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Adding gauge singlets to the original Standard Model allows an expla-
nation for the observed smallness of the neutrino masses using the see-saw
mechanism. Following our plans presented in the last conference of this se-
ries, we present the results for the non-standard setting, when the number
of the singlets is smaller than the number of the SM generations.
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1. Continuing Ustroń’11

In [1], we described our plans to parametrise the nL-generations Standard
Model equipped with nR additional gauge singlet fermions NR and nH ≥ 1
Higgs doublets φk [2]. The Grimus–Lavoura ansatz [3] gives the masses and
mixing parameters in terms of the parameters of the Lagrangian

L = LSM,ν − φ̃†kN̄RY
k
ν LL − 1

2N
>
RC−1MRNR + h.c. , (1)

where φ̃k = iτ2φ
∗
k is the SU(2)-conjugated Higgs doublet and Y k

ν is the
nR × nL neutrino Yukawa matrix for the kth Higgs doublet.

Electroweak symmetry breaking triggered by the vacuum expectation
values of the neutral Higgs fields (0, 1√

2
vk)
> = 〈φk〉>0 gives an effective mass

term to all Standard Model particles: the vector bosons, the Higgs bosons,
and the charged fermions. It also generates the nR × nL dimensional Dirac
mass term

MD =

nH∑
k=1

1√
2
vkY

k
ν (2)
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that enters the symmetric (nL + nR)× (nL + nR) neutrino mass matrix

Mν =

(
ML M>D
MD MR

)
, (3)

where MR is the Majorana mass matrix from Eq. (1) and ML = 0 at tree
level, as such a term violates the U(1)Y × SU(2)weak gauge symmetry of the
Standard Model.

The most convenient diagonalisation of the mass matrix Mν , Eq. (3),
for arbitrary nL and nR is the Grimus–Lavoura ansatz [3], as it reduces the
(nL + nR)2 parameters of the unitary diagonalisation matrix to only 2nLnR
parameters in the complex matrix B (see [3]) that go into the ansatz.

2. Reverse engineering the Grimus–Lavoura ansatz

The Grimus–Lavoura ansatz determines the masses and mixing matrices
of the physical particles from the parameters of the Lagrangian. Our idea
was to determine the parameters of the Lagrangian from the masses and
mixings.

The Casas–Ibarra parametrisation [4], used in [5], does this determina-
tion for nL = nR and solves the leading order see-saw [6] equation

M` = −M>DM−1h MD (4)

by the ansatz
MD = iM

1/2
h ×O ×M1/2

` (5)

with an arbitrary (complex) orthogonal matrix O. This is the most general
parametrisation for the case nL = nR. Our investigation for the case nL > nR
showed that it is always possible to reduce the problem of diagonalising the
(nL + nR) × (nL + nR) dimensional Mν to diagonalising an effective 2nR
dimensional M ′ν using unitary matrices:

U>MνU = U>
(

0 M>D
MD MR

)
U =

(
0 0
0 M ′ν

)
. (6)

This was argued before in [2]. We construct the explicit matrices for this
reduction. We presented the case nL = 3 and nR = 1 at the conference [7].

In the case nL = 3 and nR = 2, we can define the unitary matrix U as a
product U = U12 × U13 with the unitary matrices defined as

(U1n)jk = δjk −
(

1−
√

1− |sn|2
)

(δj1δk1 + δjnδkn) + snδj1δkn − s∗nδjnδk1 ,
(7)
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where angles and phases are given by
s∗2√

1− |s2|2
=

(Mν)14(Mν)35 − (Mν)15(Mν)34
(Mν)24(Mν)35 − (Mν)25(Mν)34

(8)

and
s∗3√

1− |s3|2
= −

√
1− |s2|2

(Mν)14(Mν)25 − (Mν)15(Mν)24
(Mν)24(Mν)35 − (Mν)25(Mν)34

. (9)

3. Numerical evaluations

The analytic analysis using angles and phases gives a deeper insight
into the problem. However, the rotation matrices defined by the angles can
lead to numerical instabilities and more time consuming operations in the
numerical calculations than using the parameters of the Lagrangian directly.
Therefore, we just use a direct parametrisation of the Yukawa matrices and
not our result from the reverse engineering.

3.1. The case nL = 3 and nR = 1

We parametrise the Yukawa coupling as

Y k
ν =

√
2

v
mD~a

>
k with v2 =

nH∑
k=1

v2k =
2m2

W

g2
, (10)

where mD is the singular value of MD, and the vectors ~ak describe the
relative coupling strength of the Higgs doublets. At tree level, we get the
mass relations

m2
D = m`mh and mR = (mh −m`) ∼ mh (11)

with m` the only non-vanishing light neutrino mass and mh the heavy mass.
The other two light states stay massless. Using the single Higgs doublet of
the Standard Model and calculating the loop corrections to the masses of
the neutrinos does not change this qualitative picture.

Including more Higgs doublets allows the radiative generation of a mass
for one of the massless neutrinos [2]. In our numerical example, we take two
Higgs doublets with the Yukawa couplings, Eq. (10). We ignore the effects of
the Higgs sector that do not influence the neutrino masses, only the lightest
neutral Higgs is required to have 125 GeV. Loop corrections are calculated
following [8].

