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We think that phenomenological resonance Lagrangian models, con-
strained by global fits from the low energy hadron reaction data, can help
to improve muon g− 2 predictions. The main issue are those contributions
which cannot be calculated by perturbative means: the hadronic vacuum
polarization (HVP) effects and the hadronic light-by-light (HLbL) scatter-
ing contribution. I review the recent progress in the evaluation of the HVP
contribution within the broken Hidden Local Symmetry (HLS) framework,
worked out in collaboration with Benayoun, David and DelBuono. Our
HLS driven estimate reads aLO had

µ = (688.60± 4.24)× 10−10 and we find
atheµ = (11659177.65± 5.76)× 10−10.
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1. Effective field theory: the Resonance Lagrangian Approach

The Resonance Lagrangian Approach (RLA) provides an extension of
low energy effective QCD as represented by the Chiral Perturbation Theory
(ChPT) to energies up to about 1 GeV. Principles to be included are the
chiral structure of QCD, the vector-meson dominance model and electromag-
netic gauge invariance. Specifically, we will consider the HLS version, which
is considered to be equivalent to alternative variants after implementing the
appropriate high energy asymptotic conditions. ChPT is the systematic
and unambiguous approach to the low energy effective QCD given by spon-
taneously broken chiral symmetry SU(3)⊗SU(3), with the pseudoscalars as
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Nambu–Goldstone bosons, together with a systematic expansion in low mo-
menta and chiral symmetry breaking (SB) effects by the light quark masses,
mq , q = u, d, s. The limitation of ChPT is the fact that it ceases to converge
for energies above about 400 MeV, in particular it lacks to describe physics
involving the vector resonances ρ, ω and φ.

The Vector-meson Dominance Model (VDM) is the effective theory im-
plementing the direct coupling of the neutral spin 1 vector resonances ρ, ω, φ
etc. to the photon. Such direct couplings are a consequence of the fact that
the neutral spin 1 resonances like the ρ0 are composed of charged quarks.
The effect is well modeled by the VDM Lagrangian Lγρ = e

2gρ
ρµνF

µν

or = − eM2
ρ

gρ
ρµA

µ, which has to be implement in the low energy effective
QCD in a way which is consistent with the chiral structure of QCD.

The construction of the HLS model may be outlined as follows: like
in ChPT the basic fields are the unitary matrix fields ξL,R = exp [±iP/fπ],
where P = P8+P0 is the SU(3) matrix of pseudoscalar fields, with P0 and P8

the basic singlet and octet fields, respectively. The pseudoscalar field ma-
trix P is represented by

P8 =
1√
2


1√
2
π3 +

1√
6
η8 π+ K+

π− − 1√
2
π3 +

1√
6
η8 K0

K− K
0 −

√
2

3
η8

 , (1)

P0 =
1√
6

diag
(
η0, η0, η0

)
; (π3, η8, η0)⇔

(
π0, η, η′

)
. (2)

The HLS ansatz is an extension of the ChPT non-linear sigma model to a
non-linear chiral Lagrangian [Tr ∂µξ

+∂µξ] based on the symmetry pattern
Gglobal/Hlocal, where G = SU(3)L ⊗ SU(3)R is the chiral group of QCD and
H = SU(3)V the vector subgroup. The hidden local SU(3)V requires the
spin 1 vector meson fields, represented by the SU(3) matrix field Vµ, to be
gauge fields. The needed covariant derivative reads Dµ = ∂µ − i g Vµ, and
allows to include the couplings to the electroweak gauge fields Aµ, Zµ and
W±µ in a natural way. The vector field matrix is usually written as

V =
1√
2



(
ρI + ωI

)
/
√

2 ρ+ K∗+

ρ−
(
−ρI + ωI

)
/
√

2 K∗0

K∗− K
∗0

φI

 . (3)
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The unbroken HLS Lagrangian is then given by

LHLS = LA + LV ; LA/V = −f
2
π

4
Tr [L±R]2 , (4)

where L = [DµξL] ξ+L and R = [DµξR] ξ+R . The covariant derivatives read{
DµξL = ∂µξL − igVµξL + iξLLµ
DµξR = ∂µξR − igVµξR + iξRRµ

(5)

with known couplings to the Standard Model (SM) gauge bosons
Lµ = eQAµ +

g2
cos θW

(
Tz − sin2 θW

)
Zµ +

g2√
2

(
W+
µ T+ +W−µ T−

)
Rµ = eQAµ −

g2
cos θW

sin2 θWZµ
. (6)

Like in the electroweak SM, masses of the spin 1 bosons may be generated by
the Higgs–Kibble mechanism if one starts in place of the non-linear σ-model
with the Gell-Mann–Levy linear σ-model by a shift of the σ-field.

