
Vol. 44 (2013) ACTA PHYSICA POLONICA B No 11

NEWS ON THE LOOP-TREE DUALITY∗

Isabella Bierenbaum

II. Institut für Theoretische Physik, Universität Hamburg
Luruper Chaussee 149, 22761 Hamburg, Germany

Petros Draggiotis

Institute of Nuclear Physics, NCSR Demokritos, 15310, Athens, Greece

Sebastian Buchta, Grigorios Chachamis, Ioannis Malamos
Germán Rodrigo†

Instituto de Física Corpuscular, Universitat de València
Consejo Superior de Investigaciones Científicas
Parc Científic, 46980 Paterna, Valencia, Spain

(Received November 8, 2013)

We summarize recent developments of the loop-tree duality method at
one-loop and higher orders.

DOI:10.5506/APhysPolB.44.2207
PACS numbers: 11.10.–z, 12.38.Bx, 12.38.–t, 12.15.Lk

1. Introduction

The last decade has seen an extraordinary progress in the analytical and
numerical computation of cross sections in the Standard Model at higher
orders [1]. Today, 2 → 4 processes at next-to-leading order (NLO), either
from Unitarity based methods [2–4] or from a more traditional Feynman
diagrammatic approach [5, 6], are state of the art, and even higher multi-
plicities [7] are affordable. There has been also a lot of progress concerning
next-to-next-to-leading order (NNLO) calculations [8–12].

The loop-tree duality method [13] establishes that, after applying direct-
ly the Cauchy residue theorem in the loop momentum space, one-loop inte-
grals and scattering amplitudes can be represented by single cut Feynman
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diagrams integrated over a modified phase-space. The Duality theorem has
been extended in Ref. [14] beyond the one-loop level, to two- and three-loops
and it was shown how to extend it to an arbitrary number of loops. Likewise,
higher order poles have been treated in Ref. [15]. The main feature and ad-
vantage of this approach is that at any number of loops, loop integrals and
scattering amplitudes can be written as a sum of tree-level objects, obtained
after making all possible cuts to the lines of the corresponding Feynman
diagrams, one cut per loop and integrated over a measure that closely re-
sembles the phase-space of the corresponding real corrections. This modified
phase-space raises the intriguing possibility that virtual and real corrections
can be brought together under a common integral and treated with Monte
Carlo techniques at the same time. In this paper, we review the actual state
of development of the duality method and anticipate preliminary results on
the singular behaviour and numerical implementation of this method.

2. Duality relation at one-loop

A general one-loop N -leg, scalar integral (see Fig. 1) is given by

L(1)(p1, p2, . . . , pN ) =

∫
`1

N∏
i=1

GF(qi) , (1)

where
GF(qi) =

1

q2i −m2
i + i0

(2)

are Feynman propagators, with i ∈ α1 = {1, 2, . . . , N}. The four-momenta
of the external legs are denoted pi. All are taken as outgoing and ordered
clockwise. The momenta of the internal lines qi are defined as

qi = `1 + p1,i , p1,i = p1 + . . .+ pi , (3)

where the loop momentum is `1 and flows anti-clockwise. We use the short-
hand notation∫
`i

• = −i
∫

dd`i
(2π)d

• , δ̃ (qi) ≡ 2π i θ(qi,0) δ
(
q2i −m2

i

)
=2π i δ+

(
q2i −m2

i

)
,

(4)
where δ+ selects the on-shell mode with positive definite energy, qi,0 ≥ 0,
such that the phase-space measure of the physical, i.e. on-shell, momentum
qi reads ∫

ddqi
(2π)d−1

θ(qi,0) δ
(
q2i −m2

i

)
≡
∫
qi

δ̃ (qi) =

∫
`1

δ̃ (qi) . (5)
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Fig. 1. Momentum configuration of the one-loop N -point scalar integral.

Following Refs. [13, 14], the scalar one-loop integral in Eq. (1) can be rewrit-
ten in the form

L(1)(p1, p2, . . . , pN ) = −
∑
i

∫
`1

δ̃ (qi)

N∏
j=1
j 6=i

GD(qi; qj) , (6)

where

GD(qi; qj) =
1

q2j −m2
j − i0 ηkji

, (7)

with kji = qj− qi, are the so-called dual propagators, as defined in Ref. [13],
with η a future-like vector, η2 ≥ 0, with positive definite energy η0 > 0. The
result in Eq. (6), contrary to the Feynman Tree Theorem (FTT) [16, 17],
contains only single-cut integrals. Multiple-cut integrals, like those that ap-
pear in the FTT, are absent thanks to modifying the original +i0 prescrip-
tion of the uncut Feynman propagators by the new prescription −i0 ηkji. At
one-loop, kji depends on external momenta only. The dual i0 prescription
arises from the fact that the original Feynman propagators GF(qj) are evalu-
ated at the complex value of the loop momentum `1, which is determined by
the location of the pole at q2i −m2

i + i0 = 0. The i0 dependence of the pole
of GF(qi) modifies the i0 dependence in the Feynman propagators GF(qj),
j 6= i, leading to the total dependence as given by the dual i0 prescription.
The presence of the vector ηµ is a consequence of using the residue theorem
and the fact that the residues at each of the poles are not Lorentz-invariant
quantities. The Lorentz-invariance of the loop integral is recovered after
summing over all the residues.
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3. Duality relation at two-loops and beyond

