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Accelerating expansion of the Universe is now an indisputable observa-
tional fact and became one of the most important issues of both physics
and cosmology today, known as dark energy (DE) problem. The nature of
this phenomenon is still unknown and from observational point of view the
only way to put some light on cosmic expansion history is to combine dif-
ferent methods which are alternative to each other. In this light, we explore
the idea that strong gravitational lensing systems offer new opportunity to
constrain DE parameters in a way complementary to other cosmological
probes. It turns out that the angle of the confidence contour major axis for
strong lensing measurements depends on the redshift of the sample what
may help to break the degeneracy in the w0–wa parameters plane in the
Chevalier–Polarski–Linder parametrization of DE equation of state.
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1. Introduction

The accelerating expansion of the Universe was firstly discovered at the
end of the XX century on the type Ia supernovae (SNIa) Hubble diagrams [1]
and then confirmed by independent estimates of the amount of baryons and
cold dark matter [2]. Now, based on updated SNIa data [3] in compari-
son with precision measurements of cosmic microwave background radiation
∗ Presented by A. Piórkowska at the XXXVII International Conference of Theoretical
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(CMBR) anisotropies [4] and baryon acoustic oscillations (BAO) imprinted
in the large scale structure power spectrum [5], it is believed that this phe-
nomenon is caused by the unknown form of energy providing the dominant
contribution to the total energy budget of the Universe. One may need
to consider modification of gravity at cosmological scales or some exotic
material component (e.g. scalar field) to explain this puzzle. With lack
of clear observational indications concerning the true nature of DE, a spa-
tially flat [4] Friedman–Robertson–Walker model with the non-vanishing
cosmological constant Λ and pressureless dark + baryonic matter became a
standard reference point in modern cosmology. This so-called ΛCDM model,
while strongly motivated by observations, suffers however from several prob-
lems of fundamental nature [6]. The essence of DE puzzle is that for this
moment, there is no theoretical candidate substituting Λ. Whatever is the
true mechanism lying behind this puzzle, any method providing alternative
way of probing the cosmic expansion history is extremely important. In fact,
one observational test (e.g. SNIa observations), even with good statistics and
systematic precision, would not be sufficient if taken alone — the greatest
accuracy in cosmological measurements can be achieved mainly via indepen-
dent cross-checks and complementarity between alternative methods.

In this paper, we consider the possibility that strong gravitational lensing
systems (as a cosmological tool) may help to constrain DE models in a way
complementary to other methods.

2. Distance measures in cosmology

The possible way to describe the unknown DE is to consider it as a kind of
non-standard barotropic component in hydrodynamical energy-momentum
tensor with an effective equation of state p = wρ. If one thinks of cosmic
accelerating expansion as a phenomenon caused by some sort of a scalar field,
it is very natural to expect that the w coefficient should vary in time, i.e.
w = w(t). This choice is strongly motivated by the fact that the only scalar
field invoked by cosmologists — the inflaton — clearly had its own dynamics,
since the inflationary epoch ended. An arbitrary function w(t) can be Taylor
expanded over the scale factor a(t) (a real physical degree of freedom) and
then translated to redshift, which in turn is an observable1. Bearing in
mind that all recent cosmological surveys are able to probe only small and
moderate redshifts, it is sufficient to explore first the linear order of the above
expansion, known as the Chevalier–Polarski–Linder (CPL) parametrization
w(z) = w0+

z
1+zwa [7]. Thus, the DE problem turns into a technical problem

of determining the values of w0 and wa parameters.

1 There is a unique correspondence between them: a(z) = (1 + z)−1.
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One very direct cosmological probe is based on testing the distance-
redshift relation D(z) (the so-called Hubble diagram when plotted). Of
course, it can be done only if there is a possibility to determine distances
and redshifts independently. In FRW geometry, a distance to an astrophys-
ical object lying at redshift z is known as a co-moving distance r(z;p) =

c
∫ z
0

dz′

H(z′;p) , whereH = ȧ(t)/a(t) is the cosmic expansion rate which depends
on a variety of cosmological parameters (marked as p) like the so-called
Hubble constant H0 (the present value of the cosmic expansion rate) and
present energy density2 Ωi, i ∈ m, r,X of respective components: matter,
radiation and DE (e.g. DE parameters discussed above). However, we are
not able to measure it directly. Instead, we have two observables based on
clear observational concepts and strictly related to the co-moving distance
(and to each other) via well defined Etherington reciprocity relation: the
luminosity distance DL(z;p) = (1+ z)r(z;p) and angular diameter distance
DA(z;p) =

1
1+z r(z;p).

