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Construction of a QCD cascade at the NLO level requires recalculation
of the splitting functions in a different manner. We describe the calculation
of some of the virtual contributions to the non-singlet splitting function.
In order to be compatible with the earlier calculated real contributions, the
principal value prescription for regularizing the infrared singularities must
be used in a new way. We illustrate this new scheme on simple examples.
For the calculations, we wrote a Mathematica package called Axiloop. We
describe its current status.
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1. Introduction

With the second, 14 TeV, phase of the LHC experiments approaching,
the need for the precision QCD parton shower increases. To date, there
are successful approaches of merging NLO hard process and LO cascade
such us MC@NLO [1] or POWHEG [2, 3]. Other attempts are also taken to
improve precision of parton showers [4–8]. However, in order to construct
QCD parton shower that includes NNLO hard process, it will be mandatory
to construct a cascade at the NLO level. Such a cascade is developed within
the KRKMC project [9–11].

One of the crucial elements of this project is the recalculation and re-
organization of the NLO splitting functions [12]. The real emission part of
the non-singlet (NS) splitting function has been discussed at length in [13].
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The virtual C2
F NS components have been briefly discussed in [14]. Here, we

concentrate on the remaining NS virtual corrections. We will also give an
update on the development of the Mathematica package Axiloop [15], that is
written to assist with the NLO calculations in the light-cone gauge.

Before going into details, let us comment on the real corrections. Let us
consider a graph shown in Fig. 1. This interference graph contributes to the

Fig. 1. The real graph (d) contributing to the NLO non-singlet splitting function.

NS splitting function and is labelled (d). By comparing the results for this
graph from [13] with the previous ones of [16], we note that they differ. The
singular part of the graph (d) in [16] reads (Table 3.10)
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and contains single and double poles in ε (the first line), and pure spurious
poles (the second line); where pqq(x) = (1 + x2)/(1 − x) is the LO quark–
quark splitting function, I0 ∼ − ln δ and I1 ∼ −(1/2) ln2 δ are the infrared
divergent functions regulated with δ, cf. Eq. (3), and dimension of the phase
space is defined as m = 4 − 2ε. In [13], for the same contribution, we find
only pure spurious pole terms (Eq. 3.48)

pqq(x)
(
2I1 + 4I0 + 2I0 lnx− 2I0 ln(1− x)

)
. (2)

Note, that those are semi-inclusive results which means that additional inte-
gration over one real momentum is left to be calculated. It is of the generic
form N(ε)

∫ Q2

0 d(−q2)(−q2)−1−2ε. Such an integration introduces additional
pole in ε, so the inclusive form of Eq. (1) contains 1/ε3 pole, whereas inclusive
form of Eq. (2) contains just 1/ε terms1.

1 Note that in the Eq. (3.48) of [13] instead of 1/ε pole one finds lnQ/q0, where q0 is
the lower limit of the integral

∫ Q2

q0
d(−q2)(−q2)−1−2ε, see Eq. (2.10) of [13].
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Summarizing, the result (1) contains higher order poles in ε, absent in
the new result in Eq. (2). As explained in [12], the absence of higher order
poles is important for the construction of the stochastic cascade, which must
be done in four dimensions. Some clarifications are in order here: (i) in the
standard, inclusive approach one adds real and virtual corrections and, as
can be seen in [16], the higher order poles cancel out. However, from the
Monte Carlo point of view real-virtual cancellations pose additional com-
plications. (ii) The 1/ε2 pole does not disappear in the new approach of
[13] — the singularity is simply regulated differently, as (1/ε) ln δ etc., see
below. (iii) Due to the presence of higher order poles, the “trivial” terms,
lnQ2, ln 4π, etc., cancel between real and virtual corrections in [16], and
are absent in [13]. (iv) The complete NLO NS kernel, which is a coeffi-
cient of the single pole is also affected by the changes in higher order pole
terms, however, it must be independent of the choice of the regularization.
Therefore, we expect that the difference between results (1) and (2) will be
compensated by an appropriate change in the virtual contributions.

