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The decade-old technique of combining the NLO-corrected hard process
with LO-level parton shower Monte Carlo is now mature and used in prac-
tice of the QCD calculations in the LHC data analysis. The next step, its
extension to an NNLO-corrected hard process combined with the NLO-level
parton shower Monte Carlo, will require development of the latter compo-
nent. It does not exist yet in a complete form. In this note, we describe
recent progress in developing the NLO parton shower for the initial-state
hadron beams. The technique of adding NLO corrections in the fully exclu-
sive form (defined in recent years) is now simplified and tested numerically,
albeit for a limited set of NLO diagrams in the evolution kernels.
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1. Introduction

Perturbative Quantum Chromodynamics (pQCD) [1-3] is the basic and
indispensable tool for analyzing experimental data in the LHC experiments.
The technique of combining an NLO-corrected hard process with an LO-level
parton shower Monte Carlo (replacing collinear PDFs), such as MCONLO [4]
and POWHEG [5, 6], is now used in practice of the QCD calculations in the
LHC data analysis. Its logical extension, providing higher-precision QCD
predictions, would be an NNLO-corrected hard process combined with the
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NLO-level parton shower Monte Carlo (MC). However, the NLO-level par-
ton shower Monte Carlo does not exist yet. In addition, the methods of
NLO-correcting the hard process used in the above methodologies are quite
complicated and it would be desirable to simplify them before going to the
NNLO level. The authors of this note are developing solutions to the both
above problems. On the one hand, in Refs. [7, §], see also Refs. [9, 10],
they have developed a simpler method of introducing the NLO corrections
to the hard process. On the other hand, completely new techniques of NLO-
correcting parton shower MC are developed, see Refs. |11, 12].

In the present note, we show that the technique used to simplify and
speedup inclusion of the NLO corrections in the hard process |7, 8| can also
be applied for the same purpose within the methods of Refs. [11, 12| to
introduce the NLO corrections in the parton shower MC. Some similarities
(and differences) to the POWHEG [5] method are discussed in Refs. |8, 10],
in the case of the hard process.

2. Overview of method of NLO-correcting parton shower MC

For the detailed description of the methodology of NLO-correcting the
parton shower MC, we refer the Reader to Refs. |9, 12]. Reference [11]
presents an older variant of the method — on the other hand, it provides
many details of the differential cross sections of the NLO corrections to the
ladder. The above studies and this work, are limited to the non-singlet com-
ponent of the QCD evolution of the quark distributions in the hadron beam,
using the non-running ag. The DGLAP evolution equation is solved ezxactly
using a simple Markovian MC with the relevant inclusive LO or LO+NLO
evolution kernels'. The newly developed methods use fully exclusive (unin-
tegrated) evolution kernels and their results, at the inclusive level (evolved
quark z-distributions), are compared with the exact inclusive MC calcula-
tion.

The algebraic structure of the NLO-corrected exclusive distributions of
the simplified parton shower MC reads as follows?

! We shall refer to this calculation as an “nclusive benchmark MC”. See Ref. [8] for
details.
% This is Eq. (1) in Ref. [12].
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Notation and definitions can be found in Ref. [12|. For the purpose of the
following discussion, let us only recall the definition of the weight W. It
introduces the 2-real NLO correction involving C% subtracted part of the
exact matrix element for the emission of two gluons from the quark line
(including interference)

W (ko k) = 1 = Y )

The other, triple, vertex aggregates the LO kernel with all unresolved (vir-
tual+-soft) corrections (excluding the Sudakov part)?

H - 1+2§R (AQ{))‘ *

It is very important that both the above building blocks of the NLO correc-
tions are free of any infrared or collinear singularities.

)

3 See also Ref. [13].
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In Eq. (1) the summations over indices p; and po are over the positions
of the so-called “NLO insertions”, which upgrade one and two kernels to the
NLO level. The triple and higher order summations, which are upgrading
three and more kernels could be included, but we have checked that they are
numerically unimportant. On the other hand, summations over “spectator
gluons” j; and j2 are important and they are regarded as a landmark of our
method. (They are similar to the sums over S non-infrared terms in the
QED exponentiation scheme of Ref. [14].) These sums may slow down the
generation of the MC events and are rendering the evaluation of the MC
weight quite complicated.

In Refs. [8, 10] it was shown how to reduce the sums j; over spectator
gluons just to one or two terms, limiting these sums to contributions from
one or two gluons with maximum transverse momentum®*, without loosing
the completeness of the NLO approximation. Hence, it is obvious to ask
whether a similar “trick” is possible here, in Eq. (1). The key point is to
invent within the ladder kinematics some new variable which could be used
to define easily a spectator gluon as the hardest one — the only one which
“saturates” the sum j; over spectators’. We cannot use directly k;f of the
spectator, because the phase space of the NLO correction is really the two-
gluon phase space — a new variable u,; has to involve momenta of both
gluons, the “head” p and the “spectator” j. Moreover, similarly as kT in
the hard process, it has to provide the “Sudakov suppression” in the limit
Upj —7 0.

In Fig. 1 we illustrate the problem and the solution in a graphical way.
The solution is the following

Upj = np —nj + AIn(l — 25). (4)

The parameter A ~ 1 will provide an extra optimization in the following
numerical exercises. The direction of u,; is marked in Fig. 1 — it points
towards the tip of the shaded triangle which marks the endpoint of the al-
lowed phase space of the spectator gluon j. In the essence variable exp(uy;)
represents the rescaled kT of the spectator gluon j. The above kinemat-
ics describes a parton shower MC with the angular ordering, however, the
kinematics of the parton shower with the kT-ordering is quite similar.

