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1. Introduction

Spins in quantum mechanics and the action of general relativity share
a simple and surprising relation. This relation is at the roots of spinfoam
gravity [1, 2]. In these lectures we describe its simplest realization focus-
ing on the quantum geometry of an atom of space and its relation to the
geometry of a classical polyhedron.

The Wigner 6j symbol is an elementary object that appears in the theory
of ‘composition of angular momenta’ in quantum mechanics. It is the sim-
plest non-trivial invariant under rotations that can be built from Clebsch–
Gordan coefficients only [3]. It turns out that this familiar quantity is related
to the action of general relativity in 3 space-time dimensions. In the limit
of large spins ji � 1, the following asymptotic formula holds [4]

{
j1 j2 j3
j4 j5 j6

}
≈ ~3/2√
−6π i V

e+
i
~ S + c.c. (1)
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Here, S is a function obtained from the 3d Einstein–Hilbert action for a com-
pact region R (in units 8πG = 1)

IR[gµν ] = 1
2

∫
R

d3x
√
gR +

∫
∂R

d2x
√
hK (2)

as follows: the action is evaluated on the flat Euclidean metric, S = IR[ηµν ],
and the region R is chosen so that its induced geometry is the one of a flat
Euclidean tetrahedron. Under these conditions, the Einstein–Hilbert action
determines the building-block of the so-called Regge action S, [5]. S depends
only on a finite number of variables, specifically the lengths `1, . . . , `6 of the
six edges of the tetrahedron. The quantity V =

∫
Rd

3x
√
g in (1) is the

volume of the tetrahedron expressed as a function of the edge-lengths. The
relation between the spins ji and the edge-lengths `i is

`i = ( ji + 1/2) ~ . (3)

The asymptotic formula (1) holds in the classically allowed region in which
a tetrahedron with edges of lengths `i exists. Large spins ji � 1 correspond
to a classical limit ~→ 0 with the edge-lengths `i fixed. Figure 1 shows how
accurate formula (1) is.
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Fig. 1. The 6j symbol
{

10 10 10
10 10 j

}
as a function of j (red dots) and the Ponzano–

Regge approximation (continuous line).

This surprising relation discovered by Ponzano and Regge in 1968 pro-
vides the simplest and oldest example of Spinfoam Model for quantum grav-
ity, a realization of the path-integral over spacetime geometries

Z =

∫
Dgµν e

i
~S[gµν ] (4)
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in terms of a sum over spins. The analogous quantity for Lorentzian General
Relativity in 4 space-time dimensions has long been searched and found only
recently [6–9].

In these lectures we describe how a quantum geometry of space arises
from the composition of angular momenta.

2. The classical geometry of a Euclidean tetrahedron

A tetrahedron is the convex hull of four points in 3-dimensional Euclidean
space R3. Its geometry can be described using a triad of edge-vectors ~ei
(i = 1, 2, 3). For instance, the volume of the tetrahedron is given by V =
1
3! |~e1 · (~e2 × ~e3)|. From the triad we can compute the normal to the plane
supporting a face of the tetrahedron, for instance ~E3 = 1

2 ~e1×~e2 as in Fig. 2.
The normals ~Ea, with a = 1, 2, 3, 4, are normalized to the area Aa of the
associated face and can be chosen to be outward-pointing. Notice that they
sum up to zero, as it happens for any closed surface.

Fig. 2. Edge-vectors and normals to the faces of a tetrahedron.

A remarkable property of the face-normals is that they can be used
as fundamental variables: a set of four vectors ~Ea satisfying the closure
condition

~E1 + ~E2 + ~E3 + ~E4 = 0 (5)

completely describes the geometry of a tetrahedron1. The norm of the vector
~Ea is the area of the face a of the tetrahedron, so that we can write

~Ea = Aa ~na , (6)

1 A counting of the number of independent variables up to rotations is in order: we have
4 × 3 vector components, −3 components from the closure condition, −3 rotations,
equals 6 independent variables. This number matches the number of edge-lengths
that one can use to describe a tetrahedron.
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where ~na is the unit outward-pointing normal to the face a. The scalar
product

~Ea · ~Eb = AaAb cos θab (7)

measures the dihedral angle θab between two faces of the tetrahedron. Simi-
larly, the triple product of any three normals is related to the volume of the
tetrahedron by the formula

V =

√
2

3

√∣∣∣ ~E1 ·
(
~E2 × ~E3

)∣∣∣ . (8)

