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It has been suggested that residual symmetries in the charged-lepton
and neutrino mass matrices can possibly reveal the flavour symmetry group
of the lepton sector. We review the basic ideas of this purely group-
theoretical approach and discuss some of its results. Finally, we also list
its shortcomings.
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1. Introduction

Recent measurements of reactor neutrinos have clearly demonstrated
that the mixing angle θ13 of the lepton mixing matrix U = (Uαj) (α = e, µ, τ ,
j = 1, 2, 3) and, therefore, the element |Ue3| ≡ s13 is non-zero. Consequently,
the tri-bimaximal mixing (TBM) [1] is not viable anymore. Writing the mix-
ing matrix in terms of its column vectors uj (j = 1, 2, 3), i.e.

U = (Uαj) = (u1, u2, u3) , (1)

we can say that u3 cannot have the TBM form. However, it could still be
that u1 or u2 agrees with the corresponding column in TBM. These cases
are called TM1 and TM2, respectively, in [2]:

TM1 : u1 =
1√
6

 2
−1
−1

 , TM2 : u2 =
1√
3

 1
1
1

 . (2)

Let us compare the predictions of these two cases. In both cases, s212 and the
product cos δ tan 2θ23, where δ is the CKM-type phase in U , are determined
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by s13. In the first case, these quantities are given by [2]

TM1 : s212 = 1− 2

3c213
<

1

3
, cos δ tan 2θ23 ' −

1

2
√

2s13

(
1− 7

2
s213

)
,

(3)
whereas in the second case, one obtains [2, 3]

TM2 : s212 =
1

3c213
>

1

3
, cos δ tan 2θ23 '

1√
2s13

(
1− 5

4
s213

)
. (4)

In these formulas, we use the customary abbreviations c2ij ≡ cos2 θij and
s2ij ≡ sin2 θij . Moreover, in the formulas for cos δ tan 2θ23, small terms of
the order of s413 have been neglected for simplicity. It should be noted that
the best-fit values of s212 are smaller than 1/3 [4], but at any rate, 1/3 is in
the 3σ range of s212. In that sense, TM1 fits the data slightly better than
TM2. Unfortunately, present data do not allow to determine the quantity
cos δ tan 2θ23.

Of course, it could also be that the “true” mixing matrix is not related
to the tri-bimaximal mixing at all; in this case, none of the columns of the
TBM matrix is a sensible approximation to one of the columns in the “true”
mixing matrix.

Recently, a purely group-theoretical attempt to track down the flavour
group G of the lepton sector has been put forward which postulates that
residual symmetries in the charged-lepton and neutrino mass matrices are
reflections of G and that the full flavour group can be determined by assem-
bling the residual symmetries from both mass matrices [5, 6]. This approach
is based on the fact that at low energies, the Standard Model gives the cor-
rect gauge structure of any extension trying to explain mass and mixing
phenomena. Therefore, the left-handed charged and neutral lepton fields
are not only in the same gauge doublets but also in the same multiplets
with respect to G, a fact which is hidden by the spontaneous symmetry
breaking. In this approach, it is possible that the flavour group determines
one column of U in terms of numbers of a purely group-theoretical origin.
It is also possible that two columns are determined, which means that, due
to unitarity, the full mixing matrix U has a group-theoretical origin. In this
context, we will see that TM2 plays a role.

The plan of this report is as follows. In Sec. 2, we discuss the idea of
residual symmetries. In Sec. 3, we briefly review the results of [7] based on a
computer-algebraic group scan. Then, we point out the connection between
residual symmetries and roots of unity in Sec. 4. After applying this in
Sec. 5 to find all flavour groups which enforce TM1, we conclude in Sec. 6
by discussing some caveats of the method of residual symmetries.
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2. Residual symmetries and lepton mixing

Though the method of residual symmetries can also be applied to Dirac
fermions, here we confine ourselves to Majorana neutrinos. Then the mass
Lagrangian in the lepton sector is given by

Lmass = −¯̀
LM``R + 1

2ν
T
LC
−1MννL + H.c. , (5)

where C is the charge-conjugation matrix. The mass matrices of the charged
leptons and neutrinos are diagonalized as