In the above double-gluon phase space with fixed rapidity of the head
gluon p, the Sudakov phase space is 3-dimensional, (1, — n;,In(1 — z;),
In(1—2p)), and the volume of the underlying 3-dimensional LO gluon phase
space is equal to the triple Sudakov log. In the 2-dimensional visualization

4 Similarly as in POWHEG, but without complicated “vetoed” and “truncated” MC
showers.
5 In the sense of protecting completeness of the NLO.
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Fig.1. The kinematics of the two-gluon phase space of the NLO correction. The
variable n is rapidity of the emitted gluon and z is the conventional lightcone
variable of the emitter quark.

of this phase space gluon density in Fig. 2, we use a set of variables In(1—z,)
and “123j in order to have a flat plateau representing manifestly the leading
LO Sudakov singularity. The LHS of Fig. 2 shows this Sudakov LO plateau.

LO, all spect. gluons pure NLO, all spect. gluons

In(q z) o 60
P

Fig. 2. The inclusive distribution of gluons according to LO distribution (left) and
due to the two-real NLO contribution (right).

On the other hand, the NLO contribution plotted in the RHS of Fig. 2
clearly concentrates in the corner z, ~ 0,u,; ~ 0, and is manifestly free of
any singularities (it is integrable to a finite value). This is quite similar as in
the single-gluon phase space of the hard process shown in Fig. 5 in Ref. [8].

In the next step, let us order spectator gluons (indexed by j) and split
the LO distribution (similarly as in Fig. 6 of Ref. [8]) into the hardest in
the variable u,; and the rest®. The resulting two components are shown

6 We cannot order in In(1 — z,) because the head gluon p is just one.
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in Fig. 3. The hardest gluon distribution differs from the one in Fig. 6 of
Ref. [8], nevertheless it has the same property needed for NLO completeness
— it reproduces well the inclusive LO distribution (LHS plot in Fig. 2) in
the region where the NLO contribution (RHS plot in Fig. 2) is nonzero.

LO, hardest spect. gluon K=1 LO, spect. gluons K>1

Fig.3. The inclusive LO distribution of gluons of the left plot in Fig. 2 split into
the hardest (in w,;) gluon (left) and the rest (right).

In view of the above, we expect that preserving only one term in the sums
over j in Eq. (1), from the gluon with the maximum w,,;, will effectively lead
to NLO result within a good numerical approximation (formally up to NNLO
terms). We shall check this conjecture in the following.

3. Numerical results

In the following, we shall check numerically that taking only one or two
hardest (in u-variable) spectator gluons in the NLO MC weight of Eq. (1)
does not significantly disturb the NLO result of the QCD evolution. This is
the principal result of this work.

As a warm-up exercise, we reproduce the result of Ref. [10], in which we
use Eq. (1) with summation over all spectator gluons j; and js. In Fig. 4,
the total (LO+NLO) quark distribution evolved with single and double NLO
insertion is compared with the benchmark inclusive calculation. The two are
indistinguishable, and to see the difference one should look at the lower plot
in Fig. 4, where the ratios of the exclusive and inclusive results are plotted
for the single and double NLO insertions separately. They agree perfectly
within the statistical errors.

Next, in the calculation presented in Fig. 5, we replace the sums over
spectators with the one or two terms from the hardest gluons in the variable
upj, for the single gluon insertion component. As we see, this truncated
result reproduces very well the previous single NLO insertion component in
the evolved quark distribution. The actual difference is better seen in the
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Fig.4. The distribution of the quark evolved from @ = 100 GeV to @ = 10 TeV.
Upper plot: the upper line (green) represents LO+NLO quark distribution and
two lines below are the components due to 1 (middle/blue) and 2 (bottom/red)
NLO insertions in Eq. (1). The corresponding inclusive benchmark results are also
plotted (black), but they are almost indistinguishable, hence the corresponding
ratios (exclusive/inclusive) are provided in the lower plot.

lower plot of Fig. 5 representing the ratios of the truncated and complete
sums over spectator gluons. Of course, the case with two hardest spectator
gluons looks better, but the single hardest gluon would be sufficient. It
should be added that in the above result we have adjusted A = 2 in the
definition of u,;. For A = 1, the ratio for single spectator gluon would be
~ 0.7 at the low z limit (remaining formally all the time correct modulo
NNLO corrections).
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LO+NLO (green), one insertions from 1 (blue) or 2 (red) hardest gluons
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Fig.5. Upper plot: the upper line (green) represents LO+NLO quark distribution
and three lines below represent a single NLO insertion component with the complete
sum (black) over spectator gluons as in Eq. (1), and two other versions with the
sum truncated to one (blue) and two (red) hardest spectator gluons. The two
corresponding ratios (truncated/complete) are shown in the lower plot.

4. Summary and outlook

A new methodology of adding the QCD NLO corrections to the NLO
initial state Monte Carlo parton shower is refined and tested numerically,
albeit for a limited set of the NLO diagrams and in the simplified MC model.
This result presents another important step towards realistic implementation
of the NLO parton shower MC, to be combined with the NNLO-corrected
hard process.
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