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We review the state-of-the-art of the numerical modeling of black-hole
spacetimes in the framework of General Relativity in four and more space-
time dimensions. The latest developments of the applications of these tech-
niques to study black holes in the context of astrophysics, gravitational
wave physics and high-energy physics are summarized.
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1. Introduction

When Einstein published his theory of General Relativity, he was rather
pessimistic about the chances of finding physically relevant solutions to his
field equations. Quite remarkably, his pessimism was proven unfounded soon
afterwards when Schwarzschild found his famous solution describing a static,
spherically symmetric vacuum spacetime in four dimensions

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 cos2 θ dφ2 . (1)

The relative simplicity of the Schwazrschild solution, as well as other ana-
lytic solutions as, for example, the Friedmann–Lemaître–Robertson–Walker
metric, is a consequence of the high degree of symmetry which substantially
reduces the complexity of the Einstein equations. It is noteworthy, in this
context, that the axisymmetric Kerr solution [1] describing a rotating black
hole (BH) was not found until about half a century after the publication
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of general relativity. By now, many analytic solutions have been found de-
scribing a wide class of BH spacetimes with different numbers of dimensions
and/or different types of asymptotic structure. All these solutions, however,
have in common a rather high degree of symmetry.

Ever since Einstein’s discovery of his theory, BH solutions have been an
invaluable tool for understanding many properties of general relativity; see,
for instance, Hawking and Ellis [2]. Until the 1960s, however, there was
rather little confidence in their relevance as real physical objects. This pic-
ture started changing through astrophysical observations of X-ray sources,
such as Cygnus X-1, which eventually were explained through accretion of
matter from a main sequence star to a compact stellar object in binary
systems [3]. Mass estimates for the compact objects in many such sys-
tems resulted in values well above upper limits for neutron stars leaving a
BH as the plausible explanation. Roughly at the same time, observations
of quasi-stellar objects at cosmological distances came to be interpreted as
accretion onto supermassive BHs; see e.g. [4]. Observations of stellar dy-
namics near the center of galaxies and of iron Kα emission line profiles have
by now provided further strong evidence that BHs of masses in the range of
106 . . . 1010 M� reside at the center of many galaxies. By now, BHs are be-
lieved to play a key role in many astrophysical processes. Moreover, binary
systems containing BHs are expected to be one of the strongest sources of
gravitational waves (GWs) [5] expected to be detected with laser interfero-
metric devices such as the ground based LIGO, Virgo, GEO600, KAGRA
or future space based missions of LISA type [6–10]. Most recently, BHs
started becoming important objects of study in different areas of high-energy
physics. Through the gauge–gravity duality [11, 12] BH spacetimes may
provide unprecedented opportunities to study field theories in the strong-
coupling regime and attempts to explain the hierarchy problem in physics in
terms of Tera-Electron-Volt (TeV) gravity models with extra spatial dimen-
sions [13, 14] has even resulted in experimental efforts to test the possibility
of generating microscopic BHs at the Large Hadron Collider at CERN.

In view of the remarkable role that BHs play in many areas at the fore-
front of contemporary physics, their theoretical modeling is a matter of vital
importance. While analytic solutions still play an invaluable role in these
studies, the BH systems involved all too often do not admit the spacetime
symmetries required for the derivation of analytic solutions. Their modeling
therefore must resort to other techniques which can be roughly classified
into three approaches. (i) Black-hole perturbation theory (see e.g. [15] for
a review) employs an expansion of the spacetime metric around an already
known solution and models the deviations from this background in the frame-
work of the Einstein equations in linearized form or at some finite order in
the perturbations. (ii) The post-Newtonian formalism (see e.g. [16]) repre-
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sents an expansion of general relativity around Newtonian physics in terms
of the involved objects’ velocities divided by the speed of light v/c or, equiv-
alently, the ratio mass-to-distance M/r which measures the strength of the
gravitational interaction. (iii) Numerical relativity where the Einstein equa-
tions in their fully non-linear form are solved using numerical methods on
supercomputers; see e.g. [17] for an introduction to high-performance com-
puting. Purpose of these notes is to provide an overview of the formalism,
the methodology and the diagnostic tools that have been used with great
success for about one decade now in the numerical relativity modeling of BH
spacetimes.

These notes are organized as follows. We discuss formulations of the
Einstein equations in Sec. 2 and in Sec. 3 how these can be reduced to an
effectively four-dimensional system in the case of higher-dimensional space-
times with appropriate symmetries. Additional tools required to successfully
evolve numerically generated spacetimes are summarized in Sec. 4 and the
diagnostic tools for their analysis in Sec. 5. We review some of the most
important applications of numerical relativity to physical systems in Sec. 6
and conclude in Sec. 7.
Notation: We use the spacelike convention for the metric, i.e. a signature
“− + + + . . .”, define the Riemann curvature tensor as Rαβγδ = ∂γΓ

α
δβ −

∂δΓ
α
γβ + ΓαγρΓ

ρ
δβ − ΓαδρΓ

ρ
γβ and the Ricci tensor through Rαβ = Rµαµβ .

Greek indices cover the D-dimensional spacetime coordinates, e.g. α =
0, . . . , D−1. Upper case Latin indices denote the D−1 spatial coordinates,
e.g. I = 1, . . . , D − 1. When we reduce higher-dimensional spacetimes to
an effective four-dimensional description, we will use late, lower case Latin
indices i, j, . . . = 1, . . . , 3 for the reduced spatial domain and early, lower
case Latin indices a, b, . . . = 4, . . . , D − 1 for extra spatial dimensions.

2. Formulations of the Einstein equations

Put simply, the goal of numerical relativity is to generate solutions to
the Einstein equations in D spacetime dimensions given by

Rαβ −
1

2
Rgαβ + Λgαβ =

8πG

c4
Tαβ . (2)

Here, Rαβ and R are the Ricci tensor and scalar, gαβ denotes the spacetime
metric, Λ is the cosmological constant, Tαβ the energy momentum tensor
and the gravitational constant and speed of light are given in SI units by
G = 6.67384× 10−11 m3/(kg s2), c = 299, 792, 458 m/s. We shall frequently
choose units such that G = c = 1. Restoring SI values for the results is
straightforward in all these cases from dimensional analysis.
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In the numerical modeling, dynamic physical systems are typically
viewed as an initial value problem, i.e. the simulation starts with a given
snapshot of the system and its evolution in time is governed by the phys-
ical laws in the form of evolution equations. In this context, the tensorial
form (2) of the Einstein equations is not directly useful for a numerical im-
plementation. Up to the sign of the metric components, time and space
are, of course, on equal footing in general relativity and the tensor form of
the equations beautifully incorporates this particular feature. It is not ob-
vious at all from Eq. (2), therefore, whether the Einstein equations actually
represent an initial value problem or, put into an alternative mathematical
language, whether they represent a set of hyperbolic, parabolic or elliptic dif-
ferential equations or some mixture thereof. In order to answer this question,
it is necessary to formulate the Einstein equations in a form which expresses
more clearly a split between space and time.

2.1. The ADM equations

The canonical spacetime split of the Einstein equations has originally
been developed by Arnowitt, Deser and Misner (ADM) [18] and later refor-
mulated by York [19]. Let us consider a spacetime or, in more mathematical
terms, a manifoldM endowed with a Lorentzian metric gαβ . We further as-
sume that there exists a foliation of the spacetime, that is, a scalar function
t :M→ R with the following properties. (i) The one form dt is timelike ev-
erywhere; (ii) The hypersurfaces defined by t = const. are non-intersecting;
(iii) ∪t∈RΣt =M. Note that the function t also defines a vectorfield ∂t with
the property 〈dt, ∂t〉 = 1.

Fig. 1. Graphical illustration of the foliation. Only two of the spatial dimensions
are displayed in the figure.

Definition: The lapse function α is defined such that the timelike unit
vector field nµ is related to the one form dt by nµ = −α(dt)µ. We further
define the shift vector βµ = (∂t)

µ−αnµ. The lapse function and shift vector
are graphically illustrated in Fig. 1.
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Remark: Let xI , I = 1, . . . , D − 1 be a set of coordinates labeling points
inside a given hypersurface Σt. The spacetime coordinate system defined
by (t, xI) is often referred to as adapted to the spacetime split. A vector
V α is tangent to Σt iff 〈dt, V 〉 = (dt)µV µ = 0. In adapted coordinates,
this implies that the time component V t = 0. For tensors of higher rank,
the same holds for every component in which the tensor is tangent to Σt.
In adapted coordinates one therefore often switches from spacetime indices
α, β, . . . to spatial indices I, J, . . . ignoring the vanishing time components
of vectors and tensors if they are tangent to Σt.
Definition: We define the projection operator ⊥αµ ≡ δαµ + nαnµ. The
projection of an arbitrary tensor T is obtained by projecting each index

(⊥T )αβ...γδ... = ⊥αµ⊥βν . . .⊥ργ⊥σδ . . . Tµν...ρσ... . (3)

Remarks: For a vector tangent to Σt, we have nµV µ = 0 and ⊥αµV µ = V α.
The projection of the metric is often referred to as the first fundamental form
or spatial metric (or 3-metric in the case D = 4). It is given by

γαβ = ⊥µα⊥νβgµν = gαβ + nαnβ = ⊥αβ . (4)

Even though the spatial metric γ and the projector ⊥ turn out to repre-
sent the same tensor, we keep using both symbols depending on whether
the emphasis is on projection or spatial geometry. For a vector tangent
to Σt, we have gµνV

µV ν = γµνV
µV ν . In adapted coordinates we fur-

ther have γµνV µV ν = γIJV
IV J . A tensor tangent to Σt in all components

has vanishing products with the unit timelike field n in all components, so
that the raising and lowering of indices with the spacetime metric gαβ is
equivalent to raising and lowering indices with the spatial metric γIJ , e.g.
T IJK = γJMT IMK , where the inverse spatial metric is defined by the condi-
tion γIMγMJ = δIJ .

In a coordinate basis (∂t, ∂I = ∂/∂xI) adapted to the spacetime split,
one straightforwardly shows that the components of the spacetime metric
are given by

gαβ =

(
−α2 + βMβ

M βJ
βI γIJ

)
⇔ gαβ =

(
−α−2 α−2βJ

α−2βI γIJ − α−2βIβJ

)
,

(5)
e.g. gtJ = g(∂t, ∂J) = g(β, ∂J) + αg(n, ∂J) = βJ + 0. Alternatively, we can
write the line element

ds2 = −α2dt2 + γIJ
(
dxI + βIdt

) (
dxJ + βJdt

)
. (6)
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Definition: We define the spatial covariant derivative of a tensor field as the
projection in all indices of its spacetime covariant derivative DT ≡ ⊥(∇T )
or

DρT
α1...αp

β1...βq = ⊥σρ⊥α1
µ1 . . .⊥αpµp⊥ν1β1 . . .⊥νqβq∇σTµ1...µpν1...νq . (7)

One can show (see e.g. [20]) that D defined in this way is the covariant
derivative operator associated with the Levi-Civita connection of the spatial
metric γαβ and is unique in being (i) torsion free on Σt provided ∇ is torsion
free onM and (ii) metric compatible DIγJK = (⊥∇γ)IJK = 0.
Definition: In order to formulate the Einstein equations in the form of a
spacetime split, we need to define one further variable, the extrinsic curva-
ture or second fundamental form Kαβ ≡ −⊥∇βnα.
Remarks: Note that∇βnα is not symmetric in its indices but the projection
and, thus, Kαβ is. One can show that the Lie derivative of the spatial metric
along the unit timelike field is related to the extrinsic curvature through

Lnγαβ = nµ∇µγαβ+γµβ∇αnµ+γαµ∇βnµ = −2Kαβ ⇔ Kαβ = −1
2Lnγαβ .

(8)
From its definition and Eq. (8), we derive two intuitive interpretations of the
extrinsic curvature. (i) It measures the change in the direction of the unit
normal field nµ between different points in the hypersurface Σt; (ii) It rep-
resents a measure for the change in time of the spatial metric. As illustrated
in Fig. 2, the extrinsic curvature thus describes how the D − 1 dimensional
hypersurfaces Σt are embedded in the D-dimensional spacetime.

Fig. 2. The extrinsic curvature represents a measure for the change in direction of
the unit timelike normal field n at different points in Σt (left panel) and the change
in the spatial metric (right panel).

We have now assembled all the tools to calculate the projections of the
Riemann tensor onto spatial and time directions. A tedious but straightfor-
ward calculation shows the following results
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⊥µα⊥νβ⊥γρ⊥σδ Rρσµν = Rγδαβ +Kγ
αKδβ −Kγ

βKδα , (9)
⊥µα⊥νβ Rµν +⊥µα⊥νβnρnσ Rµρνσ = Rαβ +KKαβ −Kµ

βKαµ , (10)
R+ 2 Rµνn

µnν = R+K2 −KµνKµν , (11)
⊥γρnσ⊥µα⊥νβ Rρσµν = DβK

γ
α −DαK

γ
β , (12)

nσ⊥νβ Rσν = DβK −DµK
µ
β , (13)

⊥αµ⊥νβnσnρ Rµρνσ =
1

α
LmKαβ +KαµK

µ
β +

1

α
DαDβα , (14)

⊥µα⊥νβRµν = −
LmKαβ

α
− 2KαµK

µ
β −

DαDβ α

α
+Rαβ +KKαβ , (15)

R = − 2

α
LmK −

2

α
γµνDµDνα+R+K2 +KµνKµν , (16)

where mµ = αnµ = (∂t)
µ + βµ and Rγδαβ , Rαβ and R denote the Riemann

tensor, Ricci tensor and Ricci scalar associated with the spatial metric γαβ .
Equations (9), (10), (11) and (12) are known as the Gauss, the contracted
Gauss, the scalar Gauss and the Codazzi equations, respectively.

We next use these expressions to rewrite the D-dimensional Einstein
equations (2) in terms of the ADM variables α, βI , γIJ and KIJ . It turns
out useful, for this purpose, to apply a similar split to the energy-momentum
tensor Tαβ .
Definition: The energy density, momentum density and stress tensor are
defined as

ρ ≡ Tµνn
µnν , jα ≡ −Tµνnµ⊥να , Sαβ ≡ ⊥µα⊥νβTµν , S ≡ γµνSµν

⇔ Tαβ = Sαβ + nαjβ + nβjα + ρnαnβ , T = S − ρ . (17)

The spacetime projections of the Einstein equations (2) are then given by

LmγIJ = −2αKIJ , (18)
LmKIJ = −DIDJα+ α

{
RIJ +KKIJ − 2KIMK

M
J

+4π[(S − ρ)γIJ − 2SIJ ]
}
, (19)

H ≡ R+K2 −KMNKMN − 2Λ− 16πρ = 0 , (20)
MI ≡ −DIK +DMK

M
I − 8πjI = 0 . (21)

Here, the Lie derivatives are given by

LmKIJ = ∂tKIJ − βM∂MKIJ −KMJ∂Iβ
M −KIM∂Jβ

M , (22)
LmγIJ = ∂tγIJ − βM∂MγIJ − γMJ∂Iβ

M − γIM∂JβM . (23)
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Equation (18) is merely a consequence of the definition of the extrinsic cur-
vature. Equation (19) represents a set of D(D−1)/2 evolution equations for
KIJ . These two equations determine the time evolution of the physical sys-
tem. The Hamiltonian and momentum constraints (20), (21), on the other
hand, do not contain time derivatives but represent conditions which must
be satisfied by the data on each hypersurface Σt. By virtue of the contracted
Bianchi identities, the constraints (20), (21) are preserved under evolution
in time, so that, in practice, it is necessary to solve the constraints on the
initial hypersurface Σt=0 only. We note, however, that the preservation of
the constraints is only valid at the continuum level. Numerical discretization
will naturally involve some violations of the constraints and, as we shall dis-
cuss further below, avoiding rapid growth of such constraint violating modes
represents one of the important ingredients in obtaining numerically stable
evolutions.

In summary, the spacetime split of the Einstein equations results in a
mixed set of evolution equations and constraints. Note also that the Einstein
equations (18)–(21) do not make any predictions for the lapse function and
shift vector. These are indeed freely specifiable functions and represent the
gauge freedom of general relativity. We shall return to them in Sec. 4.2
below.

2.2. Well-posedness

The initial value formulation (18)–(21) of the Einstein equations provides
us with a system of partial differential equations that can be coded up on
a computer and used to calculate the evolution in time of some initial snap-
shot of a physical system. These equations, often referred to as the ADM
equations, have indeed been used in numerical relativity applications, but
they have not resulted in long-term stable evolutions of generic spacetimes.
It is now understood that these difficulties of the ADM equations are related
to the issue of well posedness of partial differential equations. A comprehen-
sive discussion of the question of well-posedness is beyond the scope of these
lecture notes. We refer interested Readers to the Living Review articles by
Reula [21] and Sarbach and Tiglio [22] as well as Hilditch’s review [23], and
merely present a simplified discussion that suffices in motivating modifica-
tions to the ADM system.

