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We present results for certain classes of diagrams contributing to the
anomalous magnetic moment of the muon at five-loop order. Our method
is based on first constructing an approximating function for the vacuum
polarization function of the photon at four-loop order which later can be
numerically integrated to obtain the anomalous magnetic moment of the
muon.
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1. Introduction

The anomalous magnetic moments of electron and muon are some of the
best measured and theoretically predicted quantities. The QED corrections
have recently been calculated numerically up to five loops in [1, 2]. Up to
next-to-next-to-leading order complete analytical results are available [3, 4].
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At the four-loop order only partial results exist, contributions from correc-
tions to the vacuum polarization function of the photon have been calculated
in [5], contributions due to light lepton loops in [6] and due to heavy leptons
in [7]. Recently, in Ref. [8] some five-loop corrections have been calculated
by using the leading term in the high-energy expansion of the vacuum po-
larization function of the photon. Since this approach leads to a surprisingly
large deviation from the numerical result, the method has been improved in
Ref. [9]. In the following, we will review the main ingredients of the analysis
in Ref. [9] and discuss the results.

2. Setup of the calculation and results

The QED corrections to the anomalous magnetic moment aµ can be
calculated in a perturbation theory and can thus be written in the form of
power series in the fine structure constant α

aµ =

∞∑
k=1

(α
π

)k
a(2k)µ , (1)

where a
(2k)
µ can be further decomposed — following the conventions in

Ref. [1] — as

a(2k)µ = A
(2k)
1 +A

(2k)
2 (me/mµ) +A

(2k)
2 (mτ/mµ) +A

(2k)
3 (me/mµ,mτ/mµ) .

(2)
A

(2k)
1 contains the universal contributions, which in the case of the muon

anomalous magnetic moment only contain muon loops. The diagrams con-
tributing to A(2k)

2 (me/mµ) and A(2k)
2 (mτ/mµ) have at least one electron or

tau loop, respectively. In A
(2k)
3 (me/mµ,mτ/mµ), contributions from dia-

grams with both electron and tau loops are collected. In this paper, we
are mainly interested in contributions to A(2k)

2 (me/mµ) without any muon
loops.

The contributions to the anomalous magnetic moment of the muon due
to photon polarization effects can be calculated (cf. Fig. 1) by using [10]

aµ =
α

π

1∫
0

dx(1− x)
1

1 +Π(sx)
, sx = − x2

1− x
m2
µ , (3)

where Π denotes the vacuum polarization function as defined in Eq. (4).
This formula can be obtained by considering the one-loop result for g − 2
for the case of a heavy photon in combination with the dispersion relation
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for Π(q2). The classes of diagrams accessible by this method are shown in
Fig. 2. Thus, we have to find a suitable approximation for Π(q2) which, in
turn, can be integrated to obtain aµ.

Fig. 1. Prototype diagram.
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Fig. 2. Classes of diagrams accessible by the used method.

We define the vacuum polarization function Π(q2) as usual by

(
qµqν − q2gµν

)
Π
(
q2
)

= ie2
∫
dx 〈0|eiqxTjµ(x)jν(0)|0〉 , (4)

with the current jµ = ψ̄γµψ and write it as an expansion in the fine-structure
constant α

Π
(
q2
)

=
α

π
Π(1)

(
q2
)

+
(α
π

)2
Π(2)

(
q2
)

+
(α
π

)3
Π(3)

(
q2
)

+
(α
π

)4
Π(4)

(
q2
)

+O
(
α5
)
. (5)

In the following, we will collect the available results for the low- and
high-energy region and the threshold region, which will later be used to
construct an approximating function. For details on the calculation of the
listed results, please refer to Ref. [9]. In the following, nh and si label
contributions from lepton loops and singlet diagrams.
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In the low-energy limit, the polarization function can be expanded in a
power series in z = q2/(4m2

q) < 1

Π
(n)
le =

∞∑
k=1

Π
(n)
le,kz

k . (6)

For Π(4)
le , one obtains

Π
(4)
le = z

(
n2h(0.066 si + 0.571) + 0.112n3h + 0.834nh

)
+z2

(
0.025n3h + n2h(0.140 si + 0.366) + 2.230nh

)
+z3

(
0.012n3h + n2h(0.126 si + 0.277) + 3.396nh

)
.

