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The integrand-level reduction of scattering amplitudes is a method for
the decomposition of loop integrals which has already been successfully
applied and automated at one-loop, and recently extended to higher loops.
We present recent developments on the topic, within a coherent framework
which can be applied to any integrand at any loop order. We focus on semi-
analytic and algebraic techniques, such as the improved one-loop reduction
via Laurent series expansion with the library Ninja, and the multi-loop
divide-and-conquer approach which can always be used to algebraically
find the integrand decomposition of any Feynman graph.
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1. Introduction

Scattering amplitudes are analytic functions of the kinematic variables
of the interacting particles, hence they are determined by their singularities
[1, 2]. The integrand reduction methods, developed for one-loop diagrams
[3, 4] and recently extended to higher loops [5–9], exploit the knowledge
of the singularity structure of the integrands to decompose the (integrated)
amplitudes in terms of Master Integrals (MIs). The numerator of a Feynman
diagram can be expressed as a combination of (products of) denominators,
multiplied by polynomials corresponding to the residues at the multiple cuts
of the diagrams. The multiple-cut conditions, which put some of the loop-
momenta on-shell, can be viewed as projectors isolating each residue.

In Ref. [10] we proposed a new method for the integrand reduction of one-
loop amplitudes, which simplifies the evaluation of the coefficients of the MIs
by performing a Laurent expansion with respect to the variables which are

∗ Presented at the XXXVII International Conference of Theoretical Physics “Matter
to the Deepest” Ustroń, Poland, September 1–6, 2013.

(2215)



2216 T. Peraro

not fixed by the cut conditions. The algorithm has been implemented in the
semi-numerical C++ library Ninja, which proved to be faster and numerically
more stable than the original integrand-reduction approach. The library has
been used for the computation of NLO QCD corrections to the Higgs boson
production in association with a top-quark pair and a jet [11].

In Refs. [7, 8] the determination of the residues at the multiple cuts
has been formulated as a problem of multivariate polynomial division, and
solved at any order in the perturbation theory using algebraic geometry tech-
niques. These allow to find the most general parametric form of a residue,
whose unknown coefficients can then be found by evaluating the integrand
on values of the loop momenta such that some loop denominators are on-
shell, as traditionally done in the one-loop case (fit-on-the-cut approach).
Some of these coefficients are then identified with the ones which multiply
the MIs. Applying the same principles one can also perform the full inte-
grand decomposition with purely algebraic operations, within what we call
the divide-and-conquer approach [9], with successive polynomial divisions,
which at each step generate the actual residues. Given its wider range of
applicability, we may consider the latter a more general method for the
integrand decomposition of loop integrals.

2. Integrand reduction formula

An arbitrary `-loop graph represents a d-dimensional integral of the form∫
ddq1 . . . d

dq` Ii1...in , Ii1...in ≡
Ni1...in

Di1 . . . Din

, (1)

where i1, . . . , in are (not necessarily distinct) indices labeling loop propaga-
tors. The numerator N and the denominators Di are polynomials in a set of
coordinates z. Let P [z] be the ring of all polynomials in such coordinates.
Every set of indices {i1, . . . , in} defines the ideal

Ji1i2...in ≡ 〈Di1 , . . . , Din〉 =

{
n∑

k=1

hk(z) Dik(z) : hk(z) ∈ P [z]

}
. (2)

The goal of the integrand reduction is to find a decomposition of the inte-
grand of the form

Ii1...in ≡
Ni1...in

Di1 . . . Din

=

n∑
k=0

∑
{j1...jk}

∆j1...jk

Dj1 . . . Djk

,

where the residues ∆i1...in are irreducible polynomials, i.e. polynomials which
contain no contribution belonging in the corresponding ideal Ji1...in .
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The numerator N of the integrand can be decomposed by performing the
multivariate polynomial division modulo a Gröbner basis Gi1...in of Ji1...in as