The space of tetrahedra with faces of fixed areas Aa has a remarkable
property: it has the structure of a phase space with respect to a natural
choice of rotationally-invariant Poisson brackets induced by the canonical
brackets {ni, nj} = εijk n

k for unit vectors on the sphere2. Consider two
functions f( ~Ea) and g( ~Ea) on the space of shapes of tetrahedra with faces
of fixed areas Aa. The Poisson brackets

{
f
(
~Ea

)
, g
(
~Ea

)}
=

4∑
a=1

~Ea ·
(
∂f

∂ ~Ea
× ∂g

∂ ~Ea

)
(9)

make this space into a phase space. The phase space of a tetrahedron with
fixed areas is two dimensional and a set of canonical variables {q, p} = 1 is
given by

q = angle between ~E1 × ~E2 and ~E3 × ~E4 , (10)

p =
∣∣∣ ~E1 + ~E2

∣∣∣ . (11)

Every geometric property of the tetrahedron can be understood as a function
of q and p, for instance the volume of a tetrahedron is given by

V (q, p) =
1

2

√
| sin q|

((
1− (A1 −A2)

2

p2

)(
1− (A3 −A4)

2

p2

)
×
(

1− (A1 +A2)
2

p2

)(
1− (A3 +A4)

2

p2

))1/4

p3/2 (12)

as shown in Fig. 3.

2 Equivalently, in terms of symplectic structure on the sphere S2, ω = εijk n
i dnj∧dnk.
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Fig. 3. The phase space of tetrahedra of fixed face-areas. The closed curves are
orbits of constant volume.

3. Minkowski theorem and the phase space of polyhedra

There are two elegant mathematical results that allow to extend the pre-
vious construction from tetrahedra to convex polyhedra in three-dimensional
Euclidean space. The first result is a theorem of Minkowski’s [11] that states
that the areas Aa and the unit-normals ~na to the faces of the polyhedron
fully characterize its shape3, see Fig. 4. We define the vectors ~Ea = Aa ~na
and call PN the space of shapes of polyhedra with N faces of given areas Aa

PN =
{
~Ea, a = 1 . . . N

∣∣ ~E1 + · · ·+ ~EN = 0 ,
∥∥∥ ~Ea∥∥∥ = Aa

}/
SO(3) . (13)

The second is a result of Kapovich and Millson’s that states that the set
PN has naturally the structure of a phase space, [12]. The Poisson brackets
between two functions f( ~Ea) and g( ~Ea) on PN are

{f, g} =

N∑
a=1

~Ea ·
(

∂f

∂ ~Ea
× ∂g

∂ ~Ea

)
. (14)

As in the case of the tetrahedron, these brackets arise (via symplectic re-
duction) from the rotationally-invariant Poisson brackets between functions
f( ~Ea) on (S2)N . Thus, we have that convex polyhedra with N faces of given
areas form a 2(N − 3) dimensional phase space [10].

3 More precisely, given a set of N positive numbers Aa, and N unit-vectors ~na satis-
fying the condition

∑
aAa~na = 0, there always exists a convex polyhedron having

these data as areas and normals to its faces. Moreover, up to rotations SO(3), the
polyhedron is unique.
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Fig. 4. A convex polyhedron can be obtained starting from N planes passing
through the origin of 3d Euclidean space. Moving each plane in the direction
of its normal ~na defines a convex hull, a polyhedron. Adjusting the distance ha
of a plane from the origin, changes the areas Aa of the faces of the polyhedron.
Can we use this procedure to build a polyhedron with faces of given areas Aa sat-
isfying the closure condition

∑
aAa~na = 0? The Minkowski theorem states that

such polyhedron exists and, up to rotations, is unique. A variational algorithm to
reconstruct the polyhedron can be found in [10].

Canonical variables on this phase space can be chosen as follows: consider
the set of vectors ~pi =

∑i+1
a=1

~Ea, where i = 1, . . , N − 3; we define the
coordinate qi as the angle between the vectors ~pi × ~Ei+1 and ~pi × ~Ei+2, and
the momentum variable pi = ‖~pi‖ as the norm of the vector ~pi. From (14),
it follows that these are canonically conjugate variables, {qi, pj} = δij .

