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1. Introduction

There are a few source-open programs for 5- and 6-point reductions:
LoopTools/FF (n ≤ 5, rank ≤ 4) — T. Hahn [1, 2], Golem95 — T. Binoth
et al. [3], PJFry (n ≤ 5, rank ≤ 5) — V. Yundin et al. [4, 5]. Some of
these packages need, in addition, a library of scalar functions: ’t Hooft,
Veltman [6], LoopTools/FF, QCDloop/FF — K. Ellis and G. Zanderighi
[2, 7] or OneLOop with complex masses — van Hameren [8]. In most cases,
these packages suffice to calculate one-loop processes, however, there are at
least two reasons for improvements. First, which is always desirable, speed
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improvements. This is important when calculations are included into pre-
cise measurements using Monte Carlo methods. As already discussed in [9],
available methods are at the edge of applications at low energy calculations.
Second, not all of them are able to fulfil high demands concerning accuracy
at the very specific kinematic points; an example has been shown in [10].

We are working on independent calculations for tensor contractions as
an alternative to the PJFry reductions [11], based on work by Davydychev–
Tarasov–Fleischer–Jegerlehner–Riemann–Yundin (DTFJRY) [12–16]. First
numerical studies have been discussed in [17]. In this material, we report
on analytic results for rank 4 and comment on improvements concerning the
OLEC package [18].

2. Contractions for the 5-point functions with rank R = 4

We present here for the first time, results of contracted tensors of rank
R = 4

Iµνλρ5 = Iµνλ5 ·Qρ0 −
5∑
s=1

Iµνλ,s4 ·Qρs , (1)

for lower rank results, see [15, 16]. After contraction with chords q (differ-
ences of external momenta), we get

qa,µqb,νqc,λqd,ρ I
µνλρ
5 = CE4,abcd = −1

2CE3,abc, Yd + C5,abcd . (2)

Here,

Qρs =
5∑
i=1

qρi

(
s
i

)
5

()5
, s = 0, . . . , 5 . (3)

The first term qa,µqb,νqc,λ Iµνλ5 is known [17], the second term has to be
determined

C5,abcd = −
5∑
s=1

qaµqbνqcλI
µνλ,s
4

1

2
(δds − δ5s) , (4)