In fact, the global chiral symmetry Gglobal is well known not to be re-
alized as an exact symmetry in nature, which implies that the ideal HLS
symmetry evidently is not a symmetry of nature either. It evidently has to
be broken appropriately in order to provide a realistic low energy effective
theory mimicking low energy effective QCD. Corresponding to the strength
of the breaking, usually, this is done in two steps, breaking of SU(3) in a
first step and breaking the isospin SU(2) subgroup in a second step. Unlike
in ChPT (perturbed non-linear σ–model) where one is performing a system-
atic low energy expansion, expanding in low momenta and the quark masses,
here we introduce symmetry breaking as phenomenological parameters to be
fixed from appropriate data, since a systematic low energy expansion à la
ChPT ceases to converge at energies above about 400 MeV, while we attempt
to model phenomenology up to including the φ resonance.

The broken HLS Lagrangian (BHLS) is then given by (see [1])

LBHLS = L′A + L′V + L′t Hooft ; L′A/V = −f
2
π

4
Tr
{

[L±R] XA/V

}2
, (7)

with 6 phenomenological chiral SB parameters. The phenomenological SB
pattern suggests XI = diag(qI, yI, zI) , |qI − 1|, |yI − 1| � |zI − 1| , I = V,A.
There is also the parity odd anomalous sector, which is needed to account
for reactions like γ∗ → π0γ and γ∗ → π+π−π0 among others.
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We note that this BHLS model would be a reliable low energy effective
theory if the QCD scale ΛQCD would be large relative to the scale of about
1 GeV up to which we want to apply the model, which in reality is not the
case. Nevertheless, as a phenomenological model applied to low multiplicity
hadronic processes (specified below) it seems to work pretty well, as we have
demonstrated by a global fit of the available data in Ref. [1]. The major
achievement is a simultaneous consistent fit of the e+e− → π+π− data from
CMD-2 [2], SND [3], KLOE [4] and BaBar [5], and the τ → π−π0ντ decay
spectral functions by ALEPH [6], OPAL [7], CLEO [8] and Belle [9]. The
e+e− → π−π+ channel gives the dominant hadronic contribution to the
muon g− 2. Isospin symmetry π−π0 ⇔ π−π+ allows one to include existing
high quality τ -data as advocated long time ago in [10].

We note that as long as higher order corrections are restricted to the
mandatory pion- and kaon-loop effects in the vector boson self-energies,
renormalizability is not an issue. These contributions behave as in a strictly
renormalizable theory and correspond to a reparametrization only.

2. ρ0 − γ mixing solving the τ versus e+e− puzzle

A minimal subset of any resonance Lagrangian is given by the VDM +
scalar QED part which describes the leading interaction between the ρ the
pions and the photon. In order to account for the decay of the ρ, one has
to include self-energy effects, which also affect ρ–γ mixing via pion-loops
shown in Fig. 1. Most previous calculations, considered the mixing term to
be a constant, and were missing a substantial quantum interference effect.

−i Πµν (π)
γρ (q) = + .

Fig. 1. Irreducible self-energy contribution at one-loop.

The properly normalized pion form factor, in our approach, has the from

Fπ(s) =
[
e2Dγγ + e (gρππ − gρee)Dγρ − gρeegρππDρρ

]
/
[
e2Dγγ

]
, (8)

with propagators including the pion loop effects, with typical couplings
gρππ bare = 5.8935, gρππ ren = 6.1559, gρee = 0.018149, x = gρππ/gρ =
1.15128, fixed from the (partial) widths

gρππ =
√

48π Γρ/(β3ρMρ) ; gρee =
√

12π Γρee/Mρ .
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The effect of taking into account or not the γ–ρ0 mixing is illustrated
in Fig. 2. The γ–ρ interference is crucial when relating charged current
τ -data to e+e−-data. Including known isospin breaking (IB) corrections
v0(s) = RIB(s) v−(s), a large discrepancy [∼ 10%] persisted [11], which was
known as the τ versus e+e− puzzle since [12]. In [13], it has been shown that
the γ–ρ mixing active in the e+e− → π+π− channel is responsible for the
discrepancy, i.e. τ -data have to be corrected as v0(s) = rργ(s)RIB(s) v−(s),
before they can be used as representing an equivalent I = 1 e+e− → π+π−