Fig. 5. Left panel: a portion of the phase space of polyhedra with N = 6 faces. The
black (blue) region corresponds to cuboids, the dark grey (red) region to pentagonal
wedges [10]. Right panel: a portion of the phase space of polyhedra with N = 5

faces with volume orbits showing a chaotic behavior [16].
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Every geometric quantity, e.g. the length of an edge or the volume of the
polyhedron [13], is a function of the canonical variables (qi, pi). The problem
of determining this function is well-defined but not immediate to solve. The
reason is that we have to reconstruct first the shape of the polyhedron from
the normals to its faces, or equivalently from the point in phase space [10].
In general, the problem can be solved numerically using Lasserre’s algorithm
[14] as shown in Fig. 5 (a). In the case of a pentahedron N = 5 the problem
has been solved analytically, and an expression of the volume V (q1, q2, p1, p2)
as a function in phase space is available [15]. It is interesting to notice that
the classical dynamics of this system is strongly chaotic [15, 16], Fig. 5 (b).

4. Atoms of space, spin-geometry, and quantum polyhedra

In quantum mechanics a spin system identifies a quantum direction in
space. A remarkable idea proposed by Penrose in 1971 is that the an-
gles between these quantum directions define a geometry, Penrose’s ‘spin-
geometry’, and can provide the elementary building-block of quantum space
[17–20]. This model for an atom of space has later been shown to coincide
with the notion of ‘quantum polyhedron’, the quantization of the classical
system described in the previous section [10, 21].

The simple quantum system that plays the role of the atom of space
consists of N spins j1 ⊗ · · · ⊗ jN in a collective state |i〉 that is rotationally
invariant4

|i〉 =
∑

m1···mN

im1···mN |j1m1〉 · · · |jNmN 〉 . (15)

The observables of the system are the rotational invariant operators that
can be built from the angular momenta ~La only. We will use dimensionful
quantities ~Ea defined as5

~Ea = 8πG~ γ ~La , (16)

were γ > 0 is a dimensionless constant to be identified with the Immirzi
parameter. As the state |i〉 of our system is rotationally invariant6, we have(

~E1 + · · ·+ ~EN

)
|i〉 = 0 (17)

4 The space of rotationally invariant states can be understood as the ground state with
H = 0 of the Hamiltonian H = ~L2

tot, where ~Ltot = ~L1 + · · ·+ ~LN is the total spin of
the system. The ground state of H is, in general, degenerate and, when H = 0, the
associated eigenspace is the Hilbert space of intertwiners Inv(j1 ⊗ · · · ⊗ jN ).

5 Here we use units c = 1, so that
√
G~ has the dimensions of length, the Planck length.

6 The proof is immediate: a finite rotation of the system is generated by the unitary
operator U(~α) = exp(i~α·~Ltot); the invariance of the state under rotations is U(~α)|i〉 =
|i〉 for all rotation parameters ~α. Expanding at the linear order in small ~α one recovers
the closure condition.
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a quantum closure condition analogous to Eq. (5). The geometric interpre-
tation of the observables ~Ea comes from identifying them with the normals
to planes passing through a point in three-dimensional Euclidean space. In
particular, the Penrose ‘metric’ operator ĝab defined as

ĝab = ~Ea · ~Eb (18)

measures the angle θab between two planes a and b7. A basis of intertwiner
states |ik1···kN−3

〉 is a basis of eigenstates of a maximal commuting set of
operators ĝab. For instance, the spectrum of ĝ12 is given by

ĝ12 |ik1···kN−3
〉 =

k1(k1 + 1)− j1(j1 + 1)− j2(j2 + 1)

2
|ik1···kN−3

〉 . (19)

As explained in the previous section, the point of intersection of theN planes
can be inflated into a polyhedron by moving the planes away from the origin.
This defines a polygon on each plane, i.e. a face of the polyhedron. The norm
of the operator ~Ea measures the area Aa of this face

Aa =

√
~Ea · ~Ea . (20)

Its eigenvalues are immediate to compute and every state |i〉 in our Hilbert
space is an eigenstates of the area operator

Aa |i〉 = 8πG~ γ
√
ja(ja + 1) |i〉 . (21)

The spectrum of the area is discrete and gapped, with a Planck scale gap
a0 = 8πG~γ

√
3/2 corresponding to the minimum non-trivial spin ja = 1/2.

The system that we have described plays the role of atom of space in
spinfoam gravity. It can be understood as a quantum polyhedron as it can be
obtained by quantizing a classical dynamical system: a convex polyhedron
with canonical Poisson brackets. This is analogous to the case of the hydro-
gen atom, a purely quantum system that can be defined via the quantization
of a classical particle in a Keplerian orbit. In the next section, we discuss
coherent states and the semiclassical behavior of the quantum system.