Let us now discuss the mechanism responsible for this difference.

2. Regularization prescription

Besides the fact that the Lorentz structure of Feynman rules in the light-
cone gauge is more complicated than in the covariant gauges, additional dif-
ficulties arise due to the specific structure of the axial denominator, 1/l+,
where l+ = nl and n is the axial vector. It leads to the spurious (non-
physical) singularities when integrated over the virtual or real phase space.
Therefore, one must apply some prescription to regularize them in the in-
termediate steps.

The common choice is a principal value (PV) prescription [13, 16–18]. It
was originally used in [17] in the first calculation of the NLO splitting func-
tions from the Feynman diagrams. The other option is the Mandelstam–
Leibbrandt prescription [19, 20]. It is better founded in the QFT, but sig-
nificantly more complicated in practical calculations. Further analysis and
comparison of these prescriptions can be found e.g. in [16].

The idea of the PV regularization is to replace 1/l+ terms by

1

l+
→
[
1

l+

]
PV

=
l+

l2+ + δ2p2+
, (3)

where δ is an infinitesimal regulator, p+ = np and p is some reference mo-
mentum. This prescription has to be applied to the axial propagators of the
gluons [16] at the level of Feynman rules, i.e. at the very beginning of the
calculation, and it leads to the results like (1).
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Closer inspection of the derivations in [13] reveals that there are, however,
also different sources of the 1/l+ terms, related to the phase space evaluation,
change of variables etc. In the standard PV prescription, these terms are
not regularized by δ, dimensional regularization takes care of them. On
the contrary, we propose, that all these singularities in plus variable are
regulated also by the PV prescription. In practice, we replace

l−1+ε+ →
[
1

l+

]
PV

lε+ (4)

in all the places, keeping track of the higher order ε terms, if needed. Con-
trary to the previous case, this has to be done at the very end of the in-
tegrations. On the technical level, it means that the usual (PV) approach,
i.e.: (i) use some parametrization technique (like the Feynman or Schwinger
parametrization) to combine denominators; (ii) perform momentum inte-
gration; (iii) perform integration over the Feynman/Schwinger parameters,
is not suitable. Instead, one needs to perform integration over l+ at the very
end, after the integration over l−, l⊥, and zi variables∫

dml

(2π)m
f(l+)

(l + k1)2 . . . (l + kn)2

=

∫
dl+f(l+)

1∫
0

dz1 . . . dzn−1

∫
dl−d

m−2l⊥
(2π)m

1

(l2 + lA+B2)n
. (5)

For explicit formulae arranged in this way, see, for example, [18].
As a consequence, now also the non-axial integrals, initially free of axial

vector n (which defines the plus component, l+ = nl), can develop depen-
dence on the vector n. For example, let us show the three-point integral
without axial denominator

JF
3 =

∫
dml

(2π)m
1

l2(l + q)2(l + p)2
(6)

for the special kinematic configuration: p2 = (p − q)2 = 0. Standard ap-
proach leads to the following expression
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In contrast, our prescription gives the result
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where x = q+/p+ is the axial-vector-dependent parameter. As one can
see, Eq. (8) is free of double poles in ε. Note that this singularity did
not disappear, but has been replaced by I1 and I0/ε. More details will be
presented elsewhere [21].

3. Results

Let us now use the new prescription in the actual calculation. We present
here results for one of the virtual graphs contributing to the non-singlet split-
ting function, namely graph (d), i.e. the second graph in Fig. 2. The pre-
sented results have been obtained with the help of the Mathematica package
Axiloop, which we developed to assist with the calculations in the light-cone
gauge. Overview of the Axiloop package is provided in Appendix.

(c) (d) (e) (f) (g)

Fig. 2. A complete set of the non-singlet virtual contributions to the NLO splitting
function.