Ni1...in = Γi1...in +∆i1...in =

n∑
k=1

Ni1...ik−1ik+1...inDik +∆i1...in (3)

in terms of a quotient Γi1...in and the remainder ∆i1...i1 ... in...in . The proper-
ties of Gröbner bases ensure that the remainder is irreducible, therefore it
is identified with the residue of the multiple cut Di1 = · · · = Din = 0, as
suggested by the notation. The quotient Γ , instead, belongs to the ideal J ,
thus it can be written as a combination of denominators, as we deed in
the last equality of Eq. (3). Substituting Eq. (3) in Eq. (1), we obtain the
recursive formula [8, 9]

Ii1...in =
n∑

k=1

Ii1...ik−1ik+1...in +
∆i1... in

Di1 . . . Din

. (4)

Equation (4) expresses a given integrand in terms of an irreducible residue
sitting over its denominators and a sum integrands with fewer denomina-
tors. Hence, the recursive application of this formula ultimately yields the
full decomposition of any integrand in terms of irreducible residues and de-
nominators, as in Eq. (2).

The existence of such a recursive formula proves that the integrand de-
composition can be extended at any number of loops and the most general
parametrization of a residue ∆i1...in can be identified with the most gen-
eral remainder of a polynomial division modulo the Gröbner basis Gi1...in .
Within the fit-on-the-cut approach such unknown coefficients can be found
by evaluating the numerator on the solutions of the multiple cut Di1 = · · · =
Din = 0. This method has been traditionally used at one loop, and recently
applied to higher-loop amplitudes as well [5, 6, 12–14].

In Ref. [8], we applied the recursive formula in Eq. (4) to the most
general one-loop integrand. This allowed to easily derive the well know OPP
decomposition for dimensionally-regulated one-loop amplitudes [3, 4], as well
as its higher-rank generalization for effective and non-renormalizable theories
[10] implemented in Xsamurai [15] (which extends the Samurai library [16])
and used e.g. in the computation of NLO QCD corrections to the Higgs
boson production plus two [17] and three jets [18] in gluon fusion, in the
infinite top-mass approximation.

3. Integrand-reduction via Laurent expansion with Ninja

An improved version of integrand-reduction method for one-loop ampli-
tudes was presented in [10], elaborating on the techniques proposed in [19, 20].
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Whenever the analytic dependence of the integrand on the loop momentum
is known, this method allows to extract the unknown coefficients of the
residues by performing a Laurent expansion with respect to one of the free
components of the loop momenta which are not fixed by the on-shell condi-
tions.

Within the original integrand reduction algorithm [16, 21, 22], the deter-
mination of the unknown coefficients requires to sample the numerator on
a finite subset of the on-shell solutions, subtract from the integrand all the
non-vanishing contributions coming from higher-point residues, and solve
the resulting linear system of equations. Since in the asymptotic limit both
the integrand and the higher-point subtractions exhibit the same polynomial
behavior as the residue, with the Laurent-expansion method one can instead
identify the unknown coefficients with the ones of the expansion of the inte-
grand, corrected by the contributions coming from higher-point residues. In
other words, with this approach the system of equations for the coefficients
becomes diagonal and the subtractions of higher-point contributions can be
implemented as corrections at the coefficient level which replace the subtrac-
tions at the integrand level of the original algorithm. The parametric form
of this corrections can be computed once and for all, in terms of a subset of
the higher-point coefficients.

This reduction algorithm has been implemented in the semi-numerical
C++ library Ninja, which has been interfaced with the package GoSam [23]
for automated one-loop computations. Since the integrand of a loop ampli-
tude is a rational function, its semi-numerical Laurent expansion has been
implemented as a simplified polynomial division between the numerator and
the denominators.