5. Heisenberg uncertainty relations for quantum geometry

Different components of the angular momentum do not commute [Li, Lj ]
= i εijk L

k. As a result the dispersions ∆Li on any spin state satisfy the
uncertainty relations8

∆Li ∆Lj ≥ 1
2

∣∣∣εijk 〈Lk〉∣∣∣ . (22)

7 The angle operator is defined as θab = arccos(ĝab/
√
ĝaa ĝbb ), [20].

8 As usual ∆A ≡
√
〈A2〉 − 〈A〉2, where 〈A〉 ≡ 〈s|A|s〉 is the expectation value of the

operator A on the state |s〉.
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This is also the behavior of the quantum directions ~Ea: the atom of space
has a non-commutative quantum geometry. The phenomenon is most clearly
illustrated in terms of the Penrose metric operator ĝab. Consider three quan-
tum planes a, b, c, and the angle between a, b and a, c. The associated
Penrose operators do not commute

[ĝab, ĝac] = i 8πG~ γ ~Ea ·
(
~Eb × ~Ec

)
(23)

and the commutator measures the linear independence of the three quantum
planes. The Heisenberg uncertainty relation for the quantum geometry reads

∆ĝab ∆ĝac ≥ 1
2 8πG~γ

∣∣∣〈 ~Ea · ( ~Eb × ~Ec

)〉∣∣∣ . (24)

As a result, the shape of a quantum polyhedron is fuzzy: if we try to de-
termine with precision the angle between the planes a and b, then we lose
control of the angle between the planes a and c unless the three are coplanar.

At the classical level we saw that qi and pi are canonical variables on
the phase space of polyhedra. At the quantum level they correspond to op-
erators with canonical commutation relations, [q̂i , p̂j ] = i 8πG~ γ δij . Their
dispersions satisfy uncertainty relations that are simpler than the ones we
have seen above

∆q̂i ∆p̂i ≥ 4πG~ γ . (25)
The geometric interpretation is particularly clear in the case of the tetrahe-
dron (N = 4): the states |ik〉 that we use as a basis of the Hilbert space have
definite angle between two faces of the tetrahedron, i.e. ∆p̂i = 0 ; as a result
the angle q̂i between two opposite edges of the tetrahedron has maximal
dispersion.

Coherent states provide an over-complete basis of the Hilbert space of
the quantum polyhedron such that the uncertainty relations (25) are satu-
rated [22, 23]. The simplest way to introduce them is to start from Bloch
coherent states for a spin system, i.e. states that saturate the uncertainty re-
lation (22), [24, 25]. The state |j, j〉 pointing in the z direction does it9, and
all the others can be obtained by simply rotating this state in the direction ~n

|j, ~n〉 ≡ U(R)|j, j〉 =

+j∑
m=−j

φm(~n) |j,m〉 , (26)

where R is a rotation from the z direction to ~n and φm(~n) = 〈j,m|U(R)|j, j〉.
These states point in the direction ~n〈

~L
〉

= j ~n (27)

9 The state |j, j〉 has 〈Lz〉 = j, 〈Lx〉 = 〈Ly〉 = 0, and ∆Lz = 0, ∆Lx = ∆Ly =
√
j/2.

As a result it saturates the uncertainty relation ∆Lx ∆Ly = 1
2
〈Lz〉.
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and have dispersion ∆(~L · ~m) =

√
1−(~n·~m)2

2 j. As a result, the relative dis-
persion vanishes in the limit of large spin

∆
(
~L · ~m

)
∣∣∣〈 ~L〉∣∣∣ → 0 as j →∞ . (28)

Moreover, they provide a resolution of the identity in V (j)

1j =
2j + 1

4π

∫
S2

d~n |j, ~n〉〈j, ~n| . (29)

Coherent states for quantum polyhedra |i(~na)〉, also called coherent inter-
twiners, are defined as the rotational invariant projection of N coherent
spins |ja, ~na〉 satisfying the closure constraint

∑
a ja~na = 0. Their explicit

expression is10

|i(~na)〉 =
∑
m

Φm1...mN (~na) |j1,m2〉 . . . |jN ,mN 〉 , (30)

with

Φm1...mN (~na) =

∫
SU(2)

dh
N∏
a=1

〈ja,ma|U(h)|ja, ~na〉 . (31)

These states are peaked on the polyhedron with normals ~na, and the rel-
ative dispersion of geometric observables vanish in the limit ja → ∞: the
classical limit arises at large quantum numbers, i.e. large spins. This regime
corresponds to a size of the polyhedron that is large compared to the Planck
scale, for instance the area of a face being much larger than the area gap
a0 = 8πG~ γ

√
3/2. Formally large j corresponds to the limit 8πG~ γ → 0.