Let us consider for this purpose an initial value problem in one spatial
dimension for a single field variable φ(t, x).
Definition: The initial value problem is well posed if there exists a norm
||.|| which maps functions f(x) to R, and there exists a function F (t) which
is independent of the choice of initial data φ(0, x), such that

||δφ(t, .)|| ≤ F (t)||δφ(0, .)|| . (24)
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Here, δφ denotes the change in the time evolution of φ resulting from a small
initial perturbation δφ(0, x).
Remarks: This condition limits how slightly different initial configurations
deviate from each other during the time evolution given by the initial value
problem. Note, however, that the growth in deviations δφ can still be quite
rapid, e.g. exponential.

An important criterion to determine the well posedness of a system of
differential equations is given by the hyperbolicity properties of the system.
Note that this concept of hyperbolicity is a different one from that of hy-
perbolic, parabolic or elliptic systems mentioned above. Hyperbolicity is
often defined in terms of the principal part of the system of differential
equations which is the part containing the highest derivatives (dropping the
lower derivative or those terms containing only non-differentiated factors).
For simplicity, we consider a quasilinear, first-order system in one spatial
variable for a set of variables U(t, x)

∂tU = P (t, x,U , ∂x)U . (25)

Definition: The system (25) is called strongly hyperbolic if P is a smooth
differential operator and its associated principal symbol (the coefficient ma-
trix in front of the ∂ operators) is symmetrizeable [24]. For the special case
of constant-coefficient systems, this definition simplifies to the requirement
that the principal symbol has only real eigenvalue and a complete set of
linearly independent eigenvectors. If the principal symbol has real eigenval-
ues and no conditions are required for the eigenvectors, the system is called
weakly hyperbolic.
Remark: For more general systems of equations, strong and weak hyper-
bolicity can be defined in a more general fashion; see e.g. [21, 22, 24, 25].

Most importantly for our purposes, it can be shown that strong hyper-
bolicity implies well-posedness [26, 27]. The ADM equations, on the other
hand, have been shown to be weakly but not strongly hyperbolic for the case
of fixed gauge conditions [24]; similarly, a first-order reduction of the ADM
equations has been shown to be weakly hyperbolic [28]. Even though these
studies do not yet cover the entire set of ADM formulations under general
gauge conditions, the ADM equations are not considered a good choice for
obtaining long-term stable numerical simulations of generic BH spacetimes.

A well-posed modification of the ADM equations which has been used
with great success in numerical relativity is the Baumgarte–Shapiro–Shibata–
Nakamura (BSSN) system [29, 30] which is the subject of the next section.
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2.3. The BSSN formulation

The BSSN formulation applies a split of the extrinsic curvature into trace
and tracefree part, a conformal rescaling of the spatial metric and the trace-
less part of the extrinsic curvature and promotes the contracted Christoffel
symbols to the status of independently evolved variables. Specifically, the
BSSN variables are defined by

χ = γ−1/(D−1) , K = γMNKMN ,

γ̃IJ = χγIJ ⇔ γ̃IJ =
1

χ
γIJ ,

ÃIJ = χ

(
KIJ −

1

D − 1
γIJK

)
⇔ KIJ =

1

χ

(
ÃIJ +

1

D − 1
γ̃IJK

)
,

Γ̃ I = γ̃MN Γ̃ I
MN , (26)

where γ ≡ det γIJ and Γ̃ I
MN is the Christoffel symbol defined in the usual

manner from the conformal spatial metric γ̃IJ . These definitions imply two
algebraic and one differential auxiliary constraints (in addition to the Hamil-
tonian and momentum constraint) given by

γ̃ = 1 , γ̃MNÃMN = 0 , GI ≡ Γ̃ I − γ̃MN Γ̃ I
MN = 0 . (27)

Inserting these definitions into the ADM equations and using the Hamilto-
nian in the evolution equation for K and the momentum constraint in that
for Γ̃ i results in the BSSN equations

∂tχ = βM∂Mχ+
2

D − 1
χ (αK − ∂MβM) , (28)

∂tγ̃IJ = βM∂M γ̃IJ + 2γ̃M(I∂J)β
M − 2

D − 1
γ̃IJ∂Mβ

M − 2αÃIJ , (29)

∂tK = βM∂MK − χγ̃MNDMDNα+ αÃMNÃMN +
1

D − 1
αK2

+
8π

D − 2
α [S + (D − 3)ρ]− 2

D − 2
αΛ , (30)

∂tÃIJ = βM∂MÃIJ + 2ÃM(I∂J)β
M − 2

D − 1
ÃIJ∂Mβ

M + αKÃIJ

−2αÃIMÃ
M
J + χ (αRIJ −DIDJα− 8παSIJ)TF , (31)

∂tΓ̃
I = βM∂M Γ̃

I +
2

D − 1
Γ̃ I∂Mβ

M − Γ̃M∂Mβ
I + γ̃MN∂M∂Nβ

I

+
D − 3

D − 1
γ̃IM∂M∂Nβ

N − ÃIM

[
(D − 1)α

∂Mχ

χ
+ 2∂Mα

]
+2αΓ̃ I

MNÃ
MN−2

D − 2

D − 1
αγ̃IM∂MK−16παjI−σ∂MβMGI , (32)
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where the superscript TF denotes the tracefree part. The addition of the
last term in (32) has been suggested by Yo et al. [31] to damp violations
of the auxiliary constraint GI . In practice, the constant σ is typically set
a value of order unity. We furthermore need the following expressions for
the covariant derivative of the lapse function and the spatial Ricci tensor in
terms of the fundamental variables

DIDJα = D̃ID̃Jα+
1

χ
∂(Iχ ∂J)α−

1

2χ
γ̃IJ γ̃

MN∂Mχ ∂Nα , (33)

RIJ = RχIJ + R̃IJ , (34)

RχIJ =
1

2χ
γ̃IJ

[
γ̃MND̃MD̃Nχ−

D − 1

2χ
γ̃MN∂Mχ ∂Nχ

]
+
D − 3

2χ

(
D̃ID̃Jχ−

1

2χ
∂Iχ ∂Jχ

)
, (35)

R̃IJ = −1

2
γ̃MN∂M∂N γ̃IJ + γ̃M(I∂J)Γ̃

M + γ̃MN

[
2Γ̃K

M(IΓ̃J)KN + Γ̃K
IM Γ̃KJN

]
+Γ̃M Γ̃(IJ)M . (36)

Some comments are in order at this stage. (i) Some implementations of
the BSSN system use the variables W ≡√χ or φ≡−(lnχ)/4 in place of χ.
(ii) In the evolution equation (32) for Γ̃ t, some numerical codes drop the
constraint damping term σ∂Mβ

MGI and instead replace Γ̃ I in terms of its
definition through the Christoffel symbols wherever Γ̃ I appears in undiffer-
entiated form; cf. Alcubierre and Brügmann [32]. (iii) The two algebraic
constraints in Eq. (27) can be enforced straightforwardly after completion
of every timestep. From experience, it appears that enforcing γ̃MNÃMN = 0
is necessary for numerical stability, whereas imposing the condition γ̃ = 1 is
optional but not necessary. We conclude this summary of the BSSN system
with the Hamiltonian and momentum constraints which are given by

H = R+
D − 2

D − 1
K2 − ÃMNÃMN − 16πρ− 2Λ = 0 , (37)

MI = γ̃MND̃MÃNI −
D − 2

D − 1
∂IK −

D − 1

2χ
ÃM

I∂Mχ− 8πjI . (38)

2.4. The Generalized Harmonic Gauge formulation

An alternative well-posed formulation that has been used with great suc-
cess in numerical relativity applications, most notably in Pretorius’ break-
through [33], is the Generalized Harmonic Gauge (GHG) formulation. This
system is reviewed in great detail in Ringström’s notes [34] in this issue and
we here restrict ourselves to a brief summary.
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It has been realized a long time ago that the Einstein equations take on a
mathematically appealing form if one imposes the harmonic gauge condition
2xα = −gµνΓαµν = 0. Taking the derivative of this condition eliminates a
specific combination of second derivatives from the Ricci tensor such that
its principal part is that of the scalar wave operator

Rαβ = −1
2g
µν∂µ∂νgαβ + . . . , (39)

where the dots denote terms involving at most the first derivative of the
metric. In consequence of this simplification of the principal part, the Ein-
stein equations in harmonic gauge are manifestly hyperbolic and harmonic
coordinates have played a key part in establishing local uniqueness of the
solution to the Cauchy problem in general relativity [35–37].

It has been realized by Friedrich [38] and Garfinkle [39] that the appealing
form of the Ricci tensor can be maintained for arbitrary coordinates defined
through

Hα ≡ 2xα = −gµνΓαµν , (40)

by promoting the Hα to the status of independently evolved variables; see
also [40, 41]. With this definition, it turns out convenient to consider the
generalized class of equations

Rαβ −∇(αCβ) = 8π

(
Tαβ −

1

D − 2
Tgαβ

)
+

2

D − 2
Λgαβ , (41)

where Cα ≡ Hα − 2xα. The addition of the term ∇(αCβ) replaces the
contribution of ∇(α2xβ) to the Ricci tensor in terms of ∇(αHβ) and thus
changes the principal part to that of the scalar wave operator. A solution
to the Einstein equations is now obtained by solving Eq. (41) subject to the
constraint Cα = 0.

Starting point for a Cauchy evolution are initial data gαβ and ∂tgαβ which
satisfy the constraints Cα = 0 = ∂tCα. A convenient manner to construct
such initial data is to compute initial Hα directly from Eq. (40) so that
Cα = 0 by construction. It can then be shown [41] that the ADM constraints
(20), (21) imply ∂tCµ. By virtue of the contracted Bianchi identities, the
evolution of the constraint system obeys the equation

2Cα = −Cµ∇(µCν) − Cµ
[
8π

(
Tµα −

1

D − 2
Tgµα

)
+

2

D − 2
Λgµα

]
, (42)

and the constraint Cα = 0 is preserved under time evolution in the continuum
limit.

A key addition to the GHG formalism has been devised by Gundlach
et al. [42] in the form of damping terms which prevent growth of numerical
violations of the constraints Cα = 0 due to discretization or roundoff errors.
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Including these damping terms and using the definition (40) to substitute
higher derivatives in the Ricci tensor, the generalized Einstein equations (41)
can be written as

gµν∂µ∂νgαβ = −2∂νgµ(α ∂β)g
µν − 2∂(αHβ) + 2HµΓ

µ
αβ − 2ΓµναΓ

ν
µβ − 16πTαβ

+
16πT − 4Λ

D − 2
gαβ − 2κ

[
2n(αCβ) − λgαβnµCµ

]
, (43)

where κ, λ are user-specified parameters. An alternative first-order-system
of the GHG formulation has been presented in Lindblom et al. [41].

2.5. Beyond BSSN: Improvements for future applications

Most BH evolutions in generic D = 4 dimensional spacetimes have been
performed with the GHG and the BSSN formulation. It is interesting to
note in this context the complementary nature of the two formulations’
respective strengths and weaknesses. In particular, the constraint subsystem
of the BSSN equations contains a zero-speed mode [43–45] which may lead to
large Hamiltonian constraint violations. The GHG system does not contain
such modes and furthermore admits a simple way of controlling constraint
violations in the form of damping terms [42]. Finally, the wave-equation-type
principal part of the GHG system allows for the straightforward construction
of constraint preserving boundary conditions [46–48]. On the other hand,
the BSSN formulation is remarkably robust and allows for the simulation
of BH binaries over a wide range of the parameter space with little if any
modifications of the gauge conditions; cf. Sec. 4.2. Combination of these
advantages in a single system has motivated the exploration of improvements
to the BSSN system and in recent years resulted in the identification of
a conformal version of the Z4 system, originally developed by Bona et al.
[49–51], as a highly promising candidate [52–55].

The key idea behind the Z4 system is to replace the Einstein equations
with a generalized class of equations given by

Gαβ = 8πTαβ−∇αZβ−∇βZα+gαβ∇µZµ+κ1 [nαZβ+nβZα+κ2gαβnMZ
M ] ,
(44)

where Zα is a vector field of constraints which is decomposed into space and
time components according to Θ ≡ −nµZµ and Zi = ⊥µiZµ. Clearly, a so-
lution to the Einstein equations is recovered provided the constraint Zµ = 0
is satisfied. The conformal version of the Z4 system is obtained in the same
manner as the BSSN system and leads to time evolution equations for a
set of variables nearly identical to the BSSN variables but augmented by
the constraint variable Θ. The resulting evolution equations given in the
literature vary in minor details, but clearly represent relatively minor mod-
ifications for existing BSSN codes [52, 53, 55]. Investigations have shown
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that the conformal Z4 system is indeed suitable for implementation of con-
straint preserving boundary systems [56] and that constraint violations in
simulations of gauge waves and BH and neutron-star spacetimes are smaller
than those obtained for the BSSN system, in particular when constraint
damping is actively enforced [52, 55]. This behavior also manifests itself in
more accurate results for the gravitational radiation in binary inspirals [55].
In summary, the conformal Z4 formulation is a very promising candidate
for future numerical studies of BH spacetimes, including, in particular, the
asymptotically anti-de Sitter (AdS) case where a rigorous control of the outer
boundaries is of utmost importance; cf. Sec. 4.4 below.

Another modification of the BSSN equations is based on the use of den-
sitized versions of the trace of the extrinsic curvature and the lapse func-
tion as well as the traceless part of the extrinsic curvature with mixed in-
dices [57, 58]. Some improvements in simulations of colliding BHs in higher
dimensional spacetimes have been found by careful exploration of the den-
sitization parameter space by Witek [59].

2.6. Alternative approaches to formulate the Einstein equations

The formulations discussed in the previous subsections are based on a
space-time split of the Einstein equations. A natural alternative to such
a split is given by the characteristic approach pioneered by Bondi and
Sachs [60, 61]. Here, at least one coordinate is null and thus adapted to
the characteristics of the vacuum Einstein equations. For generic four-
dimensional spacetimes with no symmetry assumptions, the characteristic
formalism results in a natural hierarchy of 2 evolution equations, 4 hypersur-
face equations relating variables on hypersurfaces of constant retarded (or
advanced) time, as well as 3 supplementary and 1 trivial equations. A com-
prehensive overview of characteristic methods in numerical relativity is given
in Winicour’s Living Review article [62]. Although characteristic codes have
been developed with great success in spacetimes with additional symme-
try assumptions, evolutions of generic BH spacetimes face the problem of
formation of caustics, resulting in a breakdown of the coordinate system;
see [63] for a recent investigation. One possibility to avoid the problem of
caustic formation is the Cauchy-characteristic matching, the combination
of a space-time based numerical scheme in the interior strong-field region
with a characteristic scheme in the outer parts. In the form of Cauchy-
characteristic extraction, i.e. ignoring the injection of information from the
characteristic evolution into the inner Cauchy evolution, this approach has
been used to extract gravitational waves with high accuracy from numerical
simulations of compact objects [64, 65].
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For simulations of spacetimes with high degrees of symmetry, it often
turns out convenient to directly impose the symmetries on the shape of the
line element rather than use one of the general formalisms discussed so far.
As an example, we consider the classic study by May and White [66, 67]
of the dynamics of spherically symmetric perfect fluid stars. A spherically
symmetric spacetime can be described in terms of the simple line element

ds2 = −a2(x, t)dt2 + b2(x, t)dx2 −R2(x, t)dΩ2
2 , (45)

where dΩ2
2 is the line element of the 2-sphere. May and White employ

Lagrangian coordinates co-moving with the fluid shells which is imposed
through the form of the energy-momentum tensor T 0

0 = −ρ(1 + ε), T 1
1 =

T 2
2 = T 3

3 = P . Here, the rest-mass density ρ, internal energy ε, and
pressure P are functions of the radial and time coordinates. Plugging the
line element (45) into the Einstein equations (2) with D = 4, Λ = 0 and the
equations of conservation of energy momentum ∇µTµα = 0 results in a set
of equations for the spatial and time derivatives of the metric and matter
functions amenable for a numerical treatment; cf. Sec. II in [66] for details.