The Monte Carlo sampling is used to get the numerical result. We gener-
ate random sets of the parameters {mh,mH2 ,mH3 ,~a1,~a2} which determine
the Yukawa couplings and the size of the loop corrections. If the generated
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one-loop neutrino masses fulfil the measured ∆m2
� and ∆m2

atm, we consider
the set an allowed point. Figure 1 (a) shows that the multitude of the heavy
Higgs masses and the different Yukawa couplings allows a band of neutrino
masses, that can fulfil the experimental constraint as long as the heavy sin-
glet is heavier than 830 GeV.

(a) (b) (c)

Fig. 1. Results for the case nR = 1. The plot (a) shows the light neutrino masses in
dependence on the mass of the heavy singlet. The middle (right) scatterplot (i.e.
(b) and (c)) shows allowed parameter points depending on the mass of the heavy
singlet mh through the colour code and on the masses of the heavier neutral Higgses
mH0

2,3
(the parameter φ describing the relative phase of the Yukawa couplings).

Figure 1 (b) shows the correlation of the masses of the heavy Higgses
with the scale of the heavy singlet. The distribution of the allowed points
suggest that only the size of the Higgs mass matters, but its type, whether it
is CP-conserving or CP-violating, is less important. The figure also tells us
that for a small scale of the heavy singlet, the masses of the heavy Higgses
have to become very big, suggesting a decoupling limit.

Figure 1 (c) shows the tight correlation between the alignment of the
Yukawa couplings and the required size of the Higgs masses. In order to show
this correlation in a single plot, we restrict the vectors to ~a>1 = (0, 0, 1) and
~a>2 = (0, 1, eiφ). We get valid parameter points only for | tan(φ+ 30◦)| < 1.2
and then we can get a rather tight constraint between the value of φ, the
scale of the heavy singlet and the masses of the heavy Higgses.

3.2. The case nL = 3 and nR = 2

We parametrise the Yukawa couplings as

Y k
ν =

√
2

v

(
mD2~a

>
k

mD1
~b>k

)
with m2

Di
= mνimhi , (12)

where we order the masses as mh1 > mh2 and mν1 > mν2 > mν3 = 0 (at
tree level). The vectors ~ak and ~bk describe the relative coupling strength of
the Higgs doublets. At tree level, we can reduce the (3 + 2)× (3 + 2) mass
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matrixMν according Eq. (6) to a 4×4 dimensionalM ′ν , which can be solved
by the Grimus–Lavoura ansatz, with MD parametrized by the Casas–Ibarra
ansatz, Eq. (5).

Although we can get both mass differences, ∆m2
� and ∆m2

atm, already
at tree level we perform our numerical analysis with the loop corrections
for the masses of the light neutrinos included. We fix mH1 = 125 GeV and
mh2 = 100 GeV and vary the parameters {mh1 ,~ak,

~bk,mH2 ,mH3} with the
constraint mH2,3 > 200 GeV and check if the mass differences between the
light neutrinos give ∆m2

� and ∆m2
atm. In this case, the influence of the

heavier Higgses is much smaller than for the case nR = 1. This can be easily
understood as the Higgs masses only influence the mass corrections to the
light neutrinos. But the mass differences of the light neutrinos, ∆m2

� and
∆m2

atm, are already mostly determined by the tree level.
Figure 2 (a) shows the solutions for the normal hierarchy of the neutrino

masses. The shaded bands show the most probable values of the masses.
We pick a very light scale for the heavy singlet, namely just 100 GeV. An
interesting observation is the reduction of the loop generated light neutrino
mass with the increase of the mass of the heavier singlet beyond 105 GeV.
The obtained masses of the light neutrinos do not saturate the cosmological
bound of

∑
imνi < 1 eV.

(a) (b)

Fig. 2. Results for the case nR = 2 showing the light neutrino masses in dependence
on the mass of the heavier singlet. The mass of the lighter heavy singlet mh2

is
set to 100 GeV. Normal (inverted) neutrino mass ordering is shown on the left
(right) side.

Figure 2 (b) shows the solutions for the inverted hierarchy of the neutrino
masses. Again, we pick a very light scale for the heavy singlet, namely just
100 GeV. In this case, the light neutrino mass increases monotonically with
the mass of the heavier singlet. Even though the sum of the masses gets
higher than in the normal hierarchy, we still cannot saturate the cosmolog-
ical bound. So cosmological estimates do not restrict the parameter space
of our model.
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4. Conclusions and outlook

Our study of the cases nR = 1 and nR = 2 shows that both cases
are not excluded by simple considerations of the measured neutrino mass
differences. To use the data of the neutrino mixing matrix, we have to
assume something about the charged lepton mass matrices, which was not
our goal. The case nR = 1 predicts a tight correlation between the scale
of the see-saw, masses of the heavy Higgses and the values of the Yukawa
coupling, suggesting a fine tuning of the Higgs sector in order to allow this
scenario. Further investigation into the required Higgs sector and the allowed
Yukawa couplings is necessary to rule out this scenario.

The case nR = 2 still has too many free parameters to give any tight
predictions. As we did not consider the charged lepton mass matrix, we
could not use the neutrino mixing matrix as a constraint to our model.

We saw in our analysis that a treatment of the extended Higgs sector is
needed. We plan to look for a source that can easily give experimental limits
on the parameters of the Higgs sector, including the Yukawa couplings. With
this tool equipped, we hope to support or rule out our nR = 1 scenario and
to sensibly restrict the case nR = 2.

T.G., A.J., and D.J. thank the Lithuanian Academy of Sciences for the
support (the project TauPol2013, No. CERN-VU-2013-3).
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