In Table I, we show inclusive results separately for the real graph (d)
(Fig. 1) taken from Eq. (3.48) of [13] and virtual graph (d) (Fig. 2, second
picture), calculated in the new regularization scheme. Table I is constructed
in analogy to Table 1 of [17] but in addition contains a section with double
pole contributions.

Let us describe these results in more detail.
First of all, the last column in Table I is in full agreement with the result

of Table 1 of [17], where only the sum of real and virtual contributions
is given. The virtual contribution alone can be obtained from [16] in the
standard PV prescription.

The second point is that 1/ε3 pole is absent in the inclusive virtual
contribution, in a similar manner as it disappeared from the inclusive real
contribution, see discussion of Eq. (2). Results obtained by applying the PV
prescription (see Eq. (1) for the real graph) do not have this property.

Thirdly, neither real nor virtual contribution depends on the scale Q of
the hard process. This is not true for the standard prescription — in that
case, only the sum of real and virtual terms is independent of Q. The same
happens also for the “trivial” terms, like ln 4π or γE . Note, however, that
there are some contributions for which this property does not hold.
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TABLE I

Contributions from real and virtual graphs (d) to inclusive splitting function and
their sum, calculated in the new regularization prescription.

SUM

Double poles

pqq −3/2 0 −3/2
pqq I0 4 0 4
pqq lnx 1 0 1
pqq ln(1− x) 2 0 2

Single poles

pqq −7 −4 −11
1− x −5/2 3/2 −1
1 + x −1/2 1/2 0
pqq lnx 0 −3/2 −3/2
(1− x) lnx 2 0 2
(1 + x) lnx 0 1/2 1/2
pqq ln(1− x) −3 8 5
(1− x) ln(1− x) 4 0 4
pqq ln2 x 2 −1 1
pqq lnx ln(1− x) 2 4 6
pqq ln2(1− x) 4 −2 2
pqq Li2(1− x) −2 2 0
pqq Li2(1) 8 −2 6

pqq I1 −12 4 −8
pqq I0 0 8 8
(1− x) I0 8 0 8
pqq I0 lnx 4 4 8
pqq I0 ln(1− x) 12 −4 8

4. Summary and outlook

In this note, we presented some details of the recalculation of virtual
graphs contributing to the NLO NS splitting function, necessary for the
construction of the Monte Carlo cascade at the NLO level. We argued
that in order to be compatible with the earlier calculation [13] for the real
components, the PV prescription must be used in a modified way. As a
result, at the inclusive level, the 1/ε3 poles are replaced by the structures
like ln δ/ε2 and no cancellations of 1/ε3 poles between real and virtual parts is
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needed. We performed calculations for the case of the NS splitting function
and presented them here on the example of one diagram. As expected,
our results for real and virtual contributions differ from the ones in PV
prescription, but the sum of real and virtual contributions is the same2. In
the next step, we plan to apply the new prescription to the singlet virtual
graphs.

In order to automatize the calculations in the light-cone gauge, we devel-
oped a Mathematica package Axiloop with the help of which a set of one-loop
graphs contributing to the NS splitting functions at the next-to-leading or-
der can be calculated in the standard and modified PV prescriptions. In the
future, the package can be extended to calculate singlet one-real-one-virtual
as well as two-loop and two-real corrections to the splitting functions.

This work is partly supported by the Polish National Science Center
grant DEC-2011/03/B/ST2/02632, the Research Executive Agency (REA)
of the European Union Grant PITN-GA-2010-264564 (LHCPhenoNet), the
U.S. Department of Energy under grant DE-FG02-13ER41996 and the
Lightner-Sams Foundation. Two of the authors (S.J. and M.S.) are grateful
for the warm hospitality of the TH Unit of the CERN PH Division, while
completing this work.