3. Higher dimensional numerical relativity

Many BH studies, in particular those connected with high-energy physics,
involve higher-dimensional spacetimes [68, 69]. For this reason, we have
kept the number of spacetime dimensions D as a free parameter in the
above discussion of the Einstein equations. In practice, however, numeri-
cal relativity simulations of generic D-dimensional spacetimes are restricted
by the computational resources available. Traditional BH simulations in
D = 4 dimensions are performed on clusters using O(100) cores and need
O(100) Gb of memory for storage of the field variables on the computa-
tional domain. Each of the three spatial dimensions is resolved with O(100)
grid points, such that each extra dimension increases the number of grid
points and, hence, the memory requirement by a factor of around 100. The
number of floating point operations needed for each evolution step in time
increases even faster because in addition to the increase in grid points, the
number of terms in the Einstein equations also increases with D. In spite
of the rapid advance of computer technology, numerical relativity simula-
tions of fully generic spacetimes are in all likelihood unrealistic for any
number D > 5. Bearing also in mind that the community already has
available robust codes for D = 4, it appears tempting to reduce the descrip-
tion of higher-dimensional spacetimes with appropriate degrees of symme-
try to an effectively four-dimensional problem; see [70–72] for recent reviews.
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It turns out that many particularly interesting BH studies fall into this cat-
egory. In this section, we will discuss two approaches that have been devel-
oped to reformulate the equations governing D-dimensional vacuum space-
times with SO(D − 3) isometry as an effectively four-dimensional problem.

For cases of even higher symmetry, the approach of directly enforcing
these symmetries on the line element as discussed in Sec. 2.6 has also been
used with great success, but it appears unlikely that this approach can be
pushed beyond spacetimes that vary in more than one or two spatial direc-
tions.

3.1. Dimensional reduction by isometry

The idea of dimensional reduction has originally been developed by
Geroch [73] for four-dimensional spacetimes possessing one Killing field as
for example in the case of axisymmetry; for numerical applications, see for
example [74–76]. This formalism has been generalized to the case of ar-
bitrary spacetime dimensions and number of Killing vectors by Cho and
collaborators in [77, 78]. A comprehensive summary of this approach in-
cluding examples and the complete form of the Einstein equations is given
by Zilhão [79]. The starting point is the general D-dimensional spacetime
metric written in coordinates adapted to the symmetry

ds2 = Gµνdx
µdxν =

(
gµ̄ν̄ + e2κ2gabB

a
µ̄B

b
ν̄

)
dxµ̄dxν̄

+2eκBa
µ̄gabdx

µ̄dxb + gabdx
adxb . (46)

Here, barred Greek indices µ̄, . . . run from 0 to 3, early Latin indices a, . . .
from 4 to D − 1 and κ and e represent a scale parameter and a coupling
constant that will soon drop out and play no role in the eventual spacetime
reduction. We note that the 3+1 split of the metric in Eq. (5) is merely a
special case of this general metric decomposition and that the metric (46) is
fully general in the same sense as the spacetime metric in the ADM split.

The special case of a SO(D − 3) isometry corresponds to the rotational
symmetry on an SD−4 sphere and admits (n+1)n/2 Killing fields ξ(i), where
n ≡ D−4 stands for the number of extra dimensions. For n = 2, for instance,
there exist three Killing fields given in spherical coordinates by ξ(1) = ∂φ,
ξ(2) = sinφ∂θ + cot θ cosφ∂φ, ξ(3) = cosφ∂θ − cot θ sinφ∂φ.

Killing’s equation Lξ(i)gAB = 0 implies that

Lξ(i)gab = 0 , Lξ(i)B
a
µ̄ = 0 , Lξ(i)gµ̄ν̄ = 0 . (47)

From these conditions, we can draw the following conclusions. (i) gab =
e2ψ(xµ)hab, where hab is the metric on the Sn sphere with unit radius and ψ
is a free field; (ii) gµ̄ν̄ = gµ̄ν̄(xµ̄) in adapted coordinates; (iii) [ξ(i), Bµ̄] = 0.
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For n ≥ 2, there furthermore exist no non-trivial vector fields on SD−4 that
commute with all Killing fields, so that Ba

µ̄ = 0. The case ofD = 5 is special
in that there exists only one Killing field ξ(1) for SO(D−3) isometry and this
last conclusion cannot be made. Instead, we consider for D = 5 ⇔ n = 1
the more restricted class of SO(D − 2) isometries, i.e. axially symmetric
spacetimes, for which Ba

µ̄ = 0.
A tedious but straightforward calculation [79] shows that the components

of the D-dimensional Ricci tensor can then be written as

Rab =
{

(D − 5)− e2ψ
[
(D − 4)∂µ̄ψ∂µ̄ψ +∇µ̄∂µ̄ψ

]}
hab ,

Rµ̄a = 0 ,

Rµ̄ν̄ = Rµ̄ν̄ − (D − 4)(∇ν̄∂µ̄ψ − ∂µ̄ψ ∂ν̄ψ) ,

R = R+ (D−4)
[
(D − 5)e−2ψ − 2∇µ̄∂µ̄ψ − (D − 3)∂µ̄ψ ∂µ̄ψ

]
, (48)

where Rµ̄ν̄ and R respectively denote the 3+1 dimensional Ricci tensor
and scalar associated with the 3+1 metric ḡµ̄ν̄ ≡ gµ̄ν̄ . The D-dimensional
vacuum Einstein equations with vanishing cosmological constant Λ = 0 then
become

Rµ̄ν̄ = (D − 4)(∇ν̄∂µ̄ψ + ∂µ̄ψ ∂ν̄ψ) , (49)

e2ψ
[
(D − 4)∂µ̄ψ ∂µ̄ψ +∇µ̄∂µ̄ψ

]
= (D − 5) . (50)

One important comment is in order at this stage. If we describe the three
spatial dimensions in terms of the Cartesian coordinates (x, y, z), one of
these is a quasi-radial coordinate. Without loss of generality, we choose z
and the computational domain is given by x, y ∈ R, z ≥ 0. In consequence
of the radial nature of the z direction, e2ψ = 0 at z = 0. Numerical problems
arising from this coordinate singularity can be avoided by working instead
with a rescaled version of the variable e2ψ. More specifically, we also include
the BSSN conformal factor χ in the redefinition and define

ζ ≡ χ

z2
e2ψ . (51)

The BSSN version of the D-dimensional vacuum Einstein equations (49) is
then given by Eqs. (28)–(32) where the indices I, J, M, . . . now run from
1 to 3, i.e. are replaced by i, j, m, . . ., and we have quasi-matter terms
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4π(ρ+ S)

D − 4
= (D − 5)

χ

ζ

γ̃zzζ − 1

z2
− 2D − 7

4ζ
γ̃mn∂mη ∂nχ− χ

Γ̃ z

z
−
KKζ

ζ

−K
2

3
+
D − 6

4

χ

ζ2
γ̃mn∂mζ ∂nζ +

γ̃mn

2ζ

(
χD̃m∂nζ − ζD̃m∂nχ

)
+(D − 4)

γ̃zm

z

(
χ

ζ
∂mζ − ∂mχ

)
+
D − 1

4
γ̃mn

∂mχ ∂nχ

χ

−1

2

γ̃zm

z
∂mχ− (D − 5)

(
Kζ

ζ
+
K

3

)2

, (52)

8πχSTF
ij

D − 4
= −

(
Kζ

ζ
+
K

3

)
Ãij +

1

2

[
2χ

zζ

(
δz(j∂i)ζ − ζΓ̃ zij

)
+

1

2χ
∂iχ ∂jχ

−D̃i∂jχ+
χ

ζ
D̃i∂jζ +

1

2χ
γ̃ij γ̃

mn∂nχ

(
∂mχ−

χ

ζ
∂mζ

)
−γ̃ij

γ̃zm

z
∂mχ−

χ

2ζ2
∂iζ ∂jζ

]TF

, (53)

16πji
D − 4

=
2

z

(
δzi

Kζ

ζ
− γ̃zmÃmi

)
+

2

ζ
∂iKζ −

Kζ

ζ

(
1

χ
∂iχ+

1

ζ
∂iζ

)
+

2

3
∂iK − γ̃nmÃmi

(
1

ζ
∂nζ −

1

χ
∂nχ

)
. (54)

The evolution of the field ζ is determined by Eq. (50) which in terms of the
BSSN variables becomes

∂tζ = βm∂mζ − 2αKζ −
2

3
ζ∂mβ

m + 2ζ
βz

z
, (55)

∂tKζ = βm∂mKζ −
2

3
Kζ∂mβ

m + 2
βz

z
Kζ −

1

3
ζ(∂t − Lβ)K − χζ γ̃

zm

z
∂mα

−1

2
γ̃mn∂mα (χ∂nζ − ζ∂nχ) + α

[
(5−D)χ

ζγ̃zz − 1

z2
+ χζ

Γ̃ z

z

+(4−D)χ
γ̃zm

z
∂mζ +

2D − 7

2
ζ
γ̃zm

z
∂mχ+

6−D
4

χ

ζ
γ̃mn∂mζ ∂nζ

+
2D − 7

4
γ̃mn∂mζ ∂nχ+

1−D
4

ζ

χ
γ̃mn∂mχ ∂nχ+ (D − 6)

K2
ζ

ζ

+
2D − 5

3
KKζ+

D − 1

9
ζK2 +

1

2
γ̃mn

(
ζD̃m∂nχ−χD̃m∂nζ

)]
. (56)
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It has been demonstrated by Zilhão et al. [80] how all terms containing
factors of z in the denominator1 can be regularized using the symmetry
properties of tensors and their derivatives across z = 0 and assuming that
the spacetime does not contain a conical singularity.

3.2. The Cartoon method

The Cartoon method has originally been developed by Alcubierre et al.
[81] in order to evolve axisymmetric four-dimensional spacetimes using an
effectively two-dimensional Cartesian grid. For this purpose, the grid merely
includes a small number of ghostzones in the third spatial dimension which
are needed to evaluate derivatives through finite differencing expressions. In-
tegration in time, however, is performed exclusively on the two-dimensional
plane, whereas the ghostzones are filled in after each timestep by appropri-
ate interpolation of the fields in the plane and subsequent rotation of the
solution using the axial spacetime symmetry. A generalized version of this
method has been applied to D = 5 dimensional spacetimes by Yoshino and
Shibata [82]. For arbitrary spacetime dimensions, however, even the rela-
tively small number of ghostzones required in every extra dimension leads
to a substantial increase in the computational resources; for fourth-order
finite differencing, for example, five ghostzones are required in each extra
dimension resulting in an increase of the computational domain by an over-
all factor 5D−4. An elegant scheme to avoid this difficulty while preserving
all advantages of the Cartoon method has been developed by Shibata and
Yoshino [83] and is sometimes referred to as the modified Cartoon method.

Let us consider, for illustrating this method, a D-dimensional spacetime
with SO(D − 3) symmetry and Cartesian coordinates xµ = (t, x, y, z, wa),
where a = 4, . . . , D − 1. Without loss of generality, the coordinates are
chosen such that the SO(D − 3) symmetry implies rotational symmetry in
the planes spanned by each choice of two coordinates from (z, wa). The
goal is to obtain a formulation of the D-dimensional Einstein equations
(28)–(36) with SO(D− 3) symmetry that can be evolved exclusively on the
xyz hyperplane. The tool employed for this purpose is to use the spacetime
symmetries in order to trade derivatives off the hyperplane, i.e. in the wa
directions, for derivatives inside the hyperplane. Furthermore, the symme-
try implies relations between the D-dimensional components of the BSSN
variables.

These relations are obtained by applying a coordinate transformation
from Cartesian to polar coordinates in any of the two-dimensional
planes spanned by z and w, where w ≡ wa for any particular choice

1 Note that in their work the radial variable is y instead of z.
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of a ∈ [4, . . . , D − 1]

ρ =
√
z2 + w2 , z = ρ cosϕ ,

ϕ = arctan
w

z
, w = ρ sinϕ . (57)

Spherical symmetry in n = D − 4 dimensions implies the existence of
n(n+ 1)/2 Killing vectors, one for each plane with rotational symmetry.
For each Killing vector ξ, the Lie derivative of the spacetime metric vanishes
Lξgµν . For the zw plane, in particular, the Killing vector field is ξ = ∂ϕ and
the Killing condition is given by the simple relation

∂ϕgµν = 0 . (58)

All ADM and BSSN variables are constructed from the spacetime metric and
a straightforward calculation demonstrates that, therefore, the Lie deriva-
tives along ∂ϕ of all these variables vanish. For D ≥ 6, we can always choose
the coordinates such that for µ 6= ϕ, gµϕ = 0 which implies the vanishing of
the BSSN variables βϕ = γ̃µϕ = Γ̃ϕ = 0. The case of SO(D−3) isometry in
D = 5 dimensions is special in the same sense as already discussed in Sec. 3.1
and the vanishing of the µϕ components does not in general hold. As be-
fore, we therefore consider in D = 5 the more restricted class of SO(D − 2)
isometry. Finally, the Cartesian coordinates wa can always be chosen such
that the diagonal metric components are equal

γw1w1 = γw2w2 = . . . ≡ γww . (59)

We note that these properties are independent of the particular choice of
plane from the coordinates (z, wa). We can now exploit these properties in
order to trade derivatives in the desired manner. We shall illustrate this for
the second w derivative of the ww component of a symmetric tensor-density
of weight W which transforms under change of coordinates according to

Tᾱβ̄ = DW
∂xµ

∂xᾱ
∂xν

∂xβ̄
Tµν , D ≡ det

(
∂xµ

∂xᾱ

)
. (60)

Specifically, we consider the coordinate transformation (57), where D = ρ.
This transformation implies

∂wTww =
∂ρ

∂w
∂ρTww +

∂ϕ

∂w
∂ϕTww , (61)

where
Tww = D−W

(
∂ρ

∂w

∂ρ

∂w
Tρρ + 2

∂ρ

∂w

∂ϕ

∂w
Tρϕ +

∂ϕ

∂w

∂ϕ

∂w

)
. (62)
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Inserting (62) into (61) and setting Tρϕ = 0 yields a lengthy expression
involving derivatives of Tρρ and Tϕϕ with respect to ρ and ϕ. The latter
vanish due to symmetry and we substitute for the ρ derivatives using

∂ρTρρ =

(
∂z

∂ρ
∂z+

∂w

∂ρ
∂w

)[
DW

(
∂z

∂ρ

∂z

∂ρ
Tzz+2

∂z

∂ρ

∂w

∂ρ
Tzw+

∂w

∂ρ

∂w

∂ρ
Tww

)]
,

∂ρTϕϕ =

(
∂z

∂ρ
∂z+

∂w

∂ρ
∂w

)[
DW

(
∂z

∂ϕ

∂z

∂ϕ
Tzz+2

∂z

∂ϕ

∂w

∂ϕ
Tzw+

∂w

∂ϕ

∂w

∂ϕ
Tww

)]
.

(63)

This gives a lengthy expression relating the z and w derivatives of Tww.
Finally, we recall that we need the relation of these derivatives in the xyz
hyperplane and therefore set w = 0. In order to obtain an expression for the
second w derivative of Tww, we first differentiate the expression with respect
to w and then set w = 0. The final result is given by

∂wTww = 0 , ∂w∂wTww =
∂zTww
z

+ 2
Tzz − Tww

z2
. (64)

Note that the density weight dropped out of this calculation, so that Eq. (64)
is valid for the BSSN variables Ãµν and γ̃µν .

Applying a similar procedure to all components of scalar, vector and
symmetric tensor densities gives all expressions necessary to trade derivatives
off the xyz hyperplane for those inside it. We summarize the expressions
using the following notation: a late Latin index, i = 1, . . . , 3 stands for either
x, y or z, whereas an early Latin index, a = 4, . . . , D − 1 represents any of
the wa directions. For scalar, vector and tensor fields Ψ , V and T we obtain

0 = ∂aΨ = ∂i∂aΨ = V a = ∂iV
a = ∂a∂bV

c = ∂aV
i= ∂aTbc = ∂i∂aTbc

= Tia = ∂a∂bTic = ∂aTij = ∂i∂aTjk ,

∂a∂bΨ = δab
∂zΨ

z
,

∂aV
b = δba

V z

z
,

∂i∂aV
b = δba

(
∂iV

z

z
− δiz

V z

z2

)
,

∂a∂bV
i = δab

(
∂zV

i

z
− δiz

V z

z2

)
,

Tab = δabTww ,

∂a∂bTcd = (δacδbd + δadδbc)
Tzz − Tww

z2
+ δabδcd

∂zTww
z

,
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∂aTib = δab
Tiz − δizTww

z
,

∂i∂aTjb = δab

(
∂iTjz − δjz∂iTww

z
− δiz

Tjz − δjzTww
z2

)
,

∂a∂bTij = δab

(
∂zTij
z
− δizTjz + δjzTiz − 2δizδjzTww

z2

)
. (65)

By trading or eliminating derivatives using these relations, a numerical code
can be generated to evolve D-dimensional spacetimes with SO(D− 3) sym-
metry on a strictly three-dimensional computational grid. We finally note
that z is a quasi-radial variable so that z ≥ 0.