The luminosity distance is a measure invoked by using objects with
known luminosity L (standard candles) according to the simple relation
L = 4πD2

LF , provided that the flux F of the object and its redshift is mea-
sured. In cosmological context, the most important standard candles are
SNIa but other astrophysical sources such as supernovae type II [8], gamma-
ray bursts [9] or compact-object binaries emitting gravitational waves (the
so-called standard sirens) [10] are also discussed.

Angular diameter distance can be obtained from R = DAθ for the stan-
dard rulers (i.e. objects whose size R is a priori known) if one can measure
their angular scale θ. These objects fall into two classes: statistical standard
rulers (acoustic peaks in the CMBR anisotropy power spectrum, BAO) and
individual standard rulers such as ultra compact radio sources [11], double-
sided radio sources [12], and galaxy clusters [13].

3. Strong gravitational lenses as standard rulers

Recently, one can notice a growing interest in strong gravitational lens-
ing measurements in the context of using them as standard rulers (it would
be more appropriate to say “standard weights” since, in fact, the mass is
standardized). This phenomenon occurs whenever the source (usually a
quasar), the lens (galaxy) and the observer are aligned within the so-called
Einstein ring. In this case, one can observe multiple images of the source.
Angular size of this ring θE defines a characteristic deflection scale of a
given lens — this is the ruler of an individual lensing system which can

2 As a fraction of critical density.
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be standardized. For the singular isothermal sphere (SIS) model3 of the
lens potential, Einstein radius θE = 4π

c2
σ2SIS

Dls
Ds

is a simple function of one-
dimensional velocity dispersion of stars in lensing galaxy σSIS and the cos-
mological model (through the angular diameter distance to the lens Dl and
between the lens and the source respectively Dls). One can easily notice
that this ratio of (angular) distances can be used to constrain cosmolog-

ical models D(zl, zs;p) = Ds
Dls

=

∫ zs
0

dz′
h(z′;p)∫ zs

zl

dz′
h(z′;p)

provided that we have reliable

knowledge about the lensing system: i.e. the Einstein radius θE (from im-
age astrometry) and stellar velocity dispersion σSIS (from central velocity
dispersion σ0 obtained from spectroscopy [15]). This method is independent
of the Hubble constant value (it gets cancelled in the distance ratio without
producing any uncertainty to the final result) and is not affected by dust
absorption or source evolutionary effects [15, 16]. It depends however on the
reliability of lens model (e.g. SIS assumption) and, in particular, on the σ0
measurements4.

The use of strong lenses as standard rulers was investigated by [15] on
simulated data. Later, Biesiada, Piórkowska and Malec firstly used this
method in practice to constrain cosmological models in [20], and as a part
of joint analysis together with SNIa, CMBR and BAO data in [21]. The
results were generally in agreement with those obtained by other authors
with different methods (see [22] for a comprehensive review).

4. Complementarity of cosmological probes

In the context of determining the values of cosmological parameters,
better statistics and systematics of observations is only a one side of a coin
— there is a strong degeneracy in DE equation of state because w(z) overall
should be negative. All well established methods of distance measures have
the same fundamental dependence on w0 and wa through the expansion
rate (i.e. provide only anticorrelations between them). One should search
for experiments developed specifically to overcome this problem as it has
already been achieved for Ωm and ΩΛ parameters [3–5].

Hopefully, strong gravitational lensing systems may offer opportunity
to break this impasse. Considering the distance ratio one can realize that
this quantity provides different dependence on DE parameters than other
cosmological data: a competition between two angular distances in the ratio
may lead to positive correlations between w0 and wa. This idea was firstly

3 There is a growing evidence for homologous structure of early type galaxies [14]
supporting reliability of SIS assumption.

4 Hopefully, recent spectroscopic data for central parts of lens galaxies became available
and they provide central velocity dispersions [17–19].



