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Two criteria for planarity of a Feynman diagram upon its propagators
(momentum flows) are presented. Instructive Mathematica programs that
solve the problem and examples are provided. A simple geometric argu-
ment is used to show that while one can planarize non-planar graphs by
embedding them on higher-genus surfaces (in the example it is a torus),
there is still a problem with defining appropriate dual variables since the
corresponding faces of the graph are absorbed by torus generators.
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1. Introduction

Non-planar Feynman diagrams arise naturally from perturbative quan-
tum field theory. They are interesting for many reasons. First of all, from
the graph-theoretical point of view many constructions and theorems are
formulated only for planar graphs. Formally, any Feynman diagram G can
be considered as a graph and thus subjected to graph-theoretical methods.
Moreover, labelling all edges of G by momenta makes G a network flow
which is not necessarily unique. Consequently, it can make some redundant
problems on the way to find effective analytical or numerical solutions to a
given Feynman diagram. This is especially true if we want to make general
programs which use some methods to solve Feynman integrals. We focus
here on one technical aspect. Given a Feynman diagram G, is it possible to
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decide the planarity of G only upon its propagators? The question could be
rewritten in a more general way: is it possible to decide the planarity of a
network flow only upon its flows? The answer is important considering e.g.
computer algebra methods in particle physics. We faced the problem while
working on the upgrade of AMBRE package [1], where different methods are
applied in order to construct an optimal, low-dimensional Mellin–Barnes
representation of G depending on its planarity (work in progress). The
problem of planarity identification of G upon its propagators has been men-
tioned lately also in [2]. In general, the available graph-theoretical methods
to recognize planarity of a graph rely mainly on its geometry, such as the
Kuratowski theorem, that claims that a graph G is planar iff it does not
contain a subgraph that is a subdivision of K3,3 or K5 [3]. When no geome-
try of G is given, it is hard to decide about subgraphs of G. This is the case
of AMBRE, where only propagators are given. As we will show, the answer
for the question is positive.

Another interesting property of non-planar Feynman diagrams is that
they are not dealt with twistor methods, originally applied only to planar
sector of N = 4 SYM [4]. The question whether it is possible to apply
these methods to the non-planar sector remains open. The main obstacle
is the lack of duals for non-planar diagrams, hence lack of dual variables
on which these methods rely. On the other hand, in the so-called ’t Hooft
limit of SU (N) with coupling g, where N → ∞, g2N = const, only planar
diagrams survive. Thus, one could argue that (non-)planarity is not of purely
technical, graph theoretical character, but rather it is a significant ingredient
with a physical interpretation in the above limit.

Let us start with some definitions. A graph is planar if it can be drawn
on a surface (sphere) without intersections. A non-planar graph is a graph
that is not planar.

A dual to a graph is constructed by drawing vertices inside the faces
(including the external face) and connecting vertices that correspond to
adjacent faces (Fig. 1).

Fig. 1. Given graph (solid line) and its dual (dashed line).
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Such duals can be defined only for planar graphs.
To say that a Feynman diagramG is (non-)planar, one defines the adjoint

diagram G∗ (Fig. 2). It is constructed from G by attaching all external lines
to an auxiliary vertex [3].
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Fig. 2. A Feynman diagram (left) and its adjoint (right).

We say that a Feynman diagram G is planar iff G∗ is planar.

2. Method I

Let G be a connected l-loop Feynman diagram, {p1, . . . , pm} be the set of
external momenta, {e1, . . . , en} be the set of edges in G (neglecting external
lines), {k1, . . . , kn} be the set of corresponding momentum flows in G and
{v1, . . . , vr} be the set of vertices in G. Then there holds [5]

r = n− l + 1 . (1)

Hence, given the number of edges (flows) and loops, the number of vertices r
can be derived from (1). After introducing Feynman parameters x1, . . . , xn,
one defines the Laplacian matrix L of a graph G as a r × r matrix with
entries

Lij =


n∑

k=1

xk if i = j, ek is attached to vi, ek is not a self-loop ,

−
n∑

k=1

xk if i 6= j, ek connects vi, vj .
(2)

Elements of L are calculated in a few steps. Diagonal elements Lii are ob-
tained by deciding which Feynman parameters xk are attached to vi. Vertices
are divided into external (attached to external lines) and internal ones. Note
that only triple and quartic (i.e. of degree 3 and 4) vertices are allowed1.
Thus the conditions are of the form

(for external vertices) ± ka ± kb = ±pe or ± ka ± kb ± kc = ±pe ,
1 For more general applications like gravity, the algorithm should be improved. How-
ever, in the case of n-ary vertices, the method II is a better approach.
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(for internal vertices) ± ka ± kb = ±kc or ± ka ± kb ± kc = ±kd ,
where a, b, c, d ∈ {1, . . . , n}, e ∈ {1, . . . ,m}. The flows that fulfil the above
relations contribute to diagonal elements of L. Furthermore, off-diagonal
elements Lij are obtained by deciding Feynman parameters xk that connect
vertices vi, vj . Observe that such xks have to be both in Lii and Ljj , thus
the intersection of elements in Lii and Ljj is non-empty and gives exactly
these xks. In the case of many edges connecting vi, vj , they shrink to one
edge, thus giving exactly one xk (hence

∑
xk → xk).