The extension of the Duality theorem to two-loops and beyond has been
discussed in detail in Ref. [14]. It is convenient to define the following
functions combining different Feynman and dual propagators

GF(αk) =
∏
i∈αk

GF(qi) , GD(αk) =
∑
i∈αk

δ̃ (qi)
∏
j∈αk
j 6=i

GD(qi; qj) , (8)

where αk is used to denote any set of internal momenta that depend on
the same loop momentum or the sum of several independent loop momenta.
At the one-loop order, αk is naturally given by all the internal momenta,
α1 = {1, 2, . . . , N}. At higher orders, several integration loop momenta are
needed, and thus several loop lines αk to label all the internal momenta. In
the two-loop case, which is illustrated in Fig. 2, we have

α1 ≡ {0, 1, . . . , r} , α2 ≡ {r+1, r+2, . . . , l} , α3 ≡ {l+1, l+2, . . . , N} .
(9)

By definition, GD(αk) = δ̃ (qi), when αk = {i} and thus consists of a single
four-momentum. We also define

GD(−αk) =
∑
i∈αk

δ̃ (−qi)
∏
j∈αk
j 6=i

GD(−qi;−qj) , (10)

where the sign in front of αk indicates that we have reversed the momentum
flow of all the internal lines in αk.

Fig. 2. Momentum configuration of the two-loop N -point scalar integral.
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The key ingredient necessary to extend the Duality theorem to higher
orders is the following relationship relating the dual and Feynman functions
of two subsets

GD(α1 ∪ α2) = GD(α1)GD(α2) +GD(α1)GF(α2) +GF(α1)GD(α2) , (11)

which can be generalized as well to the union of an arbitrary number of loop
lines [14]. The application of the Duality theorem at higher orders proceeds
in a recursive way. For the two loop case, one starts by one of the loops

L(2)(p1, p2, . . . , pN ) =

∫
`1

∫
`2

GF(α1 ∪ α2 ∪ α3)

= −
∫
`1

∫
`2

GF(α2)GD(α1 ∪ α3) . (12)

As the Duality theorem applies to the Feynman propagators only, we use
Eq. (11) to re-express the dual propagators entering the second loop as
Feynman propagators. The application of the Duality theorem to the second
loop with momentum `2 also requires to reverse the momentum flow in some
of the loop lines. The final dual representation of a two-loop scalar integral
reads

L(2)(p1, p2, . . . , pN ) =

∫
`1

∫
`2

{−GD(α1)GF(α2)GD(α3) (13)

+GD(α1)GD(α2 ∪ α3) +GD(α3)GD(−α1 ∪ α2)} ,
which is given by double cut contributions opening the loop diagram to a
tree-level object.

4. Duality relation for multiple poles

The appearance of identical propagators or powers of propagators can
be avoided at one-loop by a convenient choice of gauge [13], but not at
higher orders. Identical propagators possess higher than single poles and
the Duality theorem developed so far, which is based on assuming single
poles, must be extended to accommodate for this new feature. Two different
strategies have been proposed in Ref. [15] to deal with this problem. The
first one consists of extending the Duality theorem by using the Cauchy
residue theorem for higher order poles. The second one consists of using the
Integration by Parts (IBP) [18, 19] to reduce integrals with multiple poles to
integrals with single poles, where the original duality method can be applied
directly. It is important to stress that in that case it is not necessary to
perform a full reduction to a particular integral basis. Explicit examples at
two- and three-loops have been presented in Ref. [15].
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5. Singular behaviour of dual integrals
and numerical implementation

The loop-momentum space approach is attractive because it allows a
rather direct physical interpretation of the singularities of loop quantities.
These singularities can arise when subsets of internal lines go on-shell. Al-
though the existence of singular points of the integrand in the loop-momen-
tum space is not enough to ensure the presence of singularities, it is im-
portant to isolate properly all the singular regions as even integrable sin-
gularities require a careful treatment by contour deformation in numerical
methods [20].

The duality method sets at least one of the internal lines on-shell. More
specifically, it restricts the loop integration to the forward light cones of the
Feynman propagators. Besides restricting the loop integration to a three-
dimensional space, each dual integral shows automatically well identified
soft and collinear singularities. Moreover, one might expect a partial can-
cellation of infrared and threshold singularities among the dual components
of the same loop integral [21], something that is obviously not plausible
with a single integrand. This represents a big advantage for a numerical
implementation.

6. Conclusions

The loop-tree duality method presents quite attractive features for the
calculation of multipartonic cross-sections at higher orders. Initially devel-
oped for the one-loop calculations, it has been extended to an arbitrary
number of loops. Also, some more technical aspects such as the treatment
of identical propagators have been successfully analysed. This research pro-
gram cannot be complete without a numerical implementation. Preliminary
results show that there is a partial cancellation of singularities among dif-
ferent dual contributions to the same loop integral.
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