On the Complementarity of Different Cosmological Probes with SLACS . . . 2401

proposed by Linder in [23] and now we are considering it in more details.
Following this line, we calculated the sensitivity of distance ratio for each
of the DE parameter within CPL parametrization as a function of the lens
redshift zl, taking into account an idealized strong lensing system (with the
most common case of zs = 2zl), and ΛCDM as a fiducial model. Our results
are shown in the left panel of Fig. 1. The larger is the absolute magnitude
of distance ratio sensitivities at a particular redshift, the more constraining
is our probe for the cosmological parameters. One can immediately notice
that two curves in this figure, which represent sensitivity of distance ratio
with respect to w0 and wa, change their values from negative to positive
on different redshifts. This suggests that there may be some redshift range
(between z = 1.0 and z = 1.7) for which the distance ratio will give a positive
correlations between CPL parameters. Consequently, a confidence contour
in DE parameters plane for strong lensing data should change its position
from parallel to the w0 axis at z ∼ 1.0 (no dependence on wa coefficient) to
the perpendicular one at z ∼ 1.7 (no dependence on w0). This situation is
plotted in the right panel of Fig. 1 with marginalization over Ωm taken into
account. Thus, careful selection of the strong lensing sub-samples according
to the lens redshift makes it possible to achieve better accuracy on CPL
parameters through the rotated degeneracy directions of these data sets.
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Fig. 1. Left panel: Sensitivity of the distance ratio to the cosmological parameters
Ωm, w0 and wa as a function of the lens redshift. Solid lines correspond to our
distance ratio, dash-dotted to the inverse of it which is sometimes discussed in
the literature. Dashed black line perpendicular to the horizontal illustrates the
position of the SLACS sample and the dotted one — median redshift of the BELLS
sample. Right panel: Confidence contours for strong lensing measurements w.r.t.
lens redshift calculated for SLACS and BELLS samples and for two hypothetical
data sets lying on z = 1 and z = 1.7.
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Possible realization of this idea on real lensing data seems to be promis-
ing. As by now, we have two self-consistent data sets from: Sloan Lens ACS
(SLACS) Survey [17] and BOSS Emission-Line Lens Survey (BELLS) [18]
providing lenses lying at different median redshifts, so one can expect that
for each sample there should be different sensitivity on the DE parameters.
In fact, from the left panel of Fig. 1, we see that the SLACS sample is
spread around the redshift zSLACS = 0.215 allowing the data to be more
sensitive to w0 parameter while the mean redshift of the BELLS sample
(zBELLS = 0.517) makes its distance ratio to be more affected by wa pa-
rameter. This coincidence makes it clear why, with a rather poor sample of
strong lensing data (n = 20 lenses), we were able to constrain cosmological
parameters and perform a joint analysis leading to reasonable results com-
parable to those obtained in using other methods of distance measures [21].
Recently, an increasing number of data from strong lensing systems discov-
ered as a part of Strong Lensing Legacy Survey (SL2S) [19] and consisting of
lenses spanning the redshift range z = 0.2–0.8 are expected to complement
SLACS and BELLS measurements.

One may ask about the complementarity of strong lensing measurements
with other cosmological probes. In this context, we analyse SNIa data as
representative for classical distance measures. In the left panel of Fig. 2, we
see that SNIa reveal similar behaviour of degeneracy direction with redshift
as in strong lensing measurements: the farther is the redshift of the object,
the more constrained is the wa coefficient while the information about w0
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Fig. 2. Left panel: Confidence contours for SNIa measurements w.r.t. redshift
for the same redshifts as in Fig. 1 for better comparison of results. Right panel:
Difference between major axis angles of the confidence contours for strong lensing
and SNIa measurements as a function of the redshift. The lines perpendicular to
the horizontal axis are the same as on the right panel of Fig. 1.
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value is wasted. One can notice that the rotation is a bit slower for su-
pernovae data, so there may be some redshifts for which carefully selected
sub-sample of SNIa data may complement respective sub-sample of strong
lensing measurements. To check this possibility, we calculated the differ-
ence between major axis angles of confidence contours for strong lensing
and SNIa measurements as a function of the redshift (plotted on the right
panel of Fig. 2). At this point, we can make a following conclusion: using
distance ratios we never gain full perpendicularity — the difference between
degeneracy directions is highly limited — but for the redshifts up to z = 1
strong lensing data offer valuable tool to other cosmological observations.

5. Conclusions

In this paper, we presented our results considering the idea, proposed
previously by Linder [23], that distance ratio from strong lensing measure-
ments offers an opportunity to break the strong degeneracy between DE
parameters. We have shown that one can use the cross-checks between
carefully selected data according to the redshift of the lensing galaxy (e.g.
between SLACS and BELLS samples) to pin down the values of cosmo-
logical parameters in CPL parametrization. In this context, the ongoing
surveys such as CLASS, SLACS, SL2S, SQLS, HAGGLeS, AEGIS, COS-
MOS and CASSOWARY are promising for providing an increasing number
of discovered strong lensing systems with accurate spectroscopic and astro-
metric data. We also expect, that new projects (Pan-STARRS1, LSST2,
JDEM/IDECS3, SKA4) will provide a great number of strong lensing data
suitable for our purpose. Our method relies on the prior knowledge of mass
profile usually assumed to be SIS, which is supported by SLACS data. How-
ever, it should be noticed that there is a growing evidence that the slope of
the mass density profile in lensing galaxies evolves with redshift — see e.g.
recent papers by Sonnenfeld et al. [19]. Work on how to address this issue
within our method is in progress.

This work was carried out within the framework of the European Asso-
ciated Laboratory “Astrophysics Poland–France” HECOLS.
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