and it becomes

C5,abcd =
1

16

{
G5 + δabδacδadG

d − I5abc1 − I5abd1 − I5acd1 − I5bcd1 + Iabcd1

−Ja53 − Jb53 − Jc53 − Jd53 + R5ab + R5ac + R5bc + R5da + R5db + R5dc

+ δbcδbd

(
Jad3 − J5d

3

)
+ δacδad

(
Jbd3 − J5d

3

)
+ δabδad

(
Jcd3 − J5d

3

)
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+ δabδac

(
Jdc3 − J5c

3

)
+ δabδcdJ̃

db
3 + δadδbcJ̃

dc
3 + δacδbdJ̃

dc
3

+ δab

(
J̃5b
3 −Rb5c −Rbd5 +Rbdc

)
+ δac

(
J̃5c
3 −Rc5b −Rcd5 +Rcdb

)
+ δad

(
J̃d53 −Rd5b −Rd5c +Rdbc

)
+ δbc

(
J̃5c
3 −Rc5a −Rcd5 +Rcda

)
+ δbd

(
J̃d53 −Rd5a −Rd5c +Rdac

)
+ δcd

(
J̃d53 −Rd5a −Rd5b +Rdab

)
+ δabδadJ

d
4Yc + δacδadJ

d
4Yb + δbcδbdJ

d
4Ya + δab

(
Rbd −Rb5

)
Yc

+ δac

(
Rcd −Rc5

)
Yb + δad

(
Rdc −Rd5

)
Yb + δad

(
Rdb −Rd5

)
Yc

+ δbc

(
Rcd −Rc5

)
Ya + δbd

(
Rdc −Rd5

)
Ya + δbd

(
Rda −Rd5

)
Yc

+ δcd

(
Rda −Rd5

)
Yb + δcd

(
Rdb −Rd5

)
Ya +

(
Id4 − I54

)
YaYbYc

+
(
Icd3 − I5c3 − I5d3 +R5 + δcdR

d
)
YaYb

+
(
Ibd3 − I5b3 − I5d3 +R5 + δbdR

d
)
YaYc

+
(
Iad3 − I5a3 − I5d3 +R5 + δadR

d
)
YbYc

+
(
Ibcd2 − I5bc2 − I5bd2 − I5cd2 − J5

4 +R5b +R5c +R5d
)
Ya

+
(
Iacd2 − I5ac2 − I5ad2 − I5cd2 − J5

4 +R5a +R5c +R5d
)
Yb

+
(
Iabd2 − I5ab2 − I5ad2 − I5bd2 − J5

4 +R5a +R5b +R5d
)
Yc

}
, (5)

where we have introduced

Jst3 ≡
1(
st
st

)
5

{
−
(
s

s

)
5

I
[d+],st
3 +

(
ts

0s

)
5

Rts −
5∑

u=1

(
ts

us

)
5

Rtsu

}
, (6)

J̃st3 ≡
1(
st
st

)
5

{(
s

t

)
5

I
[d+],st
3 +

(
st

0t

)
5

Rts −
5∑

u=1

(
st

ut

)
5

Rtsu

}
, (7)

Gs ≡ 1(
s
s

)
5

{
−2
()

5

R[d+],s +

(
s

0

)
5

Js4 −
5∑
t=1

(
s

t

)
5

J ts3

}
. (8)

Js4 and R[d+],s are given in Eqs. (2.24) and (2.44) of [15], respectively. For
further abbreviations, see (2.24), (2.49), (2.9), (2.17), (2.34), (2.41) of [15].
There also Rs, Rst, Rtsu are defined, Ya = Ya5 − Y55, Yab = −(qa − qb)2 +
m2
a +m2

b .
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Some numerical results for a 5-point function with rank R = 4 are added
in [18]. For scalar functions, we use the OneLOop package and compare
the results with LoopTools/FF. For the considered kinematic points, full
agreement has been obtained. The kinematics is that of the process e−e+ →
µ−µ+γ. Using an MC generator, we have checked thousands of points up to
rank three. All of them agreed between OLEC and LT/OneLOop. For ranks 3
and the new results presented here, we made checks also against the public
version of Golem95, available at http://golem.hepforge.org/95/. At the
OLEC webpage [18], we added two sets of files with the output. In set I,
the kinematics is chosen such that 3-point functions hit the IR singularities,
while in set II, the 3-point functions are slightly off the IR singularities.
The Golem95 results were different from LT, OneLOop and OLEC, starting
already from rank 31.

For rank four, we give below such an example:

p1s = 1.1163688400000000E-002 p2s = 2.6109999999999998E-007
p3s = 0.0000000000000000 p4s = 2.6109999999999998E-007
p5s = 1.1163688400000000E-002
s12 = -0.70858278190000001 s23 = -1.5343299000000002E-003
s34 = -0.12851860429999998 s45 = -0.61023937949999996
s15 = 0.92668942420000000 m1s = 1.1163688361676107E-002
m2s = 0.0000000000000000 m3s = 2.6112003932088364E-007
m4s = 2.6112003932088364E-007 m5s = 0.0000000000000000

The R=4 contractions, a,b,c,d=3,3,3,3
OLEC: ( -48094.1074 54542318 , -47802.08746 5035322 )
LoopTools: ( -48094.1074 65 , -47802.08746 05 )
The R=4 contractions, a,b,c,d=3,3,3,4
OLEC: ( -18463.1204 24842149 , -23446.4704 12257226 )
LoopTools: ( -18463.1204 31 , -23446.4704 09 )
The R=4 contractions, a,b,c,d=3,3,3,5
OLEC: ( 0.0000000000000000 , 0.0000000000000000 )
LoopTools ( 0.0000000000000000 , 0.0000000000000000 )

The last result with d = 5 is a virtue of the construction of chords, where
q5 = 0.