data sample (see also [14, 15]). Note that what goes into aµ directly are
the e+e−-data. Best “proof” of the required ρ–γ correction profile is the
ALEPH versus BaBar fit shown in Fig. 1 of [16]. Applying the correc-
tion to the τ -spectra (see Fig. 8 in [13]) implies a universal shift down by
δahadµ [ργ] ' (−5.1±0.5)×10−10 of the contribution to the muon g−2. This
shift brings into agreement the τ inclusive estimates with the e+e− based
ones. Is our model, treating pions as point-like objects, viable? A good
“answer” to this question may be obtained by looking at the ππ produc-
tion in γγ fusion. Figure 3 shows: at the strong tensor meson resonance
f2(1270) in the ππ channel, photons directly probe the quarks! However, in
the region of our interest, photons see pions (below about 1 GeV). We apply
the sQED model up to 0.975 GeV (relevant for aµ), which should be rather
reliable. Switching off the electromagnetic interaction of pions, is definitely
not a realistic approximation in trying to describe what is observed in the
e+e− → π+π− channel.

Fig. 2. Ratio of the full |Fπ(s)|2 in units of the same quantity omitting the mixing
term (full line). Also shown is the same mechanism scaled up by the branching
fraction ΓV/Γ (V → ππ) for V = ω and φ. In the ππ channel, the effects for
resonances V 6= ρ are tiny if not very close to resonance.



2262 F. Jegerlehner

Fig. 3. How photons couple to pions? This is obviously probed in reactions like
γγ → π+π−, π0π0. Data infer that below about 1 GeV photons couple to pions as
point-like objects (i.e. to the charged ones overwhelmingly). At higher energies,
the photons see the quarks exclusively and form the prominent tensor resonance
f2(1270). The π0π0 cross section shown has been multiplied by the isospin sym-
metry factor 2, by which it is reduced in reality.

3. Global fit of BHLS parameters and prediction of Fπ(s)

The simple model just considered illustrates one of the main quantum
interference effects in the isospin sector, the γ–ρ0 mixing. A more complete
effective theory must include the ρ0–ω mixing, as well as the strangeness
sector, with the kaons as additional pseudo Nambu–Goldstone bosons, in-
cluding the η and the η′, and the mixing with the φ. This is implemented
in the BHLS model introduced before. Self-energy corrections for ρ, ω, φ
and γ now include kaon-loops as well. In addition, parity odd sector con-
tributions like π0 → γγ and γ → π+π−π0 must be included. At present
there are 45 different data sets (6 annihilation channels and 10 partial width
decays) available below E0 = 1.05 GeV (just above the φ), and we use them
to constrain the BHLS Lagrangian couplings. The method is able to re-
duce uncertainties in g − 2 predictions by using indirect constraints on the
Lagrangian parameters.

The main goal is to single out a representative effective resonance La-
grangian by the global fit. The constrained model is expected to help in
improving model calculations of hadronic light-by-light scattering. The new
muon g−2 experiments planned at Fermilab and J-PARC, supposed to start
in about 2–3 years, are expected to reduce experimental errors by a factor 4.
On the theory side, this requires a comparable improvement of the HVP and
HLbL contributions.
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The effective theory predicts the cross sections π+π−, π0γ, ηγ, η′γ,
π0π+π−, K+K−, K0K̄0 which account 83.4% of the HVP contribution to
the muon g−2. Contributions from the missing channels 4π, 5π, 6π, ηππ, ωπ
and from higher energies we evaluate using data directly and pQCD in
the perturbative region and in the tail. The resulting BHLS prediction for
aLO,hadµ allows us to get a BHLS driven SM prediction for aµ (see Table I).

TABLE I

Standard Model theory and experiment comparison [in units 10−11].

Contribution Value Error

QED incl. 4-loops + 5-loops 116 584 718.85 0.04
Leading hadronic vacuum polarization 6 886.0 42.4
Subleading hadronic vacuum polarization −98.32 0.82
Hadronic light-by-light 116.0 39.0
Weak incl. 2-loops 154.0 1.0

Theory 116 591 776.5 57.6
Experiment 116 592 089.0 63.0
Exp.–The. 3.7 standard deviations 312.5 85.4