U †`M`M
†
`U` = diag

(
m2
e,m

2
µ,m

2
τ

)
and UTνMνUν = diag (m1,m2,m3) ,

(6)
respectively, leading to the mixing matrix U = U †`Uν . The fact that these
matrices are diagonalizable can be reformulated as

V`(α)†M`M
†
` V`(α) = M`M

†
` , Vν(ε)TMνVν(ε) =Mν , (7)

with unitary matrices V`(α), Vν(ε) defined as

V`(α) = U` diag
(
eiα1 , eiα2 , eiα3

)
U †` , (8)

Vν(ε) = Uν diag (ε1, ε2, ε3)U
†
ν . (9)

Equation (7) holds for arbitrary αj and arbitrary εj = ±1. In group-
theoretical terms, the mass matrices are invariant under

V`(α) ∈ U(1)× U(1)× U(1) , Vν(ε) ∈ Z2 × Z2 × Z2 . (10)

Obviously, V`(α) and Vν(ε) depend on the vacuum expectation values and
Yukawa coupling constants, and equation (7) contains no information be-
yond diagonalizability.

The idea of residual symmetries is the following. In a weak basis, the
fields `L, νL are in the same multiplet of the flavour group G under which the
Lagrangian is invariant. The flavour groupG is broken to different subgroups
G` and Gν in the charged-lepton and neutrino sector, respectively. From
equation (7), we know that

G` ⊆ U(1)× U(1)× U(1) , Gν ⊆ Z2 × Z2 × Z2 . (11)

For simplicity, we assume that there is one generator T of G` and one gen-
erator S of Gν . Therefore, we have

T †M`M
†
` T = M`M

†
` , STMνS =Mν . (12)

We furthermore assume that T has three different eigenvalues. Then T
and S determine one column of U , as we will argue now.
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Due to equation (11), we have

S2 = 1 ⇒ S = ±
(

2uu† − 1
)

(13)

with a unit vector u and Su = ±u. Since T commutes with M`M
†
` and has

three different eigenvalues, we know that U †` TU` = T̃ is diagonal. Therefore,
U` is determined by T and is thus independent of any parameters of the
Lagrangian. For the rest of the argument, we use the following theorem.

Theorem 1. If STMνS =Mν with S = ±(2uu† − 1), then Mνu ∝ u∗.
Thus, u is, apart from a phase, one of the columns of Uν and, therefore,
U †` u is a column in the mixing matrix U . Because U †` u is determined by the
group, it does not contain parameters of the model.

If there are two matrices S1, S2 with STjMνSj =Mν and S1S2 = S2S1,
two columns of U are determined and thus the complete mixing matrix.

There are two ways to tackle the mathematical problem of residual sym-
metries for the determination of possible flavour symmetry groups:

1. scanning classes of finite groups,

2. solving relations involving roots of unity.

3. Group scans

Scans of groups have, for instance, been performed in [7, 8] using GAP [9]
and the small groups library [10]. This library contains all finite groups with
the order up to 2 000, with the exception of the order of 1024. Here we want
to discuss the results of [7]. The authors of this paper have assumed that
Gν = Z2 × Z2, i.e. there are two matrices Sj in Gν , and that the group
produces mixing parameters s2ij within the 3σ range of the fit results of [4].
The authors have performed two scans. In the first one, they allowed for
ordG < 1536, with the exception of one group whose order is just 1536, and
assumed that G` is generated by T̃ = diag(1, ω, ω2) with ω = e2πi/3. It is
amazing that only three groups, namely ∆(6 × 102), (Z18 × Z6) o S3 and
∆(6× 162), lead to acceptable mixing patterns. All three groups have TM2

and a trivial CKM-type phase. Therefore, s212 is given by equation (4). One
can show [11] that, in the case of the three viable groups, for every s213 there
are two solutions of s223 given by

s223 =
1

2

(
1±

√
2s213 − 3s413
c213

)
. (14)

With this formula, the numbers in the third column in Table 3 of [7] are
reproduced.
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In the second scan, the authors of [7] have assumed that the group order
is smaller that 512 but allowed for G` all Abelian finite groups. In this case,
no candidates were found.