In this limit the Heisenberg uncertainty relations (25) become trivial.
The shape of a classical polyhedron is completely coded in the canonical

variables (qi, pi) on phase space, in particular the normals ~na can be com-
puted from them. It is useful to write the coherent states as functions on
phase space |i(qi, pi)〉 ≡ |i(~na(qi, pi))〉. The resolution of the identity on the
Hilbert space of quantum polyhedra can then be written as an integral on
phase space as [22]

1 =

∫
PN

dµ(qi, pi) |i(qi, pi)〉〈i(qi, pi)| . (32)

10 This formula is obtained from the definition |i(~na)〉 ≡ P |j1, ~n1〉 · · · |jN , ~nN 〉, by writ-
ing the projector to the rotationally-invariant space as an integral over the group
SU(2), P =

∫
dµ(~α) exp(i~α · ~Ltot) =

∫
SU(2)

dh U(h).
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This formula shows that we can write any quantum state of an atom of space
as a superposition of coherent quantum polyhedra.

It is interesting to connect these recent developments with the original
idea proposed by Penrose [17, 18]. The spin-geometry theorem states that
there exist collective spin states such that, in the classical limit, the expecta-
tion value of the Penrose metric reproduces the scalar products of a set of N
vectors ~va in 3d Euclidean space, 〈ĝab〉 = ~va ·~vb, and the relative dispersions
vanish. The coherent states for an atom of space discussed above provide a
concrete example of such states and play a central role in spinfoam gravity.

6. Quantum volume of an atom of space

At the classical level, a convex polyhedron has a well-defined volume. In
the simplest case of a tetrahedron, the expression of the volume is given by
Eq. (33). The associated operator in the quantum theory is immediate to
define, it is given by

V̂ =

√
2

3

√∣∣∣ ~E1 ·
(
~E2 × ~E3

)∣∣∣ , (33)

where now ~Ea = 8πG~ γ ~La are quantum normals. To compute the spec-
trum of the volume of a quantum tetrahedron it is useful to introduce the
operator Q

W = ~L1 ·
(
~L2 × ~L3

)
. (34)

The quantum volume and the operatorW share the same eigenvectors |wα〉,
and the eigenvalues are simply related by vα = (8πG~ γ)3/2

√
2
3

√
|wα|. We

compute the spectrum in the simplest non-trivial cases: four spins with
their minimum non-zero value, i.e. 1

2 ⊗
1
2 ⊗

1
2 ⊗

1
2 . In this case, the Hilbert

space is two dimensional and the matrix elements of W in the |ik〉 basis are
immediate to compute using standard relations for Pauli matrices11

Wi
j = 〈i|~L1 ·

(
~L2 × ~L3

)
|j〉 =

(
0 i

√
3
4

−i
√
3
4 0

)
. (35)

The eigenvalues and the eigenvectors, W |w±〉 = w±|w±〉, are given by

w± = ±
√

3

4
, |w±〉 =

|0〉 ± i|1〉√
2

. (36)

11 We use the notation |0〉 ≡ |ik=0〉, |1〉 ≡ |ik=1〉, and i, j = 0, 1.
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As a result the eigenvalues of the volume are twice degenerate and given by

v± = (8πG~ γ)3/2
√

2

3

√√
3

4
≈ (8πG~ γ)3/2 × 0.310 . (37)

For larger spins the matrix elements of W can be computed in a closed
form using the standard methods of composition of angular momenta12. In
general, one has to resort to numerical methods to diagonalize the matrix
Wi

j . Large eigenvalues can be derived via the WKB approximation or simply
by applying the Bohr–Sommerfeld quantization to the classical phase space
of a tetrahedron. Some eigenvalues are shown in Fig. 6.

0 2 4 6 8 10 12

0

1

2

3

4

V

j 0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

Fig. 6. Volume spectrum in units 8πG~ γ = 1. On the left, spins 4⊗ 4⊗ 4⊗ j, on
the right j ⊗ j ⊗ j ⊗ j. The circles are volume eigenvalues computed numerically,
the dots are volume eigenvalues computed via a WKB approximation [26].