The input of the method implemented in Ninja is the numerator cast in
four different forms (one of which is optional). These can all be easily and
very quickly generated from the knowledge of the analytic dependence of
the integrand on the loop momentum (e.g. from the analytic expression of
the numerator generated by GoSam). The first form corresponds to a simple
evaluation of the numerator as a function of the loop momentum, while the
others must return the leading terms of a parametric Laurent expansion of
the numerator. Ninja computes the parametric solutions of each multiple
cut, performs the Laurent expansion via a simplified polynomial division
between the (expansions of the) numerator and the denominators, and im-
plements the subtractions at the coefficient level in order to get the unknown
coefficients. These are then multiplied by the corresponding MIs. Ninja im-
plements a wrapper of the OneLoop library [24, 25] which caches the values of
computed integrals and allows constant-time lookups from their arguments.
The library can also be used for the reduction of higher-rank integrands
where the rank of a numerator can exceed the number of denominators by
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one. The simplified fit of the coefficients and the subtractions at coefficient
level make the algorithm implemented in Ninja significantly lighter, faster
and more stable than the original.

The first new phenomenological application of Ninja has been the com-
putation of NLO QCD corrections to the Higgs boson production in asso-
ciation with a top-quark pair and a jet [11]. The possibility of exploiting
the improved stability of the new algorithm has been especially important
for the computation of the corresponding six-point virtual amplitude, given
the presence of two mass scales as well as massive loop propagators which
make traditional integrand reduction algorithms numerically unstable. In-
deed, for the highly non-trivial process under consideration, only a number
of phase-space points of the order of one per mill were detected as unstable.
All these points have been recovered using the tensorial reduction provided
by Golem95 [26, 27], avoiding the need necessity of higher precision routines.

4. Divide-and-conquer approach

The direct application of the integrand reduction formula of Eq. (4) on
the numerator of an l-loop graph allows to perform the integrand decom-
position algebraically by successive polynomial divisions, within what we
call the divide-and-conquer approach [9]. At each step, the remainders of
the divisions are identified with the residues of the corresponding set of de-
nominators, while the quotients become the numerators of the lower-point
integrands appearing on the r.h.s. of the formula, allowing thus to iterate
the procedure. In this way, the decomposition of any integrand is obtained
analytically, with a finite number of algebraic operations, without requiring
the knowledge of the varieties of solutions of the multiple cuts, nor the one
of the parametric form of the residues.

This algorithm has been automated in a Python package which uses Form
[28] and Macaulay2 for the algebraic operations and has been applied to the
examples depicted in Fig. 1. Despite their simplicity, these show the broad-
ness of applicability of the method which is not affected by the presence of
massive propagators, non-planar diagrams, higher powers of loop denomi-
nators or higher-rank contributions in the numerator.

Fig. 1. Examples of diagrams reduced using the divide-and-conquer approach.
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5. Conclusions

We described a coherent framework for the decomposition of Feynman
integrals, which can be applied at any loop order, regardless of the complex-
ity of the integrand, the number of external legs or the presence of higher
powers of loop denominators. This framework allows to easily derive well
known results at one-loop order and extend them to higher loops.

In the one-loop case, we showed how the knowledge of the analytic struc-
ture of the integrands on the multiple cuts, and in particular their asymptotic
behavior on the on-shell solutions, can be used to improve the analytic re-
duction with the Laurent expansion method. Its implementation in the C++
library Ninja provided a considerable gain in the speed and in the stability
of the reduction.

At higher loops, we described the application of the divide-and-conquer
approach, which allows to perform the full decomposition with purely alge-
braic operations on the numerator and the set of denominators of a given in-
tegrand, without requiring the knowledge of the algebraic variety defined by
the on-shell solutions. We applied it to simple examples, some of which can-
not be addressed with other unitarity-based and integrand-reduction meth-
ods, due to the presence of higher powers of loop denominators in the inte-
grands. Since it is based on the same principles used to constructively prove
the existence of the integrand decomposition at all loops, the divide-and-
conquer approach does not have the limitations of other methods and can
be considered a more general integrand reduction algorithm.

The work presented in this paper has been done in collaboration with
H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella and G. Ossola.
This work is supported by the Alexander von Humboldt Foundation, in the
framework of the Sofja Kovaleskaja Award Project “Advanced Mathematical
Methods for Particle Physics”, endowed by the German Federal Ministry of
Education and Research.
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