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1. Introduction

The nucleon electromagnetic form factors play an important role in our
understanding of strong interactions at low energies and attract a lot of at-
tention. A recent review of this subject can be found in [1]. One of the im-
portant sources of experimental information is the radiative return method
advocated to be used in this context in [2] and the nucleon final states were
added to Monte Carlo event generator PHOKHARA to help the form fac-
tor extractions from the data. With more and more accurate experiments,
the radiative corrections including the photon emission from final charged
nucleons and better modelling of the form factors are indespensible. This
subject will be addressed in detail in [3] and here we give a short overview
of the obtained results. In Section 2 we describe our notation and adopt a
simple model nucleons form factors relaying on SU(2) isospin symmetry. In
Section 3 we give some details about fits of the model to the experimental
data. In Section 4 the impact of the final state radiation on the cross section
for the process e+e− → p̄pγ is shortly summarized.

2. Form factors

Within QED, the hadronic current has the following form

Fµ = −iev̄(p2)

(
FN1

(
Q2
)
γµ −

FN2
(
Q2
)

4mN
[γµ, 6Q]

)
u(p1) , (1)
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where F1 is a Dirac form factor and F2 is a Pauli form factor. It is convenient
to express cross section and distribution for the process e+e− → p̄p in terms
of electric and magnetic Sachs form factors, which have the following form

GNM = FN1 + FN2 , GNE = FN1 + τFN2 , (2)

where τ = Q2/4m2
N .

Nucleons form factors can be decomposed into isoscalar (F s
i ) and isovec-

tor (F v
i ) contributions. One can write the Pauli and Dirac form factors in

the following form

F p1,2 = F s
1,2 + F v

1,2 , Fn1,2 = F s
1,2 − F v

1,2 . (3)

We assume here, for simplicity, an exact SU(2) isospin symmetry, thus no
contributions coming from particles containing s-quarks are considered.

We have modelled the isovector and isoscalar contributions using Breit–
Wigner functions with constant widths as propagators and assume complex
couplings, which partly take into account final states interactions. To fulfil
the theoretical constraints and fit the experimental data, it was necessary
to consider four radial excitations. We have fixed the masses and widths at
the PDG [4] values. Considered contributions have the following form

F s
1 =

1

2

∑3
n=0 c

1
nBWωn(s)∑3
n=0 c

1
n

, (4)

F v
1 =

1

2

∑3
n=0 c

2
nBWρn(s)∑3
n=0 c

2
n

, (5)

F s
2 = −1

2
b

∑3
n=0 c

3
nBWωn(s)∑3
n=0 c

3
n

, (6)

F v
2 =

1

2
a

∑3
n=0 c

4
nBWρn(s)∑3
n=0 c

4
n

, (7)

(8)

where the Breit–Wigner function is defined as

BWi =
m2
i

m2
i − s− imiΓi

. (9)

Parameters a and b come from the normalization of the electric and magnetic
form factors in the limit of s = 0 to electric charges and magnetic moments
of nucleons, and read

a = µp − µn − 1 , (10)
b = −µp − µn + 1 . (11)
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We have imposed the asymptotic (large s) behaviour of the form factors to
fulfil the QCD predicted [5] power laws

F1(s) ∼
1

(s)2
, F2(s) ∼

1

(s)3
. (12)

This gives relations between the couplings and only twelve parameters sur-
vive to be determined using experimental data.

3. Fits of the theoretical model to experimental data

The free parameters were determined by fits to the measured observables.
This fit was done for all available experimental data including the cross
section for the process e+e− → N̄N , where N denote nucleons as well as
the inverse process. We have used also the data for the ratio of electric and
magnetic form factors in the space-like and time-like regions, and also the
form factors extracted in the space-like region. The experiments are listed
in Table I.

TABLE I

Values of the chi-squared distribution and number of measured points for particular
experiments.