Appendix

Overview of the Axiloop software package

For calculating virtual corrections to the NLO splitting functions, we
built a software package for the Wolfram Mathematica system — Axiloop [15].
In this section, we describe a general structure as well as some core features
of the package implemented up to date.

Axiloop is an open-source, general-purpose package which provides a com-
plete set of routines for calculating Feynman-diagram-based objects in light-
cone gauge in analytical form. In the current version, a full set of the virtual
diagrams contributing to the non-singlet NLO splitting functions (Fig. 2) is
calculated using a new regularization prescription.

Functions provided by Axiloop may be divided into the two main groups:
a set of general-purpose core routines, which likely can be used in other pack-
ages for solving general-purpose problems and custom routines dedicated to
calculation of the splitting functions.

2 Let us note that the importance of the PV regularization on the way from the MS to
the “physical” collinear factorization scheme is also underlined in the recent paper [22].
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Core routines perform the following tasks: trace and vector algebra oper-
ations in arbitrary number of dimensions [23]; virtual integrals in the light-
cone and Feynman gauges with custom regularization schemes (including the
one discussed in this paper); various simplification algorithms for loop inte-
grals (e.g. [24]); reduction of tensor integrals using the Passarino–Veltman
approach [25]; final-state integration. It is worth to emphasize that Axiloop
provides a flexible implementation of the loop integration routines which can
be modified and extended for various contexts.

One of the core routines is IntegrateLoop function which performs one-
loop integration in m = 4 − 2ε dimensions. It handles the Feynman and
axial two- and three-point integrals with up to a rank 3 tensor structures in
the numerator. As a demonstration, we show the scalar integral of Eq. (6),
which in Axiloop notation looks as follows:

In[1]:= IntegrateLoop[ 1/(l.l (l+k).(l+k) (l+p).(l+p)), l]
Out[1]= Q[eps] (-k.k)^(-1-eps) ((2 I0 + Log[1-x])/eir

- 4 I1 + 2 I0 Log[1-x] + Log[1-x]^2/2)

In general, we distinguish infrared and ultraviolet singularities when dimen-
sional regularization prescription is used. The infrared origin of the pole is
indicated by the eir symbol. Ultraviolet poles, which appear in two- and
some three-point integrals, are represented by poles in the euv symbol.

Custom routines in our case are dedicated to the calculation of the NLO
virtual splitting functions. They produce analytical expressions for the com-
ponents of the splitting functions at different stages of the calculation, as
defined in [14]: (i) renormalized and bare exclusive formulas, which are usu-
ally omitted by other authors — they play a key role in the construction of
the parton shower Monte Carlo; (ii) inclusive results for cross-checking with
previous known results; and (iii) ultraviolet counter-terms.

The routine for calculating splitting functions is SplittingFunction.
As its input a complete description of the calculated graph in terms of the
Feynman rules should be provided. The following example demonstrates
invocation of SplittingFunction for calculating virtual contribution of the
topology (d):

In[3]:= SplittingFunction[ G[n]/(4p.n) FP[k] FV[i1] FP[l] FV[i2]
GP[i1,i3, l+k] GP[i2,i4, l+p] GV[i3,-l-k, i4,l+p, mu,-p+k]
FPx[p] GPx[mu,nu, p-k] FV[nu] FP[k]
,
IntegrateLoopPrescription -> "MPV"

]
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The IntegrateLoopPrescription option allows one to change regulariza-
tion prescription for loop integrals. It accepts PV and MPV values for the
PV prescription or its modification (described in this work) respectively.
Remaining routines, i.e. FP (FPx), GP (GPx), FV, and GV, correspond to the
Feynman rules and read as fermion/gluon propagator (suffix “x” indicates
that corresponding propagator is cut) and fermion/gluon vertex respectively.

At the moment, in the Axiloop package, we have implemented all the NS
one-real-one-virtual corrections (corresponding graphs are depicted in the
Fig. 2) and the library of two- and three-point integrals in the light-cone
gauge for both regularization schemes.
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