Our favored evaluation based on selected data yields aLO had
µ = (681.23 ±

4.51)×10−10 and a prediction atheµ = (11659170.28±5.96)×10−10 and ∆aµ =

aexpµ −atheµ = (38.52±5.96the±6.3exp)×10−10 . The associated fit probability
is 94% and the significance for ∆aµ is 4.4σ. Including all data, applying
appropriate rewighting in the case of inconsistencies1, we find aLO had

µ =

(688.60± 4.24)× 10−10 such that atheµ = (11659177.65± 5.76)× 10−10 and
∆aµ = aexpµ − atheµ = (31.25 ± 5.76the ± 6.3exp) × 10−10 . The associated fit
probability is 76% and the significance for ∆aµ is 3.7σ. The comparison
of our global fit result with other results from DHMZ10 [16, 19], JS11 [13],
DHea09 [11], HLMNT11 [20] is shown in Fig. 4. We get somewhat lower
central values than results obtained by direct integration of the data, but all
results agree well within 1σ. Our fits, which include the τ -data, exhibit the
best fit probability for KLOE10 results, while there is some tension showing
up in case of the BaBar ππ data. Our analysis has been criticized lately in
Ref. [21] but what is shown in that reply is that BaBar [5] and KLOE data are
not quite compatible within the given experimental errors. A different issue
is the comparison between BaBar and τ spectral data. Contrary to claims
in [21], the sizable γ–ρ0 mixing effect has not been taken into account and

1 The required rewighting concerns the e+e− → π+π−π0 data in the vicinity of the φ,
as well as the KLOE08 and the BaBar e+e− → π+π− data sets.



2264 F. Jegerlehner

one should see a substantial shift which, however, is found to be absent in
the comparison between Belle τ -data and the BaBar e+e− data (see Fig. 1
in [16]).

150 200 250

incl. ISR
DHMZ10 (e+e−)
180.2± 4.9

[3.6 σ]

DHMZ10 (e+e−+τ)
189.4± 5.4

[2.4 σ]

JS11 (e+e−+τ)
179.7± 6.0

[3.4 σ]

HLMNT11 (e+e−)
182.8± 4.9

[3.3 σ]

DHMZ10/JS11 (e+e−+τ)
181.1± 4.6

[3.6 σ]

BDDJ13∗ (e+e−+τ)
177.7± 5.8

[3.7 σ]

excl. ISR
DHea09 (e+e−)
178.8± 5.8

[3.5 σ]

BDDJ12∗ (e+e−+τ)
175.4± 5.3

[4.1 σ]

experiment
BNL-E821 (world average)
208.9± 6.3

aµ×1010-11659000

∗ HLS fits

Fig. 4. Comparison with other results. Note: results depend on which value is
taken for HLbL. JS11 and BDDJ13 includes 116(39) × 10−11 (JN [17]), DHea09,
DHMZ10, HLMNT11 and BDDJ12 use 105(26)× 10−11 (PdRV [18]).

A comparison between theory and experiment [22] is given in Table I (see
also [23]). Theory results shown are updates from Ref. [17] using results on
improved 4-loop and the new 5-loop QED corrections [24], improved lepton
mass ratios [25] and using the new Higgs mass value from ATLAS and CMS
in the evaluation of the weak corrections [26].

4. Lessons and outlook

Effective field theory is the only way to understand relationships be-
tween different channels, like e+e−-annihilation cross-sections and τ -decay
spectra. Global fit strategies allow to single out variants of the effective res-
onance Lagrangian models. Models for individual channels can parametrize
data, but do not allow to understand them and their relation to other chan-
nels. We get perfect fits for |Fπ(s)|2 up to just above the φ without higher
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ρ’s ρ ′ , ρ ′′ , which seem to be mandatory in the Gounaris–Sakurai type fits.
τ -data in our approach play a special role, because they are much simpler
than the e+e− data, which exhibit intricate γ–ρ0–ω–φ mixing effects.

RLA type analyses provide analytic shapes for amplitudes, and such
“physical shape information” is favorable over ad hoc data interpolations,
the simplest being the trapezoidal rule, which is known to be problematic
when data are sparse or strongly energy dependent.

Limitations of the RLA are the large couplings which make systematic
higher order improved analyses problematic. As illustrated by Fig. 3, consid-
ering pions and kaons to be point-like may be not too bad an approximation,
in the range we are applying the model. Also, we consider our analysis as
a starting point to be confronted with other RLA versions and implementa-
tions and with what happens if one tries to include higher order effects.

Many thanks to the Organizers for the invitation and support to the
2013 “Matter to the Deepest” International Conference at Ustroń, Poland,
and for giving me the opportunity to present this talk.
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