The case N = 4 of a quantum tetrahedron is the simplest non-trivial
one13. For an atom of space with larger N the volume can be similarly
defined starting from the expression of the volume of the classical polyhedron
and quantizing the normals ~Ea. In the process a choice of operator ordering
is needed. A simple choice is to use the over-complete basis of coherent
polyhedra to define the operator starting from its classical expression V =
V (qi, pi) as a function on phase space

V̂ =

∫
PN

dµ(qi, pi) V (qi, pi) |i(qi, pi)〉〈i(qi, pi)| . (38)

12 See for instance App. A of [26] for an elementary derivation.
13 For N = 3 and 2 the volume vanishes at the classical and at the quantum level [21].
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Notice that, in general, an eigenvector of the volume corresponds to a super-
position of coherent polyhedra with very different shape; for instance in the
case N = 6, a superposition of cuboids and pentagonal wedges (see Fig. 5).
The operator has a discrete spectrum. Moreover, as the classical volume has
a chaotic behavior, the quantum volume shows the phenomenon of ‘level
repulsion’ and Wigner surmise. This phenomenon is expected to produce a
gap in the spectrum of the volume14[15].

7. Spin-network states and quantum space

Consider a network Γ consisting of N nodes connected by L links. To
each link ` we associate a state |j`,m`〉|j`,m′`〉 of two spins with the same
j`. Each of the two spins lives at an endpoint of the link. The Hilbert space
of the system is simply given by a tensor product over the links of factors
V (j`) ⊗ V (j`). Equivalently, we can organize the spins in groups sitting at
nodes n of the network,

⊗
`|n∈∂` V

(j`). We are interested in configurations
of this system such that the spins sitting at each node are in a rotationally-
invariant state. These states form a Hilbert space

HΓ,j` =
⊗
n∈Γ
Hn (39)

with Hn = Inv(⊗`|n∈∂` V (j`)): the system consists of an atom of space at
each node of the network. We can describe the state of the system in terms
of the states in of each atom of space at a node n, with the network Γ coding
which nodes are connected by a link and thus share the same spin j`. The
state |Γ, j`, in〉 that we have described is a spin-network state.

Spin-network states play a central role in Loop Quantum Gravity and in
Spin Foams [27–29]. The picture that arises is of a collection of neighboring
quantum polyhedra that make quantum space (see Fig. 7). The simplest
non-trivial example of a spin-network state is the following. Consider a
triangulation ∆3 of a 3-manifold; the dual network Γ = ∆∗3 has a node
per tetrahedron in ∆3 and two nodes connected by a link if two tetrahedra
share a face. The state that we consider has all spins equal to the lowest
non-trivial spin, j` = 1/2. The state of the atom of space at each node is
still to be chosen. The associated Hilbert space H2 = Inv(12 ⊗

1
2 ⊗

1
2 ⊗

1
2)

is 2-dimesional with basis |0〉 ≡ |ik=0〉, |1〉 ≡ |ik=1〉. Therefore, the system

14 At fixed N and fixed largest spin j the Hilbert space of the system is finite dimen-
sional, the spectrum of the volume is discrete and necessarily has a gap, i.e. a smallest
non-vanishing eigenvalue of the volume. The question of the presence of a gap arises
only in the limit in which the dimension d = dim Inv(

⊗N
a=1 V

(ja)) of the Hilbert
space diverges; for instance for large spins j →∞ at fixed N , or for large N .
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consists of N qubits sitting at the nodes of a network

|Γ = ∆∗3, j` = 1/2, in 〉 ∈ H2 ⊗ · · · ⊗ H2 . (40)

A region R is defined as a set of connected nodes in the network, and the
boundary ∂R of the region as the set of links that connect nodes in R with
nodes outside. The quantum volume of the region R is simply given by the
sum of the volumes associated to each atom of space in the region15. The
quantum area of the boundary ∂R of the region is given by the sum of area
operators for each spin on a link that connects a node in R with a node
outside R. Notice that the state that we have just described consists of a
collection of atoms of space that are completely uncorrelated. The dynamics
introduces correlations between the different nodes, and, in general, the
physically relevant states are entangled [30]. These quantum correlations
result in non-trivial two-point correlations functions for the Penrose metric
operator ĝab, and in general propagating degrees of freedom [31, 32].

Fig. 7. A cellular decomposition of space with its dual spin-network graph.

The author wishes to thank the organizers of the LIII Cracow School of
Theoretical Physics for the kind invitation and the hospitality in Zakopane.
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