4. Additional ingredients for numerical relativity

In the previous two sections, we have seen how the Einstein equations can
be recast as an initial value problem and how we can reformulate the higher-
dimensional evolution equations as an effectively four-dimensional problem
assuming rotational symmetries in the extra dimensions. We thus have at
hand a choice of formulations to evolve a spacetime using supercomputers.
The complete modeling of BH spacetimes, however, requires a set of further
ingredients. Specifically, we need to address the following issues:

• We have described how the fields evolve according to Einstein’s theory.
But we need to provide initial data that (i) satisfy the Hamiltonian and
momentum constraints and (ii) represent a realistic initial snapshot of
the physical system under consideration.

• The Einstein equations do not predict the lapse function α and the
shift vector βI . These represent the coordinate freedom and need to
be chosen in a way that ensures a long-term stability of the numerical
evolutions.

• We need to discretize the evolution equations such that a computer
can handle them; computers deal with numbers and discretization pre-
scribes the particular way to convert the continuum equations into a
recipe for evolving large but finite sets of numbers.

• Once we have a complete numerical evolution, we need to extract phys-
ical results. Quite often, quantities we are familiar with from the
Newtonian physics are not well defined in general relativity and even
quantities that are, typically require a good deal of care to be extracted
in a gauge invariant manner from the sets of numbers provided by the
computer.
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The purpose of this section is to review the main techniques used to address
these items.

4.1. Initial data

As we have seen in Sec. 2, initial data to be used in time evolutions of
the Einstein equations need to satisfy the Hamiltonian and momentum con-
straints (20), (21). A comprehensive overview of this approach to generate
initial data is given by Cook’s Living Review [84]; for recent lecture notes
see also [85]. Here, we merely summarize some key concepts.

One obvious way to obtain such constraint satisfying initial data is to
directly use analytical solutions to the Einstein equations as, for example,
the Schwarzschild solution in D = 4 in isotropic coordinates

ds2 = −
(
M − 2r

M + 2r

)2

dt2 +

(
1 +

M

2r

)4 [
dr2 + r2

(
dθ2 + sin2 θ dφ2

)]
. (66)

Naturally, the numerical evolution of an analytically known spacetime solu-
tion does not generate new physical insight. It still serves as an important
way to test numerical codes and, more importantly, analytically known solu-
tions often form the starting point to construct generalized classes of initial
data whose time evolution is not known without numerical study. Classic
examples of such generalized analytic initial data are the Misner [86] and
Brill–Lindquist [87] solutions describing n non-spinning BHs at the moment
of time symmetry. In Cartesian coordinates, the Brill–Lindquist data gen-
eralized to arbitrary D is given by

KIJ = 0 , γIJ = ψ
4

D−3 δIJ , ψ = 1+
∑
A

µD−3
A

4
[∑D−1

k=1

(
xk−xk0

)2]D−3
2

, (67)

where the summations over A and k run over the number of BHs, and the
spatial coordinates, respectively, and µA are parameters related to the mass
of the Ath BH through the surface area SD−2 of the (D − 2) hypersphere
by µD−3

a = 16πM/[(D − 2)SD−2].
A systematic way to generate solutions to the constraints describing

BHs is based on the York–Lichnerowicz split [88–90] originally developed
for D = 4 spacetime dimensions. This split employs a conformal spatial
metric defined by γij = ψ4γ̄ij ; note that in contrast to the BSSN variable
γ̃ij , in general det γ̄ij 6= 1. By applying a conformal traceless split to the
extrinsic curvature according to

Kij = Aij + 1
3γijK , Aij = ψ−10Āij ⇔ Aij = ψ−2Āij , (68)
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and further decomposing Āij into a longitudinal and a transverse traceless
part, the momentum constraints simplify significantly; see [84] for details as
well as a discussion of the alternative physical transverse-traceless split and
conformal thin-sandwich decomposition [91]. The conformal thin-sandwich
approach, in particular, provides a method to generate initial data for the
lapse and shift which minimize the initial rate of change of the spatial metric,
i.e. data in a quasi-equilibrium configuration [92, 93].

Under the further assumption of vanishing trace of the extrinsic curva-
ture K = 0, a flat conformal metric γ̄ij = fij , where fij describes a flat
Euclidean space, and asymptotic flatness limr→∞ ψ = 1, the momentum
constraint admits an analytic solution known as the Bowen–York data [94]

Āij =
3

2r2

[
Pinj + Pjni −(fij−ninj)P knk

]
+

3

r3

(
εkilS

lnknj + εkjlS
lnkni

)
,

(69)
where r =

√
x2 + y2 + z2, the unit radial vector is ni = xi/r and P i, Si are

user-specified parameters. By calculating the momentum associated with
the asymptotic translational and rotational Killing vectors ξi(k) [95], one can
show that P i and Si represent the total linear and angular momentum of
the initial hypersurface. The linearity of the momentum constraint further
allows us to superpose solutions Ā(A)

ij of the type (69) and the total momenta
are merely obtained by summing the individual P i(A), S

i
(A). For the general-

ization of Misner data, it is necessary to construct inversion-symmetric solu-
tions of the type (69) using the method of images [84, 94]. Such a procedure
is not required for generalizing Brill–Lindquist data where a superposition of
solutions Ā(a)

ij of the type (69) can be used directly to calculate the extrinsic
curvature from Eq. (68) and insert the resulting expressions into the vacuum
Hamiltonian constraint given with the above listed simplifications by

∇̄2ψ + 1
8K

mnKmnψ
−7 = 0 . (70)

Here, ∇̄2 is the Laplace operator associated with the flat metric fij . This
elliptic equation is commonly solved by decomposing ψ into a Brill–Lindquist
piece ψBL =

∑N
A=1mA/|~r− ~rA| plus a regular piece u = ψ−ψBL, where ~rA

denotes the location of the Ath BH andmA its bare-mass parameter. Brandt
and Brügmann [96] have proven existence and uniqueness of C2 regular
solutions u to Eq. (70) and the resulting puncture data are the starting
point of the majority of numerical BH evolutions using the BSSN moving
puncture technique.

In spite of its popularity, there remain a few caveats with puncture data
that have inspired explorations of alternative initial data. In particular, it
has been shown by Garat and Price [97] that there exist no conformally flat
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spatial slices of the Kerr spacetime. Constructing puncture data of a single
BH with the non-zero Bowen–York parameter Si will, therefore, inevitably
result in a hypersurface containing a BH plus some additional content which
typically manifests itself in numerical evolutions as spurious gravitational
waves, colloquially referred to as the “junk radiation”. For rotation param-
eters close to the limit of extremal Kerr BHs, the amount of spurious radi-
ation rapidly increases leading to an upper limit of the dimensionless spin
parameter χ ≈ 0.93 for conformally flat Bowen–York-type data [98–101]; BH
initial data of the Bowen–York type with a spin parameter above this value
rapidly relax to rotating BHs with spin χ ≈ 0.93, probably through absorp-
tion of some fraction of the spurious radiation. Lovelace et al. [101, 102]
overcome this limit by instead constructing initial data with an extended
version of the conformal thin-sandwich method applied to superposed Kerr–
Schild BHs [103].

In practice, puncture data are the method-of-choice for most evolutions
performed with the BSSN-moving-puncture technique whereas GHG evo-
lution schemes commonly start from conformal-thin-sandwich data using
either conformally flat or Kerr–Schild background data. Alternatively to
both these approaches, Pretorius has also employed initial data containing
scalar fields which rapidly collapse to one or more BHs; see e.g. [33].

4.2. Gauge conditions

We have seen in Sec. 2 that the Einstein equations do not make any
predictions about the gauge functions; the ADM equations leave lapse α
and shift βi unspecified and the GHG equations make no predictions about
the source functions Hα. Instead, these functions can be freely specified by
the user and represent the coordinate diffeomorphism or gauge invariance of
the theory of general relativity. Whereas the physical properties of a space-
time remain unchanged under gauge transformations, the performance of
numerical evolution schemes depends sensitively on the coordinate choice.
It is well-known, for example, that evolutions of the Schwarzschild space-
time employing geodesic slicing α = 1 and vanishing shift βi = 0 inevitably
reach the BH singularity after a coordinate time interval t = πM [104];
computers respond to singular functions with non-assigned numbers (NaNs)
which rapidly swamp the entire computational domain and render further
evolution in time practically useless. This problem can be avoided by con-
trolling the lapse function such that the evolution in proper time slows down
in the vicinity of singular points in the spacetime. Such slicing conditions
are called singularity avoiding and have been studied systematically in the
form of the Bona–Massó family of slicing conditions [105]; see also [39, 106].
A potential problem arising from the use of singularity avoiding slicing is the
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different progress in proper time in different regions of the computational
domain resulting in a phenomenon often referred to as grid stretching or slice
stretching which can be compensated with suitable non-zero choices for the
shift vector [107].

The particular coordinate conditions used with great success in the BSSN
based moving puncture approach [108, 109] are variants of the so-called
“1+log” slicing and “Γ -driver” shift condition [107]

∂tα = βM∂Mα− 2αK , (71)
∂tβ

i = βM∂Mβ
I + 3

4B
I , (72)

∂tB
I = βM∂MB

I + ∂tΓ̃
I − βM∂M Γ̃ I − ηBI . (73)

Here, η is specified either as a constant, a function depending on the co-
ordinates xi and BH parameters [110], a function of the BSSN variables
[111, 112], or evolved as an independent variable [113]. Van Meter et al.
have furthermore suggested a first-order-in-time evolution equation for βi
resulting from integration of Eqs. (72), (73)

∂tβ
I = βM∂Mβ

I + 3
4 Γ̃

I − ηβI . (74)

Some numerical relativity codes omit the advection derivatives of the form
βM∂M from Eqs. (71)–(74).

BH simulations with the GHG formulation employ a wider range of co-
ordinate conditions. For example, Pretorius’ breakthrough evolutions [33]
set Hi = 0 and

2Ht = −ξ1
α− 1

αη
+ ξ2n

µ∂µHt , (75)

with parameters ξ1 = 19/m, ξ2 = 2.5/m, η = 5, wherem denotes the mass of
a single BH. One of the different choices used in the Caltech–Cornell–CITA
SpEC code specifies Hα such that the dynamics are minimized at early stages
of the evolution, gradually changes these to harmonic gauge Hα = 0 during
the binary inspiral and uses a damped harmonic gauge near merger

Hα = µ0

[
ln

(√
γ

α

)]2 [
ln

(√
γ

α

)
nα − α−1gαmβ

m

]
, (76)

where µ0 is a free parameter; see [114, 115] for details. We note in this
context that the GHG source functions Hα are related to the ADM lapse
and shift functions through [40]

nµHµ = −K − nµ∂µ lnα , (77)

γµiHµ = −γmnΓ imn + γim∂m lnα+
1

α
nµ∂µβ

i . (78)
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4.3. Discretization of the equations

In the previous sections, we have derived formulations of the Einstein
equations in the form of an initial value problem. Given an initial snapshot
of the physical system under consideration, the evolution equations, as for
example in the form of the BSSN equations (28)–(32), then predict the
evolution of the system in time. These evolution equations take on the form
of a set of non-linear partial differential equations which relate a number
of grid variables and their time and spatial derivatives. Computers, on
the other hand, exclusively operate with (large sets of) numbers and for
a numerical simulation we need to translate the differential equations into
expressions relating arrays of numbers. This procedure is typically referred
to as discretization and the most common approach to achieve this goal,
finite differencing, will be the subject of this section.

Alternative methods of discretization are finite element, finite volume
and spectral methods. While the former two are popular over a wide range
of computational applications, they have not been applied to time evolutions
of BH spacetimes yet. Spectral methods provide a particularly efficient and
accurate approach for numerical modeling provided the functions do not
develop discontinuities. Even though BH spacetimes contain singularities,
the use of singularity excision provides a tool to remove these from the
computational domain. The Caltech–Cornell–CITA group has used this ap-
proach with great success to evolve inspiralling and merging BH binaries
with very high accuracy; see e.g. [116–119]. Spectral methods have also
been used successfully for the modeling of spacetimes with high degrees of
symmetry [120–122] and play an important role in the construction of ini-
tial data [123–125]. The main advantage of finite differencing methods is
their comparative simplicity. Furthermore, it is not yet clear to what extent
spectral methods are able to match the strong robustness of finite difference
techniques that have facilitated rather straightforward evolutions of BHs in
various extreme cases such as collisions near the speed of light [126–128]
or binaries with mass ratios up to 1:100 [129–131]. An in-depth discussion
of spectral methods is beyond the scope of these notes but the interested
Reader is referred to the review by Grandclément and Novak [132].

4.3.1. Finite differencing

We discuss finite differencing for the case of one time and one spatial
dimension labeled by t and x, respectively; the extension to more spatial
dimensions will be evident. Let us consider for this purpose a physical
domain covering some range in the t and x direction, tini ≤ t ≤ tfin and
xmin ≤ x ≤ xmax. The first step in discretizing the problem is to replace
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this domain by a finite set of points

xi = x0 + k∆x , tn = t0 + n∆t , (79)

where t0 = tini, x0 = xmin, k = 0, . . . , K − 1 and n = 0, . . . , N − 1 are
integer indices and ∆t and ∆x are the spacing in time and space assumed to
be constants in the remainder of this discussion. This is illustrated in Fig. 3
which shows some grid points at two values of time tn and tn+1. A phys-
ical variable f(t, x) is represented in this picture by an array of numbers
fnk ≡ f̂(tn, xk) representing approximations to an exact continuum solution
f(tn, xk). In practice, one often uses one single array of numbers containing
all function values at a fixed value of time fk|t=tn . A set of initial data then
corresponds to a set of values fk|t=t0 and our task is to derive an algorithm
for calculating the values fk|t=t1 from the fk|t=t0 , then calculate the fk|t=t2
from fk|t=t1 and so on.

x x
k+1k

tn

tn+1

x

f

f

f
k k+1

k

n+1

n n

t

f
k−1

n

Fig. 3. A 1+1 dimensional domain with coordinates t and x is represented by
a finite set of points (tn, xk) labeled by indices n and k. A grid variable f is
represented by its values fnk at the points (tn, xk) in the spacetime.

This is achieved by replacing derivatives ∂xf and ∂tf appearing in the
differential equations with approximations involving values of f at several
neighboring grid points through Taylor expansion. As an example, we con-
sider derivative ∂xf at a grid point (tn, xk). By Taylor expanding f around
this point, we obtain

fk−1 = fk − f ′k∆x+ 1
2f
′′
k∆x2 +O

(
∆x3

)
,

fk = fk ,

fk+1 = fk + f ′k∆x+ 1
2f
′′
k∆x2 +O

(
∆x3

)
, (80)

where primes denote spatial derivatives and we have suppressed the index n.
We next write the derivative f ′k = (∂xf)k as a linear combination

f ′k = Afk−1 +Bfk + Cfk+1 , (81)



Black Holes on Supercomputers: Numerical Relativity Applications . . . 2491

insert the expressions (80) and compare the coefficients on both sides of the
resulting equation. We thus obtain three equations for A, B and C

0 = A+B + C , 1 = (−A+ C)∆x , 0 = 1
2A∆x2 + 1

2C∆x2 . (82)

The solution is quickly found to be A = −1/(2∆x), B = 0 and C = 1/(2∆x)
so that

f ′k =
fk+1 − fk−1

2∆x
+O

(
∆x2

)
. (83)

The term O(∆x2) demonstrates that this approximation is accurate to sec-
ond order in the grid resolution ∆x. By including more neighbors and
higher-order terms in the Taylor expansion, it is straightforward to obtain
the higher-order approximations for f ′k. The same procedure can be applied
to time derivatives and a first-order approximation is given by

ḟn =
fn+1 − fn

∆t
+O(∆t) , (84)

where we now suppress the spatial index k and ḟ ≡ ∂tf .
One of the simplest partial differential equations is the advection equation

∂tf + ∂xf = 0, where we can use Eqs. (83) and (84) to replace ∂xf and ∂tf
and, after solving for fn+1

k , obtain an explicit expression for the function
value on the new time slice tn+1 exclusively in terms of function values at tn

fn+1
k = fnk +

∆t

∆x

fnk+1 − fnk−1

2
. (85)

While this provides a simple algorithm to successively update grid points at
time tn+1 in terms of already known function values at tn, it unfortunately
turns out to be numerically unstable. For this simple example, the unstable
behavior of the forward in time centered in space scheme (85) can be demon-
strated analytically by performing a Fourier decomposition and using von
Neumann’s stability analysis [133]. A simple cure for this problem consists
in replacing the centered stencil (83) by a first-order version

f ′k =
fk − fk−1

∆x
+O(∆x) (86)

and replace ∂xf in the advection equation using this expression. Numerical
stability is a complex topic worthy of a review in its own right and we have
included this relatively simple example of a numerically unstable algorithm
here as a warning sign that apparently useful algorithms may turn out to
be unsuitable in practice. For a more extended discussion of stability anal-
ysis, we refer the Reader to the classic book Numerical Recipes [134] and
references therein.
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The finite differencing expressions discussed here are of relatively low
order and require at most one neighbor in each spatial direction in order to
update a grid variable in time. In practice, most BH evolution codes use
4th, 6th or 8th order accurate stencils for spatial discretization and a 4th
order Runge–Kutta scheme for integration in time.