In order to obtain a more familiar form of L, understandable to Mathe-
matica software [6], redefine L by

Lij =

{
deg (vi) if i = j ,
−1 if i 6= j and vi, vj are adjacent ,

where deg (vi) is the degree of vi. The above definition is derived from (2)
by substituting xk → 1. Then L can be written as

L = D −A , (3)

where D = diag (deg (v1) , . . . ,deg (vr)) is a degree matrix and A is the
adjacency matrix given by

Aij =

{
1 if i 6= j and vi, vj are adjacent ,
0 otherwise .

The final part of the algorithm is to create the adjoint diagram G∗2. The
Laplacian matrix L∗ ofG∗ is built upon L by extending it by one row and one
column corresponding to vr+1. Clearly, deg (vr+1) = m and extra 1s appear
in the (r + 1)th column and (r + 1)th row at the elements corresponding to
external vertices. Thus, from (3) the adjacency matrix A∗ = D∗ − L∗ is
obtained. Eventually, given A∗, the function PlanarQ of the Mathematica
package Combinatorica yields the answer for the question of planarity of a
Feynman diagram G. Additionally, in [2] there was made a remark that it is
possible to draw a diagram upon the set of denominators. In fact, given the
matrix A∗ it is possible to draw a given diagram with Mathematica by using
the function AdjacencyGraph. Instructive examples for planarity recognition
using the described algorithm are given in [7].

3. Method II

Let G be a connected l-loop Feynman diagram, {p1, . . . , pm} be the set
of external momenta, {k1, . . . , kn} be the set of corresponding momentum

2 In the case of vacuum diagrams, G∗ is the same as G by definition.
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flows in G. Dual variables {x1, . . . , xm} are defined by (see e.g. [4])

p1 = x1 − xm , p2 = x2 − x1 , . . . , pm = xm − xm−1 . (4)

Then, by introducing rules of the form ki → xj±xl, all momenta are substi-
tuted by dual variables and one obtains the following criterion: A Feynman
diagram is planar iff it is possible to write all propagators (including external
momenta) in the form xi ± xl. Let us present two examples3.

1. Let G be a simple box diagram with four external lines {p1, . . . , p4}
and a loop momentum k. The amplitude is proportional to the integral∫

d4k

k2 (k − p1)2 (k − p1 − p2)2 (k − p1 − p2 − p3)2
.

Introduce dual variables according to (4).

Note that external momenta correspond to crossing of external lines
and lines between corresponding dual variables (Fig. 3). The integral
is now of the form∫

d4k

k2 (k − x1 + x4)
2 (k − x2 + x4)

2 (k − x3 + x4)
2 .

Observe that substitution k → x5 − x4 gives a conformal invariant
object ∫

d4x5

(x5 − x4)2 (x5 − x1)2 (x5 − x2)2 (x5 − x3)2
.

2. Let G be a non-planar double box with∫
d4k1d

4k2

k21 (k1− p2)
2 (k1 − p1 − p2)2 k22 (k2 + p3)

2 (k1 − k2)2 (k1− k2 + p4)
2

and introduce dual variables again (Fig. 4).

Obviously, since the diagram is non-planar, it does not have a dual.
Note that after transforming momenta to dual variables, one of the
possible forms of the integral is∫

d4x5d
4x6

(x5 + x2)
2 (x5 + x1)

2 × . . . × (x6 + x5 − x3 + x4)
2 .

3 The following examples are massless, but the method is general and applicable also
in massive cases, since masses do not contribute to the momentum flow in a diagram.
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Fig. 3. A box diagram, external dual variables and dual graph, respectively.
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Fig. 4. Non-planar double box (left) and its dual variables (right).

Non-planarity is encoded in the element x6+x5−x3+x4, that breaks the
conformal invariance. Thus, there is a strict correspondence between dual
diagrams and dual variables, hence another planarity criterion for Feynman
diagrams is established. Instructive examples for planarity recognition using
described algorithm are given in [7].

4. Non-planar diagrams and dual variables

Observe that it is possible to planarize a non-planar diagram by embed-
ding it on a surface with genus higher than 0. Actually, the minimal genus of
a surface where the given diagram G is planar is called the genus of G. Let
us give an example. Let a three-loop non-planar self-energy be embedded
on a torus. Then, there is no crossing of diagram lines, hence the diagram
is planar on the torus (Fig. 5). It is then possible to find its dual diagram
and corresponding dual variables. Unfortunately, such an embedding sets
the number of faces too small to give a proper interpretation of momenta
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Fig. 5. Three-loop non-planar self-energy (left) and its embedding on a torus
(right).

by dual variables. It can be easily calculated by Euler’s formula that

χ = v − e+ f = 2− 2g = 2− 2× 1 = 0 −→ f = 0− 6 + 9 = 3 ,

where χ — Euler characteristics, v — number of vertices, e — number of
edges, f — number of faces (dual variables), g — genus of a graph (surface).
Thus, there are only three dual variables x1, x2, x3 available, in contrast to
five momenta p, −p, k1, k2, k3. Hence, although the non-planar diagram is
planarized, it is not possible to define appropriate dual variables, since two
momenta are absorbed by torus generators.
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