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Integrand reduction has shown to be an invaluable method for the re-
duction of scattering amplitudes at one-loop and beyond. The algorithm
implemented in Samurai, a Fortran library for d-dimensional integrand re-
duction, is discussed, mainly focusing on its novel extension Xsamurai to
perform the reduction of higher-rank integrals. GoSam has been used to
compute processes of associated Higgs production in Gluon Fusion, Vector
Boson Fusion and in combination with a tt̄ pair. In particular, the cal-
culation of Higgs boson plus up to three jets production in the heavy-top
effective theory is discussed, where higher-rank integrals may appear.
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1. Introduction

In July 2012 ATLAS and CMS announced the discovery of a new boson
with a mass of approximately 125 GeV at LHC [1, 2]. Further investigation
greatly supported the hypothesis that this is indeed the Higgs boson of
the electroweak symmetry breaking mechanism. In order to determine this
conclusively, several properties of the new boson have to be measured. These
include its spin, its CP-properties and its couplings to other particles [3].
Two promising channels to determine some of these properties are Vector
Boson Fusion (VBF), in which two vector bosons fuse to form a Higgs and
the channel in which the Higgs is produced in association with a top–anti-
top pair. The channel with the highest cross section, however, is the one in
which two gluons fuse into a Higgs via a top quark loop, the Gluon Fusion
(GF). Therefore, the latter is an important background to the other two
channels. Here, recent calculations of these three production channels will
be discussed.
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In order to make more precise predictions, the leading order (LO) calcu-
lations are not sufficient. Rather, next-to-leading order (NLO) calculations
are warranted. Not only because they reduce the theoretical error by includ-
ing a higher order, but also because the LO shows too great a dependence
on the renormalization and factorization scale.

2. The GoSam framework

In the past few years, tremendous progress has been made in the au-
tomation of NLO calculations. NLO calculations consist of several parts:
Besides the LO contribution, there are virtual and real corrections, as well
as subtraction terms to regulate infinities that may arise. GoSam [4] is
a framework that provides the virtual correction part of this calculation:,
i.e. the loop diagrams. Within GoSam, there is a choice of several reduc-
tion algorithms. The default is Samurai [5], a d-dimensional integrand-level
reduction algorithm. The other is Golem95C [6, 7], a tensorial reduction al-
gorithm, which is numerically stable and, therefore, used as a rescue system.
Recently a third algorithm, Ninja, has been added to the framework, which
uses the Laurent expansion to extract the coefficients in the integrand-level
reduction [8].

In order to do a full NLO calculation, a One Loop Program like GoSam
should be interfaced with a Monte Carlo program. In recent years, a stan-
dard for these kind of interfaces has emerged that is known as the Binoth
Les Houches Accord (BLHA) [9, 10]. GoSam has been interfaced to several
Monte Carlo programs, both via the BLHA and via ad hoc interfaces.

3. Integrand reduction and definition of the residues

Within a renormalizable theory, a generic one-loop integral can be de-
composed in a set of master integrals times coefficients
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It can be shown [8, 11, 12] that this expression can be obtained by decom-
posing the numerator of the integrand as
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and integrating over the d-dimensional loop momentum q̄ ≡ q + µ. The
residues ∆ are process-independent polynomial functions of q and µ2, con-
taining process-dependent coefficients. Their universal form can be obtained
either by direct investigation [11, 13], or by using the Gram relations [14],
or by multivariate polynomial division [15]. Each residue contains terms
proportional to the coefficients in Eq. (1) as well as spurious terms, which
vanish upon loop integration.

In the case of renormalizable theories, the rank in q and µ2 of each residue
cannot exceed the number of propagators. When dealing with effective field
theories, such as the large top mass limit employed in the Higgs production
via GF, additional powers might appear. This alters the decomposition of
Eq. (1) which requires additional terms
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The form of the residues in Eq. (2) has to be extended as well [8]. All
process-dependent coefficients are obtained by sampling the numerator on
the l.h.s. of Eq. (2) at the various multiple cuts (fit-on-the cut approach).
The algorithm is based on the solution of a triangular system of equations
to be solved top-down, from the 5-point to the 1-point coefficients.

The triangular system of equations is solved by expanding q in a cut-
dependent basis of massless vectors, qµ =

∑4
i=1 xie

µ
i . Therefore, for each

cut, we get a polynomial in the variables not fixed by the cut conditions.
The coefficients can be determined through polynomial fitting. Every poly-
nomial has to be sampled as many times as the number of coefficients to be
determined. In the following, we will describe the sampling level-by-level for
the case in which the rank exceeds the number of propagators.