4.3.2. Mesh refinement

Black-hole spacetimes often involve length scales that differ by orders of
magnitude. The BH horizon extends over lengths of the order of O(1) M ,
whereM is the mass of the BH. Inspiralling BH binaries, on the other hand,
emit gravitational waves with wavelengths of O(102) M . Furthermore, grav-
itational waves are rigorously defined only at infinity. In practice, wave ex-
traction is performed at finite radii but these need to be large enough to
ensure that systematic errors are small. In order to accommodate accurate
wave extraction, computational domains used for the modeling of asymptot-
ically flat BH spacetimes typically have a size of O(103) M . With present
computational infrastructure it is not possible to evolve such large domains
with a uniform high resolution that is sufficient to accurately model the steep
profiles arising near the BH horizon. The solution to this difficulty is the
use of mesh refinement, i.e. a grid resolution that depends on the location
in space and may also vary in time.

The use of mesh refinement in BH modeling is simplified by the remark-
ably rigid nature of BHs which rarely exhibit complicated structure beyond
some mild deformation of a sphere. The requirements of increased resolution
are therefore simpler to implement than, say, in the modeling of airplanes or
helicopters. In BH spacetimes, the grid resolution must be highest near the
BH horizon and it decreases gradually at larger and larger distances from
the BH. In terms of the internal bookkeeping, this allows for a particularly
efficient manner to arrange regions of refinement which is often referred to
as moving boxes. A set of nested boxes with outwardly decreasing resolu-
tion is centered on each BH of the spacetime and follows the BH motion.
These sets of boxes are immersed in one or more common boxes which are
large enough to accommodate those centered around the BHs. As the BHs
approach each other, boxes originally centered on the BHs merge into one
and become part of the common-box hierarchy. A snapshot of such moving
boxes is displayed in Fig. 4.

Mesh refinement in numerical relativity has been pioneered by Chop-
tuik in his seminal study on critical phenomena in the collapse of scalar
fields [135]. The first application of mesh refinement to the evolution of
BH binaries was performed by Brügmann [136]. There exists a variety of
mesh refinement packages available for use in numerical relativity as for ex-
ample Paramesh [137], or Samrai [138]. The most common package in use
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Fig. 4. Illustration of mesh refinement for a BH binary with one spatial dimension
suppressed. Around each BH (marked by the spherical apparent horizon), two
nested boxes are visible. These are immersed within one large, common grid or
refinement level.

in contemporary numerical relativity codes is Schnetter’s Carpet [139, 140]
which is integrated into the Cactus Computational Toolkit [141]; see also
the Einstein Toolkit webpage [142] and the lecture notes [143]. Carpet uses
Berger–Oliger [144] mesh refinement which we will illustrate here for the case
of two refinement levels in one spatial dimension. The generalization to more
spatial dimensions and more levels covering a wider range of resolutions will
be evident.

Let us consider for this purpose the two one-dimensional boxes illus-
trated in the top panel of Fig. 5 at time t: a coarse grid or refinement level
represented by circles (black) and a fine grid represented by crosses (red).
In practice, the resolutions are often chosen such that the grid spacing of
the two levels differs by a factor of two and use the same Courant factor
∆t/∆x. Furthermore, we assume that there is no staggering of grids such
that every second point of the fine grid coincides with a point of the coarse
grid. For simplicity, we discuss here the case of a simple evolution stencil
such as those discussed in Sec. 4.3.1 where the update in time at location xk
requires information from one neighboring point in either direction. For the
case of higher-order stencils or more complex time integration schemes em-
ploying predictor-corrector steps, the communication steps between the two
refinement levels remain unchanged but apply to a larger number of points
on the edge of the fine grid.



2494 U. Sperhake

Fig. 5. Evolution of a grid variable from t to t + dt using Berger–Oliger mesh
refinement. See the text for details.
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The goal of evolving data from time t to t+dt is achieved in the following
six steps:

1. Update of variables from t to dt on the coarser grid; cf. panel 0 to
panel 1 (counted from top down) in Fig. 5. Note that the existence of
the finer grid is not felt at this stage.

2. Update of variables from t to t + dt/2 on the finer grid; cf. panel 2
in Fig. 5. On the edge of the fine grid, this update cannot be per-
formed because the neighbors required for the evolution stencil are
not available.

3. Points on the outer boundary of the fine grid are filled through interpo-
lation from data on the coarse grid. This process is called prolongation;
cf. panel 3 in Fig. 5.

4. Update of variables from t + dt/2 to dt on the fine grid; cf. panel 4.
Again, the outer edge of the fine grid cannot be updated due to lack
of neighboring points.

5. Prolongation onto fine grid at time t+ dt; cf. panel 5 in Fig. 5.

6. Over the range of overlap, data is interpolated from the fine to the
coarse grid; cf. panel 6. This process is called restriction.

In this procedure, the prolongation and restriction operation constitute
the communication between the two refinement levels which otherwise are
evolved as if they were separate uniform domains. In the case of > 2 re-
finement levels, the same scheme is applied; evolution always starts on the
coarsest grid and then takes place on consecutively finer grids until these
have caught up in time with the next coarser refinement level. It is possible
for the interior refinement components to change in size or move with re-
spect to the coarser levels. Whenever new grid points arise in this process,
they are initialized through interpolation from the next coarser refinement
level analogous to the prolongation operation. Naturally, the outermost re-
finement level is not allowed to move or expand in this scheme. The order
of interpolation typically depends on the order of finite differencing applied
to the normal evolution of variables. Common choices are to use 5th order
polynomials for interpolation in space and 2nd order polynomials in time;
see Table 3 in [145] for an overview of choices by different numerical rela-
tivity groups. The main reason for using lower-order polynomials in time is
the need to store data on an increasingly larger number of time levels for
the higher-order interpolation which significantly increases the demand in
computer memory.
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Mesh refinement thus provides an efficient way to evolve grid points with
a position dependent resolution. The only exception are points of the outer
boundary of the outermost refinement level and, possibly, points near the
BH singularity. These points require special handling which we discuss in
the next subsection on boundary conditions.

4.4. Boundary conditions

In numerical relativity, we typically encounter two types of physical
boundaries, (i) inner boundaries due to the treatment of spacetime singular-
ities in BH solutions and (ii) the outer boundary either at infinite distance
from the strong field sources or, in the form of an approximation to this
scenario, at the outer edge of the computational domain at large but finite
distances.
Singularity excision: BH spacetimes generically contain singularities, ei-
ther physical singularities with a divergent Ricci scalar or coordinate singu-
larities where the spacetime curvature is well behaved but some tensor com-
ponents approach zero or infinite values. In the case of the Schwarzschild so-
lution (1), for example, r = 0 corresponds to a physical singularity, whereas
the singular behavior of the metric components gtt and grr at r = 2M
merely reflects the unsuitable nature of the coordinates as r → 2M and
can be cured, for example, by transforming to the Kruskal–Szekeres coordi-
nates; cf. for example Chapter 7 in [146]. Both types of singularities give
rise to trouble in the numerical modeling of spacetimes because computers
only handle finite numbers. Some control is available in the form of gauge
conditions as discussed in Sec. 4.2; the evolution of proper time is slowed
down when the evolution gets close to a singularity. In general, however,
BH singularities require some special numerical treatment.

Such a treatment is most commonly achieved in the form of singularity
or black hole excision originally suggested by Unruh as quoted in Thorn-
burg [147]. According to Penrose’s Cosmic Censorship Conjecture, a space-
time singularity should be cloaked inside an event horizon and the spacetime
region outside the event horizon is causally disconnected from the dynamics
inside. The excision technique is based on the corresponding assumption
that the numerical treatment of the spacetime inside the horizon has no
causal effect on the exterior. In particular, excising a finite region around
the singularity but within the horizon should leave the exterior spacetime un-
affected. This is illustrated in Fig. 6 where the excision region is represented
by small white circles which are excluded from the numerical evolution. Reg-
ular grid points, represented in the figure by black circles, on the other hand,
are evolved normally. As we have seen in the previous section, the numerical
evolution in time of functions at a particular grid point typically requires
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information from neighboring grid points. The updating of variables at reg-
ular points, therefore, requires data on the excision boundary represented in
Fig. 6 by gray circles. Inside the BH horizon, represented by the large circle
in the figure, however, information can only propagate inwards, so that the
variables on the excision boundary can be obtained through extrapolation
from gridpoints further outside; see for example [148]. Alternatively, one-
sided derivative stencils such as the advection stencil in Eq. (86) can be
employed. Singularity excision has been used with great success in many
numerical BH evolutions [32, 33, 149–153].

Fig. 6. Illustration of singularity excision. The small circles represent vertices of
a numerical grid on a two dimensional cross section of the computational domain
containing the spacetime singularity, in this case at the origin. A finite region
around the singularity but with in the event horizon (large circle) is excluded from
the numerical evolution (white circles). Gray circles represent the excision bound-
ary where function values can be obtained through extrapolation. The regular
evolution of exterior grid points (black circles) is performed using standard tech-
niques using information also on the excision boundary.

Quite remarkably, the moving puncture method for evolving BHs does
not employ any such specific numerical treatment near BH singularities, but
instead applies the same evolution procedure for points arbitrarily close to
singularities as for points far away and appears “to get away with it”. In view
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of the remarkable success of the moving puncture method, various authors
have explored the behavior of the puncture singularity in the case of a single
Schwarzschild BH [154–159]. Initially, the puncture represents spatial infin-
ity on the other side of the wormhole geometry compactified into a single
point. Under numerical evolution using moving puncture gauge conditions,
however, the region immediately around this singularity rapidly evolves into
a so-called trumpet geometry which is partially covered by the numerical
grid to an extent that depends on the numerical resolution; cf. Fig. 1 in
Brown [158]. In practice, the singularity falls through the inevitably finite
resolution of the computational grid which thus facilitates a natural exci-
sion of the spacetime singularity without the need of any special numerical
treatment.
Outer boundary: In asymptotically flat spacetimes, the physical boundary
condition is given by the fact that there exist no incoming modes, i.e. that
information only propagates in the outward direction. In practice, such
outgoing radiation or Sommerfeld boundary conditions are applied at large
but finite distances from the strong-field region. For this purpose, we assume
that a given grid variable f asymptotes to a constant background value f0

in the limit of large r and contains a leading order deviation u(t − r)/rn
from this value, where n is a constant, typically positive, integer number.
For r →∞, we therefore have

f(t, r) = f0 +
u(t− r)
rn

, (87)

where the dependence on retarded time represents the outgoing nature of
the radiative deviations. In consequence, ∂tu + ∂ru = 0 which translates
into the following condition for the grid variable f

∂tf + n
f − f0

r
+
xI

r
∂If = 0 , (88)

where xI denote Cartesian coordinates and ∂I = ∂/∂xI . Because information
only propagates outwards, the spatial derivative ∂If is evaluated using a one-
sided stencil, evaluated using the methods described in Sec. 4.3.1. A second-
order accurate stencil in the x direction, for example, is given by ∂xf =
(3fk − 4fk−1 + fk−2)/(2∆x). This method is straightforwardly generalized
to asymptotically expanding cosmological spacetimes of the de Sitter type
containing BHs; cf. Eq. (9) in Zilhão et al. [160].

In asymptotically AdS spacetimes, the outer boundary represents a more
challenging problem. This is largely a consequence of the singular behav-
ior of the AdS metric even in the absence of a BH or any matter sources.
The AdS metric is the maximally symmetric solution to the Einstein equa-
tions (2) with Tαβ = 0 and Λ < 0. This solution can be represented by the
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hyperboloidX2
0 +X2

D−
∑D−1

i=1 X2
i = L2 embedded in a flat D+1 dimensional

spacetime with metric

ds2 = −dX2
0 − dX2

D +
D−1∑
i=1

dX2
i . (89)

The anti-de Sitter spacetime AdSD in global coordinates is then obtained
by transforming to coordinates τ, ρ, ωi

X0 = L
cos τ

cos ρ
, XD = L

sin τ

cos ρ
, Xi = L tan ρωi for i = 1 . . . D − 1 ,

(90)
with hyperspherical coordinates

∑D−1
i=1 ω2

i = 1. In D = 5, for example,
ω1 = sinχ sin θ cosφ, ω2 = sinχ sin θ, ω3 = sinχ cos θ, ω4 = cosχ and
dΩ2

D−2 = dχ2 + sin2 χ (dθ2 + sin2 θ dφ2). The AdSD metric is then given by

ds2 =
L2

cos2 ρ

(
−dτ2 + dρ2 + sin2 ρ dΩ2

D−2

)
, (91)

where 0 ≤ ρ < π/2, − π < τ ≤ π and Λ = −(D − 1)(D − 2)/(2L2). By
unwrapping the cylindrical time direction, the range of the time coordinate
is often extended to τ ∈ R.

An alternative representation of the AdS spacetime is given by Poincaré
coordinates (t, z, xi), i = 1 . . . D − 1

X0 =
1

2z

[
z2 + L2 +

D−2∑
i=1

(
xi
)2 − t2] , Xa =

Lxa

z
,

XD−1 =
1

2z

[
z2 − L2 +

D−2∑
i=1

(
xi
)2 − t2] , XD =

Lt

z
, (92)

where a = 1, . . . , D − 2. This leads to the metric

ds2 =
L2

z2

[
−dt2 + dz2 +

D−2∑
i=1

(
dxi
)2]

, (93)

with z > 0, t ∈ R. It can be shown that the Poincaré coordinates cover only
a half of the hyperboloid and that the other half corresponds to z < 0 [161].

Clearly, both the global (91) and the Poincaré version (93) of the AdS
metric become singular at their respective outer boundaries ρ → π/2 or
z → 0. The induced metric at infinity is therefore only defined up to a
conformal rescaling. This remaining freedom manifests itself in the boundary
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topology of the global and Poincaré metrics which, respectively, become in
the limit ρ→ π/2 and z → 0

ds2
gl ∼ −dτ2 + dΩ2

D−2 , ds2
P ∼ −dt2 +

D−2∑
i=1

(
dxi
)2
. (94)

In the context of the gauge–gravity duality, this implies that gravity in the
global or Poincaré AdS are related to conformal field theories (CFT) on
spacetimes of different topology: R × SD−2 in the former and RD−1 in the
latter case.

The boundary treatment inside a numerical modeling of asymptotically
AdS spacetimes needs to take care of the singular nature of the metric.
In practice, this is achieved through some form of regularization which makes
use of the fact that the singular piece of an asymptotically AdS spacetime
is known in analytic form, e.g. through Eqs. (91) or (93). Bantilan et al.
[152] decompose the spacetime metric into an analytically known AdS part
plus a deviation and numerically evolve the deviations which are regular
at infinity. They notice, however, that particular care needs to be taken
of the gauge conditions to ensure that the coordinates remain compatible
with this decomposition throughout the simulation. An alternative approach
consists in factoring out appropriate factors involving the bulk coordinate
as, for example, the term cos ρ in the denominator on the right-hand side of
Eq. (91). This method is employed, for example, in the studies of Chesler
and Yaffe [122], Heller et al. [162], and Bizoń and Rostworowski [163].

We finally note that the boundary plays an active role in AdS space-
times. The visualization of the AdS spacetime in the form of a Penrose
diagram demonstrates that it is not globally hyperbolic, i.e. there exists no
Cauchy surface on which initial data can be specified in such a way that
the entire future of the spacetime is uniquely determined. This is in marked
contrast to the Minkowski spacetime. Put in other words, the outer bound-
ary of asymptotically flat spacetimes is represented in a Penrose diagram by
a null surface such that information cannot propagate from infinity into the
interior spacetime. In contrast, the outer boundary of asymptotically AdS
spacetimes is timelike and, hence, the outer boundary actively influences
the evolution of the interior. The specification of boundary conditions in
numerical relativity applications to the gauge–gravity duality or AdS/CFT
correspondence therefore reflects part of the description of the physical sys-
tem under study. Chesler and Yaffe [120], for example, use this degree of
freedom to perturb a strongly coupled N = 4 supersymmetric Yang–Mills
plasma away from equilibrium and evolve its subsequential isotropization.
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5. Diagnostics

Once we have numerically generated a spacetime, there still remains the
question of how to extract physical information from the large chunk of
numbers the computer has written to the hard drive. This analysis of the
data faces two main problems in numerical relativity applications, (i) the
gauge or coordinate dependence of the results and (ii) the fact that many
quantities we are familiar with from the Newtonian physics are hard or not
even possible to define in a rigorous fashion in general relativity. In spite of
these difficulties, a number of valuable diagnostic tools have been developed
and purpose of this section is to review how these are extracted.

