Vol. 44 (2013) ACTA PHYSICA POLONICA B No 11

RARE MUON DECAYS*

ROBERT SZAFRON

Department of Physics, 4-181 CCIS, University of Alberta
Edmonton AB T6G 2E1, Canada

szafron@ualberta.ca

(Received October 24, 2013)

In this paper, we present a short review of searches for charged lepton
flavour violation on the example of rare muon decays. We discuss the eval-
uation of electron spectrum for muon decay in orbit which is a background
process for conversion experiments.
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1. Introduction

In the era of the LHC, precision experiments play a very important role
in constraining New Physics (NP) models. Moreover, this constrains can
also be used to improve theoretical prediction of expected signals in some
NP models at the LHC [1]. Up to now, both in accelerator searches and
in precision experiments, no clear signal of physics beyond Standard Model
(SM) was observed. Today, the main discrepancy between experiment and
SM is muon g — 2, where the difference between theory and experiment is
about 3-4 standard deviation [2—4]. The same kind of interactions which
may contribute to dipole moments of charged leptons can induce flavour
off-diagonal dipole moments, which lead to the Charged Lepton Flavour
Violation (CLFV) process. In many models, CLFV and contributions to
anomalous dipole moments can be related to the same NP scale and, there-
fore, both measurements of g — 2 for charged leptons and searches for CLFV
process are complementary sources of bounds on NP parameters and scale.

In this proceeding, we will shortly review the current status and main
difficulties related to searches for exotic muon decays. For more compre-
hensive reviews, we refer any interested Reader to existing literature on this
topic. For most recent reviews, see e.g. [5-7].
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2. p — ey

Searches for CLFV started just after the discovery of the muon, when
it was conjectured that process p — ey should be observed. Until now, no
signal was observed. Recent measurement form the MEG experiment gives
bound for the branching fraction of decay ut — e of [3]

Br(u™ — ety) < 5.7 x 10713 (1)

which is still far from the SM value Br(ut — etv) ~ 107°*. However, many
NP models give significant contribution to this process. Models such as the
Supersymmetry, two Higgs doublet models, models with extra Z’ particle
etc. predict branching for y — ey at a rate comparable with present ex-
perimental accuracy. Although the signal for this process is very clean —
with back-to-back electron and photon both carrying energy equal to half
of muon mass — except accidental experimental background, there is also
a background from the Radiative Muon Decay (RMD). From an experi-
mental point of view, it is important to have a good angular and energetic
resolution to reduce the background [5]. MEG experiment is currently be-
ing upgraded [9] and is expected to reach accuracy improved by one order of
magnitude with respect to present measurement, Br(u™ — eTv) < 6x10714.

3. Muon conversion

Another important CLFV process can occur with muons caught in orbit
of an atom. Typically, when muon is stopped in some material, it loses its
energy by emitting X-rays and, finally, is captured in 15 orbital state. This
allows for direct searches for conversion which is a process in which muon is
converted to electron, and the nucleus plays a role of spectator and source of
electromagnetic field. In this section, we will describe muon conversion and
the only physical background to this process — muon Decay In Orbit (DIO)
i.e. normal decay mode (1 — ev, %) in the presence of electromagnetic field
of nucleus.

The experiment measures the number of signal events normalized to all
nuclear captures

T+ (A2) e+ (A 2) @
e Du+ (A, Z) » v+ (A, Z - 1)]°

The current best limit is obtained by the experiment SINDRUM II [12]
Ry <7x 1071, (3)

however, the planned experiment MuZ2e is expected to improve this limit by
four orders of magnitude [13, 14].
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The main reason that such accuracy can be obtained is that conversion
experiments have an excellent signal-to-background ratio. The signal for the
conversion is mono-energetic electron with the energy

Eeonv = my — Eyin — Erec, (4)
2
where Fpy, = m (Z‘; K +0O(Za) is binding energy of the muon, and Eyec = ;n—]\;

is recoil energy (M is mass of the nucleus).

The only physical background for conversion searches is muon DIO. Un-
like the case of free muon decay where the electron maximal energy is %
due to energy and momentum conservation, maximal energy for the case of
muon DIO is E.ony. Therefore, the tail of the electron spectrum from muon
DIO overlaps with the region where the conversion signal is expected to be
found. Planned precision of the experiment requires the evaluation of this

background with very high accuracy.