4. Residual symmetries and roots of unity

Now, we come to the second way of treating residual symmetries. Let us
assume for simplicity that

• G` is generated by T and Gν by S, respectively,

• detS = 1 and thus S = 2uu† − 1.
Then finiteness of the group G requires the existence of positive integers m,
n such that

Tm = S2 = (ST )n = 1 . (15)

We denote the eigenvalues of T by eiφα . If ST has eigenvalues λj , then
λnj = 1. If the unit vector u in S coincides with the ith column of U = (Uαj),
then the trace and determinant of ST give [6]∑
α=e,µ,τ

(
2 |Uαi|2 − 1

)
eiφα = λ1 + λ2 + λ3 and

∏
α

eiφα = λ1λ2λ3 , (16)

respectively. Thus we have a vanishing sum of six roots of unity plus the
condition for the determinant. Equation (16) can be used in two ways.
Departing from elements S and T of a known group G, one can search for
suitable |Uαi|2 (i = 1, 2, 3). On the other hand, for a given column in U , one
can try to find a suitable group G.

5. TM1 and roots of unity

As an application of equation (16), we want to investigate which groups
can enforce TM1 [12]. In this case, the coefficients in equation (16) are
2 |Ue1|2 − 1 = 1/3 and 2 |Uµ1|2 − 1 = 2 |Uτ1|2 − 1 = −2/3. Therefore,
equation (16) leads to the vanishing sum

−eiφe + 2eiφµ + 2eiφτ + 3λ1 + 3λ2 + 3λ3 = 0 . (17)

In order to solve this equation, one can apply a theorem of Conway and
Jones [13], referring to all possible vanishing sums of roots of unity up to nine
roots1. Amazingly, the solution of equation (17) allows very little freedom:

eiφe = η , eiφµ = ηω , eiφτ = ηω2 , λ1 = ε , λ2 = −ε , λ3 = η , (18)
1 Actually, theorem 1 in [12], quoted from the book of Miller, Blichfeldt and Dickson,
is wrong and one has to use the theorem of Conway and Jones instead, in order to
find the solution of equation (17). We thank R. Fonseca for pointing this out to us.
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where η is an arbitrary root of unity and ε = ±iη. In the basis where the
charged-lepton mass matrix is diagonal, which we indicate by a tilde on T
and S, this solution leads to

T̃ = η diag
(
1, ω, ω2

)
, S̃ = 2u1u

†
1 − 1 (19)

with u1 of equation (2). Clearly, S̃ must have this form because we departed
from TM1. One can show that T̃ and S̃ generate the group Zq × S4 with η
being a primitive root of the order of q [12]. Thus with the method of residual
symmetries, one finds an almost unique group for TM1. For the generators
of S4 in its three-dimensional irreducible representations, see e.g. [14].

It is instructive to go into another basis where S has a simpler form. Per-
forming a similarity transformation with the matrix Uω defined for instance
in [12], we obtain

S = UωS̃U
†
ω =

 −1 0 0
0 0 1
0 1 0

 , T = UωT̃U
†
ω = η

 0 1 0
0 0 1
1 0 0

 .

(20)
In that basis, M`M

†
` is invariant under cyclic permutations and the eigen-

vector u of S with eigenvalue 1 is given by u = (0, 1, 1)T /
√

2. Consequently,
up to a basis transformation, the mechanism for TM1 developed here boils
down to U †ωu = u1, where u1 is the first column of TBM [12, 15].

6. Residual symmetries and caveats

Up to now, we have operated under the premises that the residual sym-
metries in M`M

†
` and Mν really determine the flavour group G as a sym-

metry group of the Lagrangian. Let us be more precise now and denote by
Ḡ the group generated by the residual symmetries. What is the possible
relationship between G and Ḡ? Clearly, Ḡ ⊂ U(3) due to three families
of fermions. Since the method is purely group-theoretical and uses only
information contained in the mass matrices, Ḡ can at most yield D(G),
the representation of G on the lepton gauge doublets. Moreover, there are
models with accidental symmetries in the mass matrices, in which case Ḡ
not even a subgroup of D(G). Finally, there are predictive models with to-
tal breaking of G. Clearly, there the method of residual symmetries is not
applicable.

The author thanks the Organizers for their hospitality and the pleasur-
able atmosphere at the conference.
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