The physical information is often most conveniently calculated from the
ADM variables and we assume for this discussion that a numerical solution
is available in the form of the ADM variables γIJ , KIJ , α and βI . Even if
the time evolution has been performed using other variables as, for example,
the BSSN or GHG variables the conversion between these and their ADM
counterparts according to Eq. (26) or (5) is straightforward.

Before reviewing the extraction of physical information from a numerical
simulation, we note a potential subtlety arising from the convention used for
Newton’s constant in higher-dimensional spacetimes. We wrote the Einstein
equations in the form (2) and chose units, where G = 1 and c = 1. In
particular, we thus adopted the convention of not applying any geometrical
factors toG inD 6= 4 dimensions. As we shall see below, with this convention
the Schwarzschild radius of a static BH in D dimensions is given by

RD−3
S =

16πGM

(D − 2)ΩD−2
, ΩD−2 =

2π(D−1)/2

Γ
(
D−1

2

) , (95)

where ΩD−2 denotes the area of the unit SD−2 hypersphere. As a conse-
quence, Hawking’s entropy formula S = AAH/(4G) remains unchanged in
D dimensions but Newton’s force law in the limit of weak fields and small
velocities acquires geometrical factors and is given by [164]

F =
(D − 3)8πG

(D − 2)ΩD−2

Mm

rD−2
r̂ . (96)

Here, M and m are the masses of the two bodies and r̂ is the unit vector
along the line of sight between the particles.

5.1. Global quantities and horizons

For spacetimes described by a metric that is asymptotically flat and
time independent, the total mass-energy and linear momentum are given by
the ADM mass and ADM momentum. These quantities arise from boundary
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terms in the Hamiltonian of general relativity and were derived by Arnowitt,
Deser and Misner [18] in their canonical analysis of the theory. They are
given in terms of the ADM variables by

MADM =
1

16πG
lim
r→∞

∮
Sr

δMN(∂NγMK − ∂KγMN)r̂KdS , (97)

PI =
1

8πG
lim
r→∞

∮
Ωr

(KMI − δMIK)r̂MdS . (98)

Here, the spatial tensor components γIJ and KIJ are assumed to be given
in Cartesian coordinates. r̂M is the outgoing unit vector normal to the area
element dS of the D − 2 dimensional hypersphere and dS = rD−2dΩD−2.
Under a more restrictive set of assumptions about the fall-off behavior of the
metric and extrinsic curvature components, one can also derive an expression
for the global angular momentum

JI =
1

8π
lim
r→∞

∮
(KJK −KγJK)ξJ(I)r̂

KdS , (99)

where ξ(I) are the Killing vectors associated with the asymptotic rotational
symmetry given in D = 4 by ξ(x) = −z∂y + y∂z, ξ(y) = −x∂z + z∂x and
ξ(z) = −y∂x + x∂y. For a more-in-depth discussion of the ADM mass and
momentum as well as the conditions required for the definition of the angular
momentum, the Reader is referred to Sec. 7 of Gourgoulhon’s notes [20].

As an example, we calculate the ADM mass of the D-dimensional
Schwarzschild BH in Cartesian, isotropic coordinates (t, xI) described by
the spatial metric

γIJ = ψ
4

D−3 δij , ψ = 1 +
µ

4rD−3
, (100)

and vanishing extrinsic curvature KIJ = 0. A straightforward calculation
shows that

∂KγIJ = −ψ
4

D−3
−1 µ

rD−1
xKδIJ , (101)

and r̂K = xK

r , so that

δMN(∂NγMK−∂KγMN)
xK

r
= (D−2)ψ

4
D−3
−1 µxK
rD−1

xK

r
= (D−2)

µ

rD−2
, (102)

where we have used the fact that in the limit r →∞ we can raise and lower
indices with the Euclidean metric δij and ψ → 1. From Eq. (97) we thus
obtain

MADM =
1

16πG
lim
r→∞

∮
Sr

(D − 2)
µ

rD−2
rD−2dΩD−2 =

D − 2

16πG
µ

∮
dΩD−2

=
D − 2

16πG
µΩD−2 =

D − 2

16πG
µ

2π
D−1
2

Γ
(
D−1

2

) . (103)
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The Schwarzschild radius in areal coordinates is given by RD−3
S = µ and we

have recovered Eq. (95).
The Schwarzschild radius marks the location of the event horizon of a

static BH defined as the boundary between points in the spacetime from
which null geodesics can escape to infinity and points from which they can-
not. The event horizon is, therefore, by definition a concept that depends
on the entire spacetime. In the context of numerical simulations, this im-
plies that an event horizon can only be computed if information about the
entire spacetime is stored which results in large data sets even by contempo-
rary standards. Nevertheless, event horizon finders have been developed by
Diener [165] and Cohen et al. [166]. For many purposes, however, it is more
convenient to determine the existence of a horizon using data from a spatial
hypersurface Σt only. Such a tool is available in the form of an apparent
horizon. Apparent horizons are one of the most important diagnostic tools
in numerical relativity and are reviewed in detail in Thornburg’s Living Re-
view article [167]. According to the cosmic censorship conjecture, existence
of an apparent horizon implies an event horizon whose cross section with Σt
either lies outside the apparent horizon or coincides with it.

The key concept underlying the apparent horizon is that of a trapped
surface defined as a surface where the expansion Θ := ∇µkµ of a congruence
of outgoing null geodesics with tangent vector kµ vanishes. A trapped surface
is defined as a surface, where Θ = 0 and an apparent horizon is defined as
the outermost trapped surface on a spatial hypersurface Σt. Translated into
the ADM variables, the condition Θ = 0 can be shown to lead to an elliptic
equation for the unit normal direction sI to the D − 2 dimensional horizon
surface

D̂Ms
M −K +KMNs

MsN = 0 . (104)

Here, D̂ denotes the covariant derivative with respect to the D − 2 dimen-
sional metric induced on the horizon surface. Numerical algorithms to solve
this equation have been developed by several authors [168–172].

By eliminating RS from Eq. (95) and the formula Ahor = ΩD−2R
D−2
S for

the area of a D−2 sphere of radius RS, we obtain an expression that relates
the horizon area to a mass commonly referred to as the irreducible mass

Mirr =
(D − 2)ΩD−2

16πG

(
Ahor

ΩD−2

)D−3
D−2

. (105)

The irreducible mass is identical to the ADM mass for a static BH, but can
be defined in this way for non-static BHs as well. In D = 4 dimensions
this becomes 16πG2M2

irr = Ahor. Furthermore, a rotating BH in D = 4 is
described by a single spin parameter S and the BH mass consisting of rest
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mass and rotational energy has been shown by Christodoulou [173] to be
given by

M2
Chr = M2

irr +
S2

4M2
irr

. (106)

By adding the square of the linear momentum P 2 to the right-hand side of
this equation, we obtain the total energy of a spacetime containing a single
BH with spin S and linear momentum P . InD = 4, Christodoulou’s formula
(106) can be used to calculate the spin from the equatorial circumference Ce

and the horizon area according to [174]

2πAhor

C2
e

= 1 +
√

1− j2 , (107)

where j = S/M2
Chr is the dimensionless spin parameter of the BH. Even

though this relation is strictly valid only for the case of single stationary
BHs, it provides a useful approximation in binary spacetimes as long as the
BHs are sufficiently far apart.

5.2. Gravitational wave extraction

Probably the most important physical quantity to be extracted from
dynamic BH spacetimes is the gravitational radiation. It is commonly
extracted from numerical simulations in the form of either the Newman–
Penrose scalar or a master function obtained through BH perturbation the-
ory. Simulations using a characteristic formulation also facilitate wave ex-
traction in the form of the Bondi mass loss formula. Here, we will focus
on the former two methods; wave extraction using the Bondi formalism is
discussed in detail in [62].
Newman–Penrose scalar: The formalism to extract GWs in the form of
the Newman–Penrose scalar is currently fully understood only in D = 4
dimensions. Extension of this method is likely to require an improved un-
derstanding of the Goldberg–Sachs theorem in D > 4 which is subject to
ongoing research [175]. The extraction method is based on the Newman–
Penrose formalism originally developed in [176]. In this formalism, the out-
going GW signal is encoded in the Newman–Penrose scalar Ψ4; see e.g. [177]
and references therein. This scalar is defined in terms of a complex null
tetrad n, k, m, m̄ defined such that all their inner products vanish except
−k · n = 1 = m · m̄. In practice, a null tetrad can be conveniently defined in
terms of the unit timelike normal vector nα and a triad ui, vi, wi of spatial
vectors constructed through the Gram–Schmidt orthonormalization starting
with

ui = [x, y, z] , vi =
[
xz, yz, −x2 − y2

]
, wi = εimnv

mwn , (108)



Black Holes on Supercomputers: Numerical Relativity Applications . . . 2505

where εimn represents the three-dimensional Levi-Civita tensor and x, y, z
are standard Cartesian coordinates. An orthonormal tetrad of the required
type is then given by

kα =
1√
2

(nα + uα) , nα =
1√
2

(nα − uα) , mα =
1√
2

(vα + iwα) ,

(109)
where time components of the spatial triad vectors are set to zero. The
Newman–Penrose scalar Ψ4 is then defined as

Ψ4 ≡ −Cαβγδnαm̄βnγm̄δ . (110)

In the literature, one may also find Ψ4 defined without the minus sign, but
all physical results derived from Ψ4 are invariant under this ambiguity. We
further note that in vacuum, the Weyl and Riemann tensor are identical.
Most BH studies in numerical relativity consider vacuum spacetimes, so that
we can replace Cαβγδ in Eq. (110) with Rαβγδ. The calculation of Ψ4 from
the ADM variables can be achieved either by constructing the spacetime
metric from the spatial metric, lapse and shift vector and calculation of the
spacetime Riemann or Weyl tensor through its definition given at the end of
Sec. 1. Alternatively, we can use the electric and magnetic part of the Weyl
tensor given by [178]

Eαβ = ⊥µα⊥νβCµρνσnρnσ , Bαβ = ⊥µα⊥νβ ∗Cµρνσ , (111)

where the ∗ denotes the Hodge dual. By using the Gauss–Codazzi equations
(9), (12), one can express the electric and magnetic parts in vacuum in terms
of the ADM variables according to

Eij = Rij − γmn(KijKmn −KimKjn) , Bij = γikε
kmnDmKnj . (112)

The Weyl tensor is then given in terms of electric and magnetic parts by
Eq. (3.10) in Ref. [178]. Inserting this relation together with (109) and (112)
into the definition (110) gives us the final expression for Ψ4 in terms of spatial
variables

Ψ4 = −1

2
[Emn (vmvn − wmwn)−Bmn (vmwn + wmvn)]

+
i

2
[Emn(vmwn − wmvn) +Bmn(wmwn + vmvn)] . (113)

The GW signal is often presented in the form of multipolar components ψ`m
defined by projection of Ψ4 onto spherical harmonics of spin weight −2

Ψ4(t, θ, φ) =
∑
lm

ψlm(t)Y
(−2)
lm (θ, φ) ⇔ ψlm(t) =

∫
Ψ4(t, θ, φ)Y

(−2)
lm (θ, φ)dΩ2 ,

(114)
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where the bar denotes the complex conjugate. The ψlm are often written in
terms of amplitude and phase

ψlm = Alme
iφlm . (115)

The amount of energy, linear and angular momentum carried by the GWs
can be calculated from Ψ4 according to [179]

dE

dt
= lim

r→∞

 r2

16π

∫
Ω2

∣∣∣∣∣∣
t∫

−∞

Ψ4dt̃

∣∣∣∣∣∣
2

dΩ

 , (116)

dPi
dt

= − lim
r→∞

 r2

16π

∫
Ω2

`i

∣∣∣∣∣∣
t∫

−∞

Ψ4dt̃

∣∣∣∣∣∣
2

dΩ

 , (117)

dJi
dt

= − lim
r→∞

 r2

16π
Re

∫
Ω2

Ĵi t∫
−∞

Ψ4dt̃


 t∫
−∞

t̂∫
−∞

Ψ4dt̃dt̂

 dΩ


 ,

(118)

where

`i = [− sin θ cosφ, − sin θ sinφ, − cos θ] , (119)

Ĵx = − sinφ∂θ − cosφ

(
cot θ ∂φ +

i s

sin θ

)
, (120)

Ĵy = cosφ∂θ − sinφ

(
cot θ ∂φ +

i s

sin θ

)
, (121)

Ĵz = ∂φ (122)

with the spin weight s = −2. In practice, one often starts the integration
at the start of the numerical simulation (or shortly thereafter to avoid con-
tamination from spurious GWs contained in the initial data) rather than
at −∞.

We finally note that the GW strain commonly used in GW data analysis
is obtained from Ψ4 by interacting twice in time

h ≡ h+ − ih× =

t∫
−∞

 t̃∫
−∞

Ψ4dt̂

 dt̃ . (123)



Black Holes on Supercomputers: Numerical Relativity Applications . . . 2507

h is often decomposed into multipoles in analogy to Eq. (114). As before, the
practical integration is often started at finite value rather than at −∞. It
has been noted that this process of integrating Ψ4 twice in time is susceptible
to large nonlinear drifts. These are due to fundamental difficulties that arise
in the integration of finite-length, discretely sampled, noisy data streams
which can be cured or at least mitigated by performing the integration in
the Fourier instead of the time domain [180].
Perturbative wave extraction: The basis of this approach to extract
GWs from numerical simulations in D = 4 is the Regge–Wheeler–Zerilli–
Moncrief formalism developed for the study of perturbations of spherically
symmetric BHs. The assumption for applying their formalism to numer-
ically generated spacetimes is that at sufficiently large distances from the
GW sources, the spacetime is well approximated by a spherically symmet-
ric background (typically the Schwarzschild or Minkowski spacetime) plus
non-spherical perturbations. These perturbations naturally divide into odd
and even multipoles which obey the Regge–Wheeler [181] (odd) and the
Zerilli [182] (even) equations respectively. Moncrief [182] developed a gauge
invariant formulation for these perturbations in terms of a master function
which obeys a wave-type equation with a background dependent scattering
potential; for a review and applications of this formalism see, for exam-
ple, [150, 183, 184].

An extension of this formalism to extract GWs in higher-dimensional
spacetimes has been developed by Kodama and Ishibashi [185]. In our sum-
mary of this formalism, we follow the work of Witek et al. [186] where it has
been applied to the extraction of GWs from head-on collisions. As in our
discussion of formulations of the Einstein equations in higher dimensions in
Sec. 3, it turns out useful to introduce coordinates that are adapted to the ro-
tational symmetry on a SD−2 sphere. Here, we choose spherical coordinates
for this purpose which we note by (t, r, ϑ, θ, φa), where a = 4, . . . , D − 1;
we use the same convention for indices as in Sec. 3.

We then assume that in the far-field region, the spacetime is perturba-
tively close to a spherically symmetric BH background given inD dimensions
by the Tangherlini [187] metric

ds2
(0) = −A(r)2dt2 +A(r)−1dr2 + r2

[
dϑ2 + sin2 ϑ

(
dθ2 + sin2 θ dΩD−4

)]
,

(124)
where

A(r) = 1−
RD−3

S

rD−3
, (125)

and RS is the Schwarzschild radius which we already encountered in Eq. (95).
For a spacetime with SO(D− 3) isometry, the perturbations away from the
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background (124) are given by

ds2
(1) = hABdx

AdxB + hAϑdx
Adxϑ + hϑϑdϑ

2 + hθθdΩD−3 , (126)

where we introduce early upper case Latin indices A, B, . . . = 0, 1 and
xA = (t, r). The class of axisymmetric spacetimes considered in [186] obeys
SO(D − 2) isometry which can be shown to imply that hAθ = hϑθ = 0 and
that the remaining components of h in Eq. (126) only depend on the coordi-
nates (t, r, ϑ). As a consequence, the expansion of the metric perturbations
only contains scalar spherical harmonics, but not vector or tensor harmonics;
cf. Sec. II C in [186]. The reformulation of the Kodama–Ishibashi formalism
for spacetimes obeying the less restricted class of SO(D−3) isometry is still
under development.