Experiment Type Number of points chi-squared value

BaBar [6] cross section e+e− → pp̄ 38 39.69
FENICE [7] cross section e+e− → pp̄ 5 4.42
DM2 [8] cross section e+e− → pp̄ 7 24.52
DM1 [9] cross section e+e− → pp̄ 4 1.23
Adone [10] cross section e+e− → pp̄ 1 0.46
BES [11] cross section e+e− → pp̄ 8 13.58
CLEO [12] cross section e+e− → pp̄ 1 0.127
JLab 2005 [13] proton ratio 10 18.47
JLab 2002 [14] proton ratio 4 5.32
JLab 2001 [15] proton ratio 13 9.52
MAMI [16] proton ratio 3 2.08
JLab 2010 [17] proton ratio 3 3.63
PS 170 [18] proton ratio 5 5.98
BaBar [6] proton ratio 6 22.27
PS170 [19] cross section pp̄→ e+e− 8 8.07
PS170 [20] cross section pp̄→ e+e− 3 1.8
E760 [21] cross section pp̄→ e+e− 3 1.05
E835 [22] cross section pp̄→ e+e− 5 3.51
E835 [23] cross section pp̄→ e+e− 2 0.08
JLab [24] neutron ratio 3 3.64
BLAST [25] neutron ratio 4 6.07
FENICE [7] cross section e+e− → nn̄ 4 15.26
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The χ2 values are also given in this table showing good, but not excellent
agreement of the considered model with the data. We show here two plots
only. First of them is cross section for the process e+e− → p̄p as a function
of
√
s shown in figure 1. Measured values of considered cross section are

presented as points with error bars. Solid/blue line represents fitted value of
mentioned cross section. For this observable, the theoretical model is able
to reproduce the data with the exception of DM2 experiment, where for the
7 experimental points, the full chi-squared value is equal 24.52. Ratio of
the electric and magnetic form factors in the space-like region for proton is
shown in figure 2. Measured values of this ratio are presented as points with
error bars. The solid/blue line represent fitted value of considered ratio.
For the data for the process p̄p→ e+e− overall value of chi-squared is very
small and this data were fitted perfectly. In the case of the ratio of electric
and magnetic form factors in the time-like region, the chi-squared value is
quite big. This observable was measured by two experiments PS170 and
BaBar, which are evidently inconsistent thus the wrong fit. When we have
finished our fits, the new data from the experiment BaBar emerged and we
have checked that the considered model of the nucleons form factor do not
reproduce well the data. An extension of the presented model considering
also φ-meson contributions to the nucleons form factors is required to fit this
data appropriately [3].
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Fig. 1. Measured and fitted cross section for the process e+e− → p̄p.
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Fig. 2. Measured and fitted ratio of electric and magnetic form factors in space-like
region.

4. FSR radiative corrections

We have investigated the impact of the final state radiation on cross
section for the process e+e− → p̄pγ. The model of the form factor which is
described in previous sections was used in this studies. Implementation of
the final state radiation for the proton and antiproton channel was done in
the same way as it was done for muons in [26]. Calculated differential cross
section includes also the Columb factor. Relative difference between the
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Fig. 3. Relative difference between the differential cross section which includes FSR
and ISR and which includes only ISR.
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differential cross section, as a function of proton–anti-proton pair invariant
mass (Q2), which includes only ISR and which includes ISR and FSR is
shown in figure 3 for energy

√
s = 2.5 GeV. We have used here following

angular cuts on photon, proton and antiproton 30◦ < θγ < 150◦. The
influence of the final state radiation depends on value of Q2. For small Q2,
the contribution of the FSR is smaller than 1%, while for large Q2, can grow
up to 10%. A detailed studies of final state radiation will be presented in [3].

5. Conclusions

A new model of the nucleons form factors was developed fitting all data
but the newly published very accurate BaBar data in the time-like region.
The final state radiation from protons was considered, which gives up to
10% contribution to the radiative return cross section in the region large
proton–anti-proton pair invariant masses.

Work financed in part by the Polish National Science Centre, grant num-
ber DEC-2012/07/B/ST2/03867.
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