3.1. DIO

Most recent numerical calculations, which took into account finite size
of the nucleus and recoil effect, were done in [10, 11]. These analyses were
based on numerical solutions of the Dirac equation. In this section, we will
rather concentrate on analytical expression which can be obtained for the
electron spectrum. Therefore, we will neglect the corrections coming from
the finite size of nucleus. We will also neglect the recoil effect which can be
easily reintroduced at the leading order. Electron spectrum can be divided
into two regions in which two different expansions can be performed.

The first region is defined by the condition that momentum transfer ¢
between the muon, the electron and the nucleus is much larger than mZa.
In this region, an expansion of the electron spectrum into powers of Za can
be safely performed. This region is of special importance for the conversion
experiments because in this energy range conversion signal is expected to
appear. The main difficulty in this region is a slow convergence of a per-
turbation series. To illustrate this effect, we expand the spectrum around
FE. = Econy. For simplicity, we will now consider muon decaying to electron
and some neutral scalar. This scalar can be interpreted, for example, as a
Majoron particle [15]. In this case, the spectrum has the following expansion

My dF
Iy dE.

with Iy equal to the free decay rate and the function f(Z«) can be expanded
as follows

~ (ZO‘)S(EB - ECOHV)Sf(ZO‘) (5)

12 A+ 47372 — 2044 10g(2) — 1536 log(Z
f(Za)%%—1602a+606 +473n" — 29 gog() 536 log(Za)
g T

(Za)?.
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The subsequent coefficients of this series are large and in order to get reliable
results, we have to expand the spectrum to high order in Za.

We will present here a simple derivation of the lowest order expansion
coefficient of the function f(Za). The decay rate is given by

_ 1 d*p d3k o
" 2, / Gr)2E, n)ioE, OB — B = E)ITT (6)

with

j:/dgr |:u/ <1 - L’YOVI ﬁ) uwnon—re_i(ﬁ+k)'F+ @(l)eiikﬁuwnon—r
2my,

) ()

By p, we denote the electron momentum and k is the Majoron momentum.
We used the electron wave function expanded in terms of the external field

as a plain wave plus the first order correction v/ = \/;—E (v T 4 w(l))

and the muon lS waye function with the first order relativistic correction
P = < u and u’ are spinors respectively for muon

and electron Explicit expression for these wave functions can be found
in any standard textbook on relativistic quantum mechanics, see e.g. [16].
Integrating by parts in the first term, we get

j - /d3r |:"LL/ <1 + L’YO;Y‘ . <ﬁ+ E)) anon—re_i(ﬁ—i_};)';
2my,
+ e T utpon | (8)

Now, we calculate all required Fourier transformations and we get

A_<1+2:n’70’?-(17+15)> (4 1ﬁ>2+ o (E?—ﬁ?) 7. (10)

At this stage of calculations, we already expanded muon wave function,
keeping only the lowest order term in Za. Next, we average over the spin
states of muon and sum over the spins of electron, finally, we integrate over
phase space and expand around E, = m,, such that we obtain

my dI' 512(my, — Ee)*(Za)®

T dB. i + O (Be —mp)*) . (11)
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This simple and instructive derivation shows us that effects of electromag-
netic field both for the electron and the muon have to be taken into account
with the same accuracy. This is characteristic feature of the spectrum ex-
pansion in this region.

The other region is defined by a condition that ¢ ~ mZa. In this region,
the dominant effect is smearing of the spectrum due to the motion of a
muon in the atom. We will not describe in any more details evaluation of
the electron spectrum in this energy range as this region is not interesting
from the point of view of the experiments searching for the muon conversion.

4. Conclusions and outlook

In this short note, we presented a brief summary of searches for the ex-
otic muon decays. Processes of that kind are clear signal of physics beyond
the SM. Also the ratio of signal-to-background is very good which allows for
precise measurements. But increasing accuracy of the experiments requires
also better determination of the background. In searches of u — ey, spec-
trum of both electron and photon from RMD has to be precisely evaluated.
For the case of the conversion experiments, a spectrum of electrons produced
in DIO has to be well understood and evaluated with good precision in the
endpoint region.
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tion, hospitality and support. This work was supported by the Science and
Engineering Research Canada (NSERC).
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