Scalar harmonics are defined as solutions of the equation

2̃S = −k2S , k = `(`+D − 3) , ` = 0, 1, 2, . . . , (127)

where 2̃ refers to the covariant derivative associated with the (D − 2) di-
mensional metric γīj̄ induced on the SD−2 sphere described by coordinates
xī ≡ (ϑ, θ, φa). It turns out convenient to define

Sī ≡ −
1

k
∂īS , Sīj̄ ≡

1

k2
D̃ī∂j̄S +

1

D − 2
γīj̄S . (128)

The metric perturbations can then be written as

hAB = fABS , hAī = rfASī , hīj̄ = 2r2
(
HLγīj̄S +HTSīj̄

)
, (129)

where fAB, fA, HL and HT are functions of (t, r). These functions are
obtained in a numerical simulation through projection of the metric compo-
nents onto the spherical harmonics [186]. Note that the subscripts L and T
do not denote indices but are merely labels standing for longitudinal and
transversal. Furthermore, the harmonics as well as the expansion functions
depend on the multipolar indices `, m which we have suppressed in our no-
tation for clarity. For example, when we write fAB, we implicitly assume
that this stands for f `mAB for some fixed values of `, m.

The gauge invariant functions of the Kodama–Ishibashi formalism are
given in terms of the perturbation functions by

F = HL +
1

D − 2
HT +

1

r
XAD̂

Ar , FAB = fAB + D̂BXA + D̂AXB , (130)

where
XA ≡

r

k

(
fA +

r

k
D̂AHT

)
, (131)
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and D̂A denotes the covariant derivative associated with (t, r) sub-sector
of the background metric. Finally, the master function Φ is conveniently
written in terms of its time derivative which is given by

∂tΦ = (D − 2)r
D−4
2

−F rt + 2r∂tF

k2 −D + 2 + (D−2)(D−1)
2

RD−3
S

rD−3

. (132)

From the master function, we can calculate the GW energy flux

dE`m
dt

=
1

32π

D − 3

D − 2
k2
(
k2 −D + 2

)
(∂tΦ`m)2 , (133)

and the total radiated energy is obtained from integration in time and sum-
mation over all multipoles

E =
∞∑
`=2

∑̀
m=−`

∞∫
−∞

dE`m
dt

dt . (134)

In axisymmetry, we can choose a frame such that the only non-zero multi-
poles are those with m = 0 and the sum extends only over `.

5.3. Diagnostics in the AdS/CFT correspondence

The gauge–gravity duality, often also referred to as the AdS/CFT corre-
spondence because of Maldacena’s prototypical example [11], relates gravity
in asymptotically AdS spacetimes to conformal field theories on the bound-
ary of this spacetime. A key ingredient of the correspondence is the relation
between fields interacting gravitationally in the bulk spacetime and expec-
tation values of the field theory on the boundary. This so-called dictionary
has been the subject of many studies in the literature (see, for example,
[188–190]). Here, we restrict our attention to the extraction of the vacuum
expectation values of the energy momentum tensor 〈TIJ〉 of the field theory
from the fall-off behavior of the AdS metric.

Through the AdS/CFT correspondence, the vacuum expectation values
〈Tij〉 of the field theory are given by the quasi-local Brown–York [191] stress-
energy tensor and thus are directly related to the bulk metric. Following de
Haro et al. [188], it is convenient to consider the (asymptotically AdS) bulk
metric in Fefferman–Graham [192] coordinates

ds2 = gµνdx
µdxν =

L2

r2

[
dr2 + γijdx

idxj
]
, (135)

where

γij = γij
(
r, xi

)
= γ(0)ij + r2γ(2)ij + . . .+ rdγ(d)ijh(d)ijr

d log r2 +O
(
rd+1

)
.

(136)
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Here d ≡ D − 1, the γ(a)ij and h(d)ij are functions of the boundary coor-
dinates xi, the logarithmic term only appears for even d and powers of r
are exclusively even up to order d − 1. As shown in [188], the vacuum ex-
pectation value of the CFT momentum tensor for d = 4 is then obtained
from

〈Tij〉 =
4L3

16πG

{
γ(4)ij −

1

8
γ(0)ij

[
γ2

(2) − γ
km
(0) γ

ln
(0)γ(2)klγ(2)mn

]
−1

2
γ(2)i

mγ(2)jm +
1

4
γ(2)ijγ(2)

}
, (137)

and γ(2)ij is determined in terms of γ(0)ij . The dynamic freedom of the CFT
is thus encapsulated in the fourth-order term γ(4)ij . Note that for r → 0,
the metric (135) asymptotes to the AdS metric in Poincaré coordinates (93).

The Brown–York stress tensor is also the starting point for an alterna-
tive method to extract the 〈TIJ〉 that does not rely on Fefferman–Graham
coordinates. It is given by

Tµν =
2√
−γ

δSgrav

δγµν
, (138)

where we have foliated the D-dimensional spacetime into timelike hypersur-
faces Σr in analogy to the foliation in terms of spacelike hypersurfaces Σt in
Sec. 2.1. The spacetime metric is given by

ds2 = α2dr2 + γIJ (dxI + βIdr) (dxJ + βJdr) , (139)

and nµ now denotes the outward pointing normal vector to Σr. In analogy
to the second fundamental form Kαβ in Sec. 2.1, we define the extrinsic
curvature on Σr by

Θµν ≡ −1
2 (∇µnν +∇νnµ) . (140)

Balasubramanian and Kraus provide in Ref. [189] a method to cure diver-
gences that appear in the Brown–York tensor when the boundary is pushed
to infinity by adding counter terms to the action Sgrav. Their work dis-
cusses asymptotically AdS spacetimes of different dimensions. For AdS5,
this procedure results in

Tµν =
1

8πG

[
Θµν −Θγµν − 3

L
γµν − L

2
Gµν

]
, (141)

where Gµν = Rµν−Rγµν/2 is the Einstein tensor associated with the induced
metric γµν . Applied to the AdS5 metric in global coordinates, this expression
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gives a non-zero energy momentum tensor Tµν 6= 0 which translated into the
vacuum expectation values 〈Tµν〉 can be interpreted as the Casimir energy
of a quantum field theory on the spacetime with topology R × S3 [189].
This Casimir energy is non-dynamical and in numerical applications to the
AdS/CFT correspondence may simply be subtracted from Tµν ; see e.g. [152].

The role of additional (e.g. scalar) fields in the AdS/CFT dictionary is
discussed, for example, in [188, 190].

6. Results from numerical BH simulations

Numerical relativity has been a highly dynamic field of research in recent
years and has generated a wealth of results about BH spacetimes. Recent
overviews are given in [69, 193–198]. Here, we provide a selection of some
of the most exciting results and important applications. We recommend
the cited review articles for Readers interested in more detailed discussions.
Applications of numerical relativity can be classified into the areas of grav-
itational wave physics, astrophysics, high-energy physics, the gauge–gravity
duality and fundamental properties of BH spacetimes. We will discuss these
fields in order.

6.1. Gravitational wave physics

The main motivation for numerical relativity has for a long time been
the calculation of gravitational waveforms from compact objects with the
purpose of constructing waveform catalogues for the analysis of GW obser-
vation and the extraction of physical information from these observations.
Due to the weak interaction of GWs with any type of matter, including the
detectors, digging physical signals from the noisy data stream represents
a daunting task and heavily relies on the so-called matched filtering tech-
niques [199]. Matched filtering is a method used to search for signals of
known form in noisy data, and works by cross-correlating the actual “signal”
(i.e., the detector’s output) with a set of theoretical templates. Roughly
speaking, a waveform catalogue consists of a large number of waveforms,
each one corresponding to a specific set of source parameters. By identi-
fying the waveform that provides maximal overlap with the observed data,
one obtains an estimate for the physical parameters of the GW source.

One of the strongest type of GW sources are stellar-mass BH binaries for
the frequency window of ground based detectors and supermassive BH bina-
ries for space missions of LISA type. BH binaries in (approximately) vacuum
are comparatively “clean” sources in the sense that they are uniquely defined
by a relatively small set of parameters: 2 parameters for the masses M1 and
M2 of the BHs and 6 parameters for the spin vectors S1 and S2. Vacuum
BH spacetimes have no preferred length scale which, for example, manifests
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itself in the presence of the mass M in the Schwarzschild metric (1) exclu-
sively in terms of the form r/M . The modeling of BH spacetimes therefore
needs to consider merely 7 parameters, the spins and mass ratio q ≡M1/M2.
The mass M can be fixed trivially by a simple rescaling of the spacetime
metric. Put another way, a single numerical simulation determines a one
parameter family of BH spacetimes with fixed q, S1 and S2. In principle,
the eccentricity of the binary orbits can appear as an additional parameter,
but is typically assumed to vanish because most binaries are expected to be
circularized by GW emission by the time they enter the frequency band of
GW detectors [200]. We note that GW observations need to consider addi-
tional, the so-called extrinsic parameters such as sky location or distance,
but these do not play a role in the GW source modeling.

For illustration, we show in Fig. 7 the BH trajectories and wave strain
h22 of the last ∼ 11 orbits in the inspiral and merger of a non-spinning
BH binary with mass ratio q = 1/4; for more details of the simulation,
see [201]. For most purposes in GW data analysis, waveforms of this type
are too short; BH binaries often spend orders of magnitude more cycles in the
detectors sensitivity band which need to be contained in the waveform model.
Fortunately, the post-Newtonian (PN) theory [16] provides a method to
complement numerical results with efficient predictions of the GW emission
during the earlier stages of the inspiral; the PN approximation breaks down
during the strong-field interaction of the binary in the late inspiral and
merger. Complete, so-called hybrid waveforms, however, can be obtained by
stitching together PN and numerical waveforms; see, for example, [116, 202].
In Fig. 8 we show an example of a hybrid waveform constructed for the binary
system of Fig. 7; see [201] for details.

Fig. 7. Trajectories (left panel) and quadrupole wave strain (right panel) of the last
11 orbits of the inspiral of a non-spinning q = 1/4 BH binary.
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Fig. 8. A hybrid waveform for the q = 1/4 binary system of Fig. 7. The numerical
(solid/black curves) and PN predictions (dashed/red curves) are shown for the
strongest multipolar contributions h22 and h33.

Even though, BH binaries are relatively clean systems determined by
7 parameters, the generation of a comprehensive template bank for
a 7-dimensional parameter space requires a huge number of simulations if
pursued by brute force; covering each parameter direction with a modest
10 simulations results in 107 simulations. The GW source modeling com-
munity has developed two approaches to tackle this problem in a more sys-
tematic way reducing substantially the number of required simulations.

So-called phenomenological waveform models use relatively simple func-
tions based on a small number of model parameters to describe the phase
and amplitude of the GW signal. One then uses numerical simulations to
create a map between the physical BH parameters and the model parame-
ters. This approach has so far been applied to non-spinning BH binaries and
binary systems of rotating BHs with spins aligned with the orbital angular
momentum [203–207]. Extension to spin-precessing binaries is presently un-
der investigation and explored in particular with regard to the possibility
of reducing the effective parameter space by using a single-spin approxima-
tion [208–210].

An alternative approach towards the generation of GW waveform mod-
els through inspiral, merger and ringdown is based on the effective-one-body
(EOB) method [211, 212]. In this approach, the dynamics of the two-body
problem in general relativity is mapped to the motion of a particle in an
effective metric whose components are currently determined to 3PN order.
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The EOB method improves upon this model by using additional pseudo-PN
terms of higher order which are not derived from PN expressions, but cali-
brated via comparison with numerical relativity results [213–218]. Further
improvements come from using a resummed version of the PN expanded re-
sults and from modeling nonadiabatic effects in the inspiral: see e.g. Sec. IV
in [217]. The inspiral-plunge waveform resulting from this construction is
then matched to a merger-ringdown signal composed of a superposition of
quasinormal oscillation modes of a Kerr BH.

The community wide NRAR project [219] has pooled the efforts of 9 nu-
merical relativity groups to start a more systematic exploration of the BH
binary parameter space [145]. This project furthermore standardizes uncer-
tainty measures for the numerical waveforms, generates automatic tools for
the analysis of waveforms and performs comparisons of EOB model predic-
tions with the newly generated waveforms. A catalogue of 171 waveforms
has recently been published by the Caltech–Cornell–CITA Collaboration
in [220].

The use of numerical relativity as well as hybrid waveforms in GW data
analysis is currently explored in the framework of the community wide Ninja
project [221]. Details of the hybridization process are given and waveforms
are compared using tools that are directly employed in the analysis of the
GW detector’s data stream to determine the uncertainty in parameter esti-
mation arising from uncertainties in the waveform models [222–224].

Finally, we note that the first numerical simulations of BH binaries in
scalar–tensor theory of gravity have been performed in which the no-hair
theorem is circumvented by introducing a scalar bubble [225] or evolving
the binary in a scalar gradient [226].

6.2. Astrophysics

One of the most exciting results obtained through numerical relativity
simulations concerns the gravitational recoil or kick generated through the
anisotropic emission of GWs. The generation of recoil in the dynamics of
compact objects in general relativity has been realized about half a century
ago [227–229] but the precise magnitude of this effect has only been deter-
mined following the numerical relativity breakthroughs of the year 2005. In
the context of astrophysical BHs, it is of particular interest whether kicks
can be large enough to displace or even eject BHs from their host galaxies.
Escape velocities from globular clusters and small galaxies are estimated to
be in the range of a few tens to the order of 100 km/s but can be as large
as ∼ 1 000 km/s for large elliptic host galaxies; see e.g. [230].
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Kick velocities generated in the inspiral and merger of non-spinning bi-
naries have been systematically studied by González et al. [231] (see also
[232, 233]) and predict a maximum recoil of 175 km/s realized for a mass ra-
tio q ≈ 1/3; see Fig. 9. This value is significantly below the escape velocities
from large galaxies, but may be sufficient to eject BHs from small hosts.

Fig. 9. Kick velocity generated in the inspiral and merger of non-spinning BH
binaries with mass ratio η ≡ M1M2/(M1 + M2)2. Numerical data from Refs.
[231, 234] are compared with various fits or analytic approximations.

One of the most surprising results of numerical relativity to date has
been the discovery of the so-called superkicks [235–237] in the inspiral and
merger of equal-mass BHs with equal spins in opposite directions in the
orbital plane. The simulations resulted in kick velocities up to 2 500 km/s
and extrapolation to maximal spin predicts up to 4 000 km/s. A recent
investigation of spin configurations dubbed hang-up kicks where the spins
are partially aligned with the orbital angular momentum resulted in even
larger magnitudes up to 5 000 km/s [238]. These superkicks are large enough
to eject BHs from even the most massive host galaxies. The ejection of
BHs may result in observational signatures (e.g. [239–241]) and represents
a potential obstacle for BH growth via merger, and thus puts constraints
on merger-history models, which must be able to explain the assembly of
SMBHs by redshifts z & 6 [242–244].

Frequent ejection of BHs from their host galaxies would, however, be at
odds with the observation that at least massive galaxies appear to ubiqui-
tously harbor BHs [245]. It thus appears that superkicks, while theoretically
possible, are not frequently realized in nature. Mechanisms that would re-
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sult in the suppression of the specific spin orientations that give rise to large
kicks have been suggested in the form of partial alignment of spins due to
the presence of torques from accretion disks and resonance effects due to
spin–orbit coupling in the inspiral [246–250].

6.3. High-energy collisions of black holes

The Standard Model of particle physics provides an exceptionally suc-
cessful description of subatomic particles and their interactions via the elec-
tromagnetic, weak and strong forces. In spite of its success, however, there
remain important unanswered questions as, for example, the unknown na-
ture of dark matter. In the context of this section, the most important open
issue is the large discrepancy between the electroweak energy scale 246 GeV
and the grand unification scale∼ 1019 GeV. This so-called hierarchy problem
manifests itself in the extraordinary weakness of the gravitational interac-
tion relative to the other fundamental forces; the weak interaction is about
32 orders of magnitude stronger than the gravitational one. At energies
comparable to the grand unification energy, on the other hand, gravity is
expected to become comparable in strength to the other interactions.

One proposition to explain this enormous discrepancy evokes extra di-
mensions either in the form of large (relative to the four-dimensional Planck
scaleMPl) extra dimensions in the so-called ADD model [13, 251, 252] or by
introducing a finite length scale through a warp factor in otherwise infinite
extra dimensions in the Randall–Sundrum model [14, 253]. As a consequence
of the extra dimensions, gravity becomes a much stronger interaction at mi-
croscopic distances than one would expect from the 1/r2 fall-off without
extra dimensions.