2226 H. van Deurzen

4. Sampling strategy

An efficient way to determine the coefficients of a normal polynomial
is to use the Discrete Fourier Transformation (DFT). First one evaluates
(samples) the polynomial symmetrically in a circle in the complex plane.
Then the orthogonality relation is used to project out the coefficients [16].
Quintuple cut. At the level of the quintuple cut, which in d dimensions is a
maximum cut [15], no new coefficients appear in the higher rank numerator,
which can be parametrized by a single coefficient. The latter can be obtained
by sampling on the unique solution fulfilling the cut conditions.
Quadruple cut. In the case of the quadruple cut, there is one new co-
efficient with respect to the normal rank polynomial. The solutions of the
quadruple cut can be cast into two one-parameter families which depend
on µ2. Therefore, for each value of µ2, we still can sample at two different
values for q. The coefficients not proportional to µ2 can be obtained sam-
pling on the two solutions at µ2 = 0. The two coefficients proportional to µ2
and the two proportional to µ4 can be efficiently disentangled by sampling
with the two solutions at µ2s and at −µ2s, where µ2s can be any sampling
value.

TABLE I

The number of samplings per polynomial at the quadruple and triple cut.

Quadruple cut Triple cut C = 0 C 6= 0

Λ(0, q) 2 Λ(0, x3, C/x3) 5 9
Λ(0, C/x4, x4) 4 0

Λ
(
+µ2

s, q
)

2 Λ
(
+µ2

s, x3, C/x3
)

5 5
Λ
(
−µ2

s, q
)

2 Λ
(
−µ2

s, 1, C
)

1 1

Triple cut. At the triple-cut level, the higher-rank polynomial is extended
with five new coefficients, to make a total of fifteen. The three cut-conditions
completely determine x1 and x2 and constrain the product x3x4

x3x4 = C
(
µ2
)
. (4)

This means we can either choose x3 or x4 to sample, the other one being
fixed by this condition. The easiest way to get the nine coefficients which
are not proportional to µ2 is to choose µ2 = 0 and to use the DFT with x3 to
sample nine times. The solutions one acquires in this manner are inversely
proportional to C and thus unstable if the latter is small. In this case,
one can sample five times with x3 and four times with x4, getting solutions
inversely proportional to (1 − C). To get the six remaining coefficients, we
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sample with µ2 = µ2s five times and one additional time with µ2 = −µ2s to
disentangle the two coefficients proportional to x3 nor x4. The procedure is
summarized in Table I.
Double cut. At the double-cut level, going to higher rank doubles the
number of coefficients to twenty. The two conditions imposed by the double
cut fix x2 and the product x3x4

x3x4 = F
(
µ2, x1

)
= Ax21 +B x1 + C

(
µ2
)
. (5)

The seven coefficients which are independent of x1 and µ2 are computed by
setting µ2 and x1 to zero and sampling on x3. As in the triple cut case,
if F (0, 0) is small, one has to sample both with x3 and x4. In the next
step, one can consider F (0, x1). Depending on the actual value of A, B
and C, F (0, x1) may vanish for some values of x1. Those values should be
preferred because if F (0, x1) = 0 either x3 or x4 vanishes and the number
of the coefficients to be determined simultaneously is reduced. At this level,
many branches allow one to take advantage of these simplifications. The
coefficients multiplying µ2 are obtained using F (µ2s, 0). The last step is to
determine the coefficient multiplying both µ2 and x1. Again, F (µ2s, x1) may
vanish and we have to branch accordingly. The full procedure is summarized
in Table II, where x1c is a random value. x1a and x1b are either the solutions
of F (0, x1) = 0, if present, or a random value.

TABLE II

The number of samplings per polynomial at the double and single cut.

Double cut F = 0 F 6= 0 Single cut G = 0 G 6= 0

Λ(0, 0, x3, F/x3) 4 7 Λ(0, x1, G/x1, 0, 0) 3 5
Λ(0, 0, F/x4, x4) 3 0 Λ(0, G/x2, x2, 0, 0) 2 0

Λ(0, x1a, x3, F/x3) 3 5 Λ(0, 0, 0, x3, G/x3) 3 5
Λ(0, x1a, F/x4, x4) 2 0 Λ(0, 0, 0, G/x4, x4) 2 0

Λ(0, x1b, x3, F/x3) 2 3 Λ(0, x1,−G/x1, 1, 0) 1 2
Λ(0, x1b, F/x4, x4) 1 0 Λ(0,−G/x2, x2, 1, 0) 1 0