In the high-energy region, we write the result in the form

Π
(n)
he =

∞∑
k=0

Π
(n)
he,kz

−k (7)

with

Π
(4)
he = n3h

(
−0.009 log3(−4z)+0.019 log2(−4z)−0.076−0.086 log(−4z)

)
+n2h

(
− 0.021 log2(−4z) + log(−4z)(0.496 si− 0.258)

+(0.638− 1.619 si)
)

+ nh(0.180 log(−4z)− 1.972)

+
[
n2h
(
(−2.546 si− 0.015) + 0.188 log3(−4z)− 0.938 log2(−4z)

+2.414 log(−4z)
)

+ n3h
(
− 0.028 log3(−4z) + 0.181 log2(−4z)

−0.666 log(−4z) + 0.684
)

+ nh
(
0.141 log2(−4z)− 0.281 log3(−4z)

+1.265− 2.048 log(−4z)
)]/

z .

The polarization function in the threshold region can be written as

Π
(n)
thr = 16π2

∞∑
k=2−n

Π
(n)
thr,k

(√
1− z

)k (8)

with the four-loop contribution

Π
(4)
thr =

14.640nh
1−z

+
−184.800nh−70.130nh log(1−z)√

1−z
+8.278nh log2(1−z)

+ log(1−z)
(
−185.400nh − 3.553n2h

)
− 6.220nh log3(1−z) + C ,

where C denotes an unknown constant.
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To obtain an interpolation between these regions, a Padé approximation
has been used. We show the result for the approximating function in Fig. 3,
where the envelope together with the relative error is displayed. Inserting
the approximation for Π(4) into Eq. (3), the results shown in Table I are
obtained.
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Fig. 3. Padé approximation for Π(4)
(
− x2

1−xm
2
µ

)
. We show in the top part the

approximants and in the bottom part the relative error with respect to the local
mean of all approximants obtained.

TABLE I

Results for A(10)
2 (me/mµ) with pure electronic insertions. The errors listed in the

second column are estimated from the spread between different Padé approximants,
which is negligible for classes I(a)–I(e). Please note that the authors of Ref. [8] only
used the asymptotic form of Π(s) and did not provide any error estimate.

This work Ref. [8] Refs. [11–14]

I(a) 20.142 813 20.183 2 20.142 93(23) [11]
I(b) 27.690 061 27.718 8 27.690 38(30) [11]
I(c) 4.742 149 4.817 59 4.742 12(14) [11]
I(d)+I(e) 6.241 470 6.117 77 6.243 32(101)(70) [11]
I(e) −1.211 249 −1.331 41 −1.208 41(70) [11]
I(f)+I(g)+I(h) 4.446 8+6

−4 4.391 31 4.446 68(9)(23)(59) [11, 12]
I(i) 0.074 6 +8

−19 0.252 37 0.087 1(59) [13]
I(j) −1.246 9+4

−3 −1.214 29 −1.247 26(12) [14]
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The results listed for classes I(a)–I(c) are exact since we numerically
integrated the known one- and two-loop results for the vacuum polarization
function. Classes I(d) and I(e) are calculated using the highly constrained
Padé approximants, which have been constructed using 30 terms in the low-
and high-energy expansion. Due to the vast amount of information, the
results for g − 2 using different approximants have very little spread and
the final result is thus very precise. The situation is quite different for
classes I(f)–I(j) which require the knowledge of Π(q2) at four-loop order.
Since there is only a limited number of terms in the relevant expansions,
the Padé approximation is less precise and the precision of our result for
g − 2 is limited. In general, we find good agreement with the results from
Refs. [11–14], but for some classes a certain tension remains.

3. Conclusions

We calculated the contribution to the anomalous magnetic moment of
the muon arising from corrections to the vacuum polarization function of
the photon at five-loop order. To this end we constructed an approximation
of the vacuum polarization function of the photon at four-loop order based
on expansion in the low- and high-energy and the threshold region. We find
good agreement with the results presented in Refs. [11–14].
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