3. OLEC package, Fortran code

The idea of external contractions has been implemented for the first time
in the C++ code OLEC for tensors up to rank 3 [17], and basic examples

1 The problem in Golem95 v.1.2.1 has been settled in the meantime for the set I with
changelog 128 (11 Oct, 2013), https://golem.hepforge.org/trac/changeset/128
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are given at [18]. In the meantime, a Fortran code has been written with the
aim of further optimization. The calculation of contracted tensor integrals
consists of two basic steps. The first and most time consuming step is
a preparation of building blocks for a calculation — basic scalar integrals
(∼ 50%) and the so-called signed minors (∼ 25%). We cannot make much
about scalar integral libraries, unless new independent developments appear.
For some recent efforts in this direction, see [19]. However, the calculation of
signed minors can be improved, both the cache system and the computation
algorithm. The second step is performing of the contractions (∼ 25%), which
also can be improved. During the initialization procedure, scalar integrals
and signed minors are calculated and stored in the RAM memory. For
an efficient usage of memory, appropriate data structures are constructed.
E.g. for 5-point kinematics, we have, in total, only 30 different basic scalar
integrals, while for signed minors situation it is more complicated because all
minors with up to 4 scratched rows and columns are needed. The “natural”
storage model for such objects in the form of multidimensional arrays is
not an optimal solution. For example, for minors of rank 3 (3 rows and
columns are excluded), one has an array with 46656 elements but according
to the minors’ symmetry properties, only 210 of them are different and non-
zero. For the purpose of minimal memory usage, a linear storage model
is chosen. In general, minors of a given rank are stored in the memory as
one-dimensional arrays and access to them can be done according to the
following pattern: minorrank[AddressTable[func(i, j, k . . . )]], as it was first
done in [11]. For a given minor indices i, j, k, . . . , a function ‘func’ based
on bitwise operations calculates an address of an element from the constant
table ‘AddressTable’. This table is the same for all minors and contains
positions of values of minors in array ‘minorrank’. Finally, the cache contains
a few hundred of double precision numbers for all building blocks like minors,
scalar integrals and auxiliary functions.

In the new version of the library, the computation algorithm for signed
minors has also been changed. In practical computations of one-loop cross-
sections, usually at least all contractions up to rank 3 are needed (like in
QED). It means that minors of all ranks are needed as well. The procedure
is iterative, cache is filled first from minors of the highest rank 4 (with 8
indices) which are used further to calculate minors of rank 3. And so on.
All loops connected with minor indices during this procedure are unrolled
and the highest level of optimization is applied for compilation (these are
algebraical manipulations for which “−O3” optimization does not spoil dou-
ble accuracy). Unrolling and usage of optimalization for algebraic part of
the package allows to decrease extremely the matrix algebra computation
time.
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4. Summary and outlook

In recent years, the strategy described has been developed in a bunch of
papers for explicit analytical and recursive treatment of heptagon, hexagon
and pentagon tensor integrals of rank R in terms of pentagons and boxes of
rank R− 1. A systematic derivation of expressions which are explicitly free
of inverse Gram determinants ()5 until pentagons of rank R = 5 has been
worked out. The numerical package OLEC for contracted tensor integrals in
C++ and Fortran [18, 20] are under development and tests.

Our preliminary benchmarks show that the OLEC library in the present
form is faster than 5-point tensor reductions implemented in LoopTools/FF
by about an order of magnitude (tested up to rank 3). Work in progress
includes a correct treatment of small Gram determinant cases for the reduc-
tions (expansion in small parameters [11] or using hypergeometric represen-
tations [21]), adding rank 4 (this paper) and rank 5 contractions for 5-point
functions, programming contracted tensors for 6- and 7-point functions.

Work supported by the European Initial Training Network LHCPHE-
NOnet PITN-GA-2010-264564.
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