

+
1

a2
=

8πG

3c4

[
ρm +

~c
4π2

E +Qk
a4

]
+
Λ

3
, (101)

ä

a
= −4πG

3c4

[
ρm + 3pm +

~c
2π2

(
E +Qk
a4

− 1

2a3
dQk
da

)]
+
Λ

3
,

(102)

where the explicit forms of the energy densities of radiation ργ and vacuum
ρΛ were taken into account

ργ =
~c
4π2

E

a4
, ρΛ =

Λc4

8πG
. (103)

The constant E is dimensionless. Its numerical value is determined from the
solution of eigenvalue problem (31). The cosmological constant is measured
in cm−2.

If Qk is a sum of terms one of which does not depend on a, this term
contributes to the energy density of radiation.

From the given equations, it follows that the quantum corrections make a
contribution to the dynamics of the universe proportional to ~ and ~2. But,
as it is shown in Sects. 6 and 7, the quantities standing after these constants
can under specific conditions appear to be very large (∼ ~−1 and ~−2), so
that the contribution of quantum effects to the gravitational interaction can
be significant not only on the micro-, but also on macro-scale.
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