Λ(0, x1c, 1, F ) 1 1 Λ(0, x1,−G/x1, 0, 1) 1 2
Λ(0,−G/x2, x2, 0, 1) 1 0

Λ
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Single cut. The number of coefficients increases from five to fifteen when
going to higher rank. The single cut condition

x3x4 − x1x2 = G
(
µ2
)

(6)

allows one to choose four out of the five variables. If G = 0, we can set all but
one variable to zero and perform a DFT on the non-zero one. When G 6= 0,
we can still choose either x1 and x2 or x3 and x4 to be zero and sample with
one of the remaining two. For the remaining ‘cross term’ coefficients, that
multiply x1 or x2 with x3 or x4, we can only set one variable to zero.

5. Associated Higgs production at NLO

Higgs plus jets production in GF.We applied the extended rank decom-
position, implemented in Xsamurai as described above, to compute the NLO
QCD corrections to the production of a Higgs boson plus jets in GF, in the
large mtop approximation. This is a challenging project, in particular with
an increasing number of jets. In order to test our machinery, we started by
calculating the correction to Higgs plus two jets in GF [17], which contains
already 926 NLO diagrams. The calculation was performed employing the
interface between GoSam and Sherpa [18], and we found excellent agreement
with previous results [19] and MCFMv6.4 [20].

The next step was the calculation of the NLO QCD corrections to Higgs
plus three jets in GF [21]. By adding an additional jet, the number of NLO
diagrams increases to 13179, many of which have higher-rank numerators,
including 60 rank-7 hexagons (see Fig. 1 for an example). In order to deal
with such a computational challenge, GoSam has been enhanced by including
new features such as the grouping of the numerators, optimization through
FORM4.0 [22], the use of numerical polarization vectors and the possibility
to parallelize computations. These upgrades will be publicly available in the
next release of the GoSam code. We used a hybrid setup that employs GoSam
for the evaluation of the virtual part and Sherpa for the Born and to inte-
grate the virtual contributions. For the real contributions, the subtraction
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Fig. 1. Example diagrams of (a) Higgs plus three jets in GF, (b) Higgs plus jet in
association with a tt̄ pair, (c) Higgs plus three jets in VBF.
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terms and the integrated dipoles, we used an ad hoc interface with MadGraph
[23, 24], MadDipole [25, 26] and MadEvent [27]. We validated our hybrid set-
up by checking the LO result for Higgs plus three jets against MadGraph
and by reproducing the total cross section for Higgs plus two jets computed
in [17]. Finally, we verified the independence of the NLO cross-section from
the choice of the alpha-parameter.

The amplitudes generated with GoSam for the production of Higgs plus
jets at various multiplicities are ready to be paired with available Monte
Carlo programs for further phenomenological analyses.
Higgs plus jet production in association with a tt̄ pair. The produc-
tion of Higgs in association with a tt̄ pair is important to study the coupling
properties of the Higgs boson. In the high pT region, the addition of a jet
can be relevant. This is however known as a difficult process, because of the
appearance of two mass scales: mtop and mH . There are also a substantial
number of diagrams to be computed, 1895 NLO, especially in the double
gluon channel, where 51 massive hexagons need to be calculated. The cal-
culation of this process [28] was the first application of the new reduction
algorithm Ninja [29].
Higgs plus jets production in VBF. The other important process in the
study of the Higgs properties is the VBF production channel. In Higgs plus
two jets production in VBF there are 240 NLO diagrams, if an additional jet
is added (recently computed in [30]) there are 2160 NLO diagrams. These
processes can also easily be done with GoSam.

6. Conclusions

Xsamurai, a reduction algorithm that is an extension of Samurai for the
automated evaluation of one-loop corrections with diagrams that involve
a higher rank numerator, has been presented. It has been used for the
calculation of Higgs plus two and three jets in GF within the framework of
GoSam, which has been interfaced to several Monte Carlo programs to do full
NLO calculations. GoSam has also been used to calculate two other Higgs
production processes that are important to determine the Higgs properties:
The full NLO calculation of the production of a Higgs in association with a
tt̄ pair plus a jet and the virtual correction to the production of a Higgs in
association with two and three jets in VBF.

Much of this work has been done within the GoSam Collaboration, which
is gratefully acknowledged. This work is supported by the Alexander von
Humboldt Foundation, in the framework of the Sofja Kovaleskaja Award
Project.
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