An intriguing consequence of an effective Planck mass much below its
four-dimensional value ∼ 1019 GeV is the possibility of BH formation in
parton–parton collisions at the Large Hadron Collider (LHC) [254, 255]; see
also the reviews by Cavaglià [256] and Kanti [257]. Once formed, such mini
BHs are expected to evaporate in four stages [257]: (i) a balding phase
during which the BH sheds all multipoles except for mass, spin and charge,
(ii) a spin-down, and (iii) a Schwarzschild phase during which the BH looses
first its spin and then its mass via the semi-classical Hawking radiation, and
(iv) the Planck regime as the BH mass approaches the Planck mass which
is described by an as yet unknown theory of quantum gravity.

Of particular interest in the context of NR is the fact that the first
three of these phases should be well described by classical and semi-classical
calculations provided the BH mass exceeds the Planck scale by at least a
factor of a few [257]. BH formation is expected to manifest itself in collision
experiments by a special signature in its decay products as, for example,
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the jet multiplicity or transverse energy [258]. For the identification of these
signatures, theoretical predictions from Monte-Carlo event generators such
as BlackMax [259] and Charybdis [260, 261] are compared with experimental
data. Key input parameters for the event generators are the scattering cross
section for BH formation and the initial mass and spin distributions of the
formed holes. Providing this information forms the main goal of numerical
relativity simulations of high-energy collisions of BHs.

If we assume that most of the energy of the collision process resides in
the kinetic energy of the particles, such that their internal structure be-
comes negligible, the dynamics of the collision should be well modeled by
two point particles or BHs in D-dimensional general relativity [255, 262].
This conjecture has been tested by Choptuik and Pretorius [263] for the
head-on collision of minimally coupled, massive scalar fields. As expected
from Thorne’s [264] Hoop conjecture, these boson-field collisions result in
the formation of a BH above a threshold value for the Lorentz boost param-
eter γthr = 2.9 ± 10%, about a factor three below the upper limit derived
from the Hoop conjecture. This study was extended to the case of perfect
fluids by East and Pretorius [265] again resulting in the observation that BH
formation occurs above a threshold boost.

It thus appears that “matter does not matter” in the collisions provided
the total centre-of-mass energy is dominated by the kinetic energy, i.e. in
the ultra relativistic limit. High-energy collisions of BHs are currently best
understood in D = 4 dimensions. Even though extension of these results to
higher dimensions will be needed, important insight can be gained from the
four-dimensional case.

A high-energy collision of non-rotating, electrically neutral BHs is char-
acterized by three parameters, the mass ratio q, the boost γ = 1/

√
1− v2

and the impact parameter b ≡ L/P , where L and P denote the orbital an-
gular momentum and the linear momentum of one BH as measured in the
centre-of-mass frame. Sperhake et al. [126] studied head-on collisions, where
b = 0, of equal-mass BH binaries and found the energy radiated in GWs
to rapidly increase with the collision velocity v and reach 14 ± 3% of the
total centre-of-mass energy as v → c. A follow-up study [174] of grazing
collisions identified zoom-whirl behavior when fine-tuning b near a threshold
of immediate merger [266]. Furthermore, grazing collisions were found to
emit enormous amounts of GWs up to 35% of the total energy. The cross
section in such collisions was studied by Shibata et al. [267] who found a
remarkably simple fit to their results giving the scattering threshold as

bscat =
2.5± 0.05

v
M . (142)

The impact of spins on the collision dynamics was studied in Sperhake et al.
[128]. Specifically, grazing collisions of non-spinning binaries were com-
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pared with configurations where the spins are either aligned or anti-aligned
with the orbital angular momentum. These (anti-)hangup configurations are
known to have a particularly strong impact on the dynamics of BH bina-
ries [268]. The results for the scattering threshold bscat and the radiated GW
energy for five sequences with dimensionless spins χ = +0.85, +0.6, 0, −0.6,
−0.85 are shown in Fig. 10. Here, positive and negative spin values corre-
spond to the aligned and anti-aligned case, respectively. Clearly the spin
orientation has a strong effect on the scattering threshold for low boosts.
At velocities above ∼ 90% of the speed of light, however, this impact of the
spin is washed out. The radiated GW energy, displayed in the form of the
maximum over variations of the impact parameter in the lower panel of the
figure, exhibits little dependence on the spin orientation even for velocities
as low as ∼ 60% of the speed of light. We see here another manifestation
of the principle that structure does not matter for the outcome of the colli-
sion dynamics in the ultra relativistic limit. From Fig. 10 we also see that
the maximum radiated energy extrapolated to v → c reaches about 50% of
the total energy. In this limit, however, the total energy is identical to the
kinetic energy and the question arises what happens to the other half of the
kinetic energy that is not radiated to infinity. The answer found in [128] is
that the remainder of the kinetic energy is absorbed by the colliding objects
either during the merger phase or, in scattering configurations, during the
period of close interaction of the non-merging BHs.

Fig. 10. Upper panel: Scattering threshold of equal-mass BH binaries with aligned,
anti-aligned or zero spins as a function of the collision velocity. Lower panel:
maximal energy radiated in GWs (maximized over varying the impact parameter b).
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BH collisions in D ≥ 5 have not been studied in the same detail which
is largely a consequence of stability problems in the numerical simulations
which are the subject of ongoing research. Head-on collisions in D = 5 start-
ing from rest have been studied in [80, 186, 269]. These emit about twice
as much GW energy as their four-dimensional counterparts, but still orders
of magnitude less than the high-energy collisions mentioned above. A first
study of grazing collisions in D = 5 has been presented by Okawa et al. [127].
The scattering threshold has been successfully determined up to speeds of
about 0.6 c. For larger boosts stability problems prevent an accurate de-
termination of bscat. Their study furthermore identified super-Planckian
regimes in the D = 5 scattering collisions and thus the possibility of a quan-
tum regime that is not hidden inside a horizon.

6.4. Gauge–gravity duality

Many applications of the gauge–gravity duality, or AdS/CFT corre-
spondence, are concerned with the equilibration of matter in heavy-ion col-
lisions at the RHIC or LHC and, in particular, its rapid thermalization
[270–272]. While the quark-gluon plasma generated in the collisions is far
from equilibrium at early stages, its behavior appears to be well described
by hydrodynamics after time scales of the order of 1 fm/c. This process is, in
principle, governed by QCD but results indicate that many physical aspects
can be studied in the framework of N = 4 SYM through the gauge–gravity
duality. Small perturbations of a static system in thermal equilibrium are
known to decay exponentially fast and correspond to quasi-normal modes on
the gravity side [273] and numerical studies in the context of the AdS/CFT
correspondence yield a similar picture for far-from-equilibrium configura-
tions.

The use of NR methods to study these processes in AdS/CFT has been
pioneered by Chesler and Yaffe [120, 121] who evolve an anisotropic source
on the AdS boundary switched on after a short time using a character-
istic approach based on ingoing Eddington–Finkelstein coordinates on the
Poincaré patch of AdS. Their numerical scheme is reduced to an effective
“1+1” scheme by assuming boost invariance as well as rotational and trans-
lation symmetry in the transverse plane. Their boundary data generate
gravitational waves which propagate into the bulk and lead to formation of
a BH. They extract the energy momentum tensor of the CFT dual and follow
the time evolution of the energy density as well as the transverse and longi-
tudinal pressure components. Isotropization of the pressure occurs on time
scales inversely proportional to the local temperature at the onset of the hy-
drodynamic regime which translates into an isotropization time of 0.5 fm/c
assuming a temperature of 350 MeV. Using the same setup, Chesler and
Teaney [274] use different definitions of a “temperature” based on the energy
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density and on two-point functions. These two versions start agreeing after
a time 1 fm/c coincident with the isotropization of transverse and longi-
tudinal pressure. Wu and Romatschke [275] employ a similar approach to
collide two superposed shockwaves in a boost invariant approximation and
find that the late-time behavior of the energy density is given by a hydro-
dynamic description involving a scale parameter determined by the initial
apparent horizon area.

A comparison of the fully non-linear numerical results with predictions
from the linearized close-limit approximation [276] was performed by Heller
et al. [277, 278]. Instead of sourcing the anisotropy through a boundary
term, they prescribe anisotropic data on an initial null hypersurface extend-
ing through the bulk. Their results confirm the short isotropization times
∼ 1 fm/c and find the linear approach to reproduce these values within 20%
even for large initial anisotropies.

A numerical scheme based on the ADM formalism of the Einstein equa-
tions was developed by Heller et al. [162, 279] who emphasize that ther-
malization, when defined as the onset of the hydrodynamical regime2, may
differ from isotropization. By evolving boost-invariant, transversely homo-
geneous plasmas with various different initial conditions, they find that a
hydrodynamic description may well be applicable when the pressure is still
anisotropic.

In Ref. [122], Chesler and Yaffe relax their symmetry assumptions to
translation invariance in the transverse direction which effectively consti-
tutes a 2+1 numerical scheme. Their characteristic formulation works well
in this scenario without showing any signs of formation of caustics and
enables them to model heavy-ion collisions by colliding two shock waves.
Specifically, they consider a single shock-wave solution in Fefferman–Graham
coordinates, superpose two of those and transform the result to ingoing
Eddington–Finkelstein coordinates. For stability purposes, they introduce
a small energy offset on the CFT side which generates an apparent horizon
in the gravity dual above the Poincaré boundary to absorb steep gradients
encountered in the metric functions deep in the bulk. By comparing the
numerically determined pressure components with hydrodynamical predic-
tions, they confirm the picture of rapid isotropization obtained in scenarios of
higher symmetry. Translated into values for gold ion collisions at the RHIC,
they observe isotropization about 0.35 fm/c after their shock waves start
overlapping. Most recently, they presented a detailed description of their
computational methods which also includes a study of two-dimensional tur-
bulent fluid flow modeled through the gravity dual in 3+1 dimensions [280];
see also Adams et al. [281] and [282] for a recent review.

2 See Eq. (5) in Ref. [162] for their precise definition.
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A numerical code based on Cauchy type evolutions of asymptotically
global AdS spacetimes using the GHG scheme has been developed by Ban-
tilan et al. [152]. By assuming an SO(3) symmetry, they reduce their com-
putational domain to 2+1 dimensions. Initial data is specified in the form
of a localized scalar field which promptly collapses to a BH with a highly
distorted horizon and settles down into a stationary configuration through
quasi-normal ringdown. Whereas the lowest ringdown modes agree with lin-
earized predictions, higher angular modes exhibit significant coupling due
to non-linear effects. The dual stress-energy tensor of the CFT is mapped
from the global R×S3 AdS boundary to a Minkowski background and found
to evolve in agreement with that of a thermalized SYM fluid from the start
of the simulations. Their work furthermore discusses in detail a number of
regularization procedures required to obtain a numerically stable framework.

6.5. Fundamental properties of black-hole spacetimes

One of the first and most influential NR results has been obtained in
Choptuik’s [135] seminal study of the collapse of spherically symmetric mass-
less scalar fields minimally coupled to the Einstein gravity in four-dimen-
sional, asymptotically flat spacetimes. By evolving various one-parameter
families of scalar pulses, he identified critical behavior as the parameter p
which characterizes the gravitational interaction strength of the field ap-
proaches a critical value p∗. For p > p∗, the field collapses to a BH and for
p < p∗ it disperses to infinity. Furthermore, near-critical field configurations
exhibit universal behavior in the strong field limit: (i) BHs which form have
a mass M ∼ |p − p∗|γ with a universal constant γ ≈ 0.37. (ii) Advancing
the evolution from a time t to t + ∆, the field profile is recovered up to a
“zoom-in” by a factor e∆. The numerical study reveals ∆ to be a universal
constant of about 3.4. For subcritical configurations, Garfinkle and Comer
Duncan [283] found a similar scaling of the maximal scalar curvature in the
spacetime Rmax ∼ |p− p∗|2γ . Continuously self-similar solutions were found
by Pretorius and Choptuik [284] for scalar fields in 2+1 dimensional asymp-
totically AdS spacetimes with a mass scaling characterized by γ/2 = 1.2.
Sorkin and Oren [285] generalized Choptuik’s result to higher dimensions
by evolving scalar fields up to d = 11 dimensions. Their results indicate
that γ reaches a maximum and ∆ a minimum around d ≈ 11 . . . 13. An
extended review of critical collapse phenomena is given by Gundlach and
Martín-García [286].

More recently, critical-collapse studies have been extended to asymp-
totically AdS spacetimes in 3+1 and higher dimensions. In a remarkable
study, Bizoń and Rostworowski found evidence suggesting that 3+1 AdS is
unstable to BH formation under arbitrarily small perturbations. By evolv-
ing spherically symmetric scalar fields they recover Choptuik’s results for
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large initial field amplitudes. For configurations below this critical value,
however, the AdS boundary substantially modifies the outcome. In contrast
to asymptotically flat spacetimes, spatial infinity in AdS is reached in finite
time by massless fields and reflected back onto the origin. As the initial
amplitude is reduced below a critical value ε0, the scalar pulse forms a BH
upon its second implosion on the origin. Further reduction of the amplitude
leads to a second critical amplitude ε1 and this pattern repeats itself with
no indication of a threshold amplitude for BH formation; cf. their Fig. 1.
For each critical amplitude, they furthermore recover Choptuik’s scaling law
with γ = 0.37. They interpret this behavior as a resonant mixing of modes
which transfers energy from low to high frequencies. This study has been
generalized to higher-dimensional AdS spacetimes by Jałmużna et al. [287]
suggesting that AdS is unstable to BH formation for generic spacetime di-
mensions. Presumably, this result has eluded a similar study by Garfinkle
and Pando Zayas [288], because of insufficient length of their numerical simu-
lations for smaller field amplitudes. In a similar investigation using complex
scalar fields, Buchel et al. [289] reproduce the instability of AdS and the
transfer of energy from low to high frequencies. In consequence, the width
of initially weak pulses narrows in each reflection cycle and eventually col-
lapses to a BH; cf. their Fig. 5. Garfinkle et al. [290] have monitored the
time of BH formation and the horizon radius, and found the amplitude of
the scalar field to have a stronger influence on the outcome compared with
the width of the pulse. The same type of instability to BH formation has
been found by Maliborski [291] for a Minkowski spacetime enclosed inside
a reflecting wall, indicating that the global structure plays a major role for
the effect. Nevertheless, there are strong indications that there also exist
classes of stable asymptotically AdS spacetimes containing, for example, bo-
son stars, geons or time-periodic scalar field configurations [292–295]. In
2+1 dimensions, where BH solutions only exist for mass parameters above
a threshold value, Bizoń and Jałmużna [296] have studied the collapse of
scalar field configurations with a total mass below the mass threshold. They
observe that the fields evolve towards ever finer structure but remain smooth
and exhibit no sign of formation of naked singularities.

The instability of black strings has been studied numerically in a se-
quence of papers by Lehner and Pretorius and collaborators [297–299], see
also [300]. It had been known since the 1990s that black strings are sub-
ject to the Gregory–Laflamme instability, but the eventual fate of the string
remained unclear. In Ref. [299], Lehner and Pretorius found evidence sup-
porting indications by earlier work that the string evolves to a sequence of
spherical BHs connected by thin string segments which themselves are sub-
ject to the Gregory–Laflamme instability, resulting in a self-similar cascade
reaching zero string width in finite asymptotic time. This behavior shows
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striking similarity with satellite formation in the flow of low-viscosity fluids.
The eventual bifurcation of the horizon resulting from the cascade implies
formation of a naked singularity [2]. Because no fine-tuning is required to
trigger the instability, the result constitutes a violation of the cosmic censor-
ship conjecture without “unnatural” assumptions about the initial data. In
contrast to the higher-dimensional case, NR has as yet not observed any such
violation of cosmic censorship in 3+1 dimensions. In a recent study [160], BH
collisions in asymptotically de Sitter spacetimes have been found to comply
with censorship; BH binaries with a combined mass exceeding the inverse
of the Hubble constant do not merge for any initial separation provided the
initial data do not contain a naked singularity.

7. Concluding remarks

The study of BH spacetimes through numerical integration of the Ein-
stein equations has been an extremely active field of research, especially
following the numerical relativity breakthroughs of the year 2005. Probably
one of the most amazing developments is the wide variety of applications of
BH studies using numerical relativity which has extended beyond the more
traditional applications to GW physics and astrophysics to high-energy col-
lisions of partons, quark-gluon plasma, condensed matter and conductivity.
Furthermore, the modeling of BHs and their formation still presents us with
surprising outcomes about a century after the publication of the theory of
general relativity.

In spite of the great success of the computational tools employed for
the 2005 breakthrough simulations of BH binaries, the numerical relativ-
ity community still explores new developments in numerical methods, the
formulation of the Einstein equations and the diagnostic tools used for the
extraction of physical information from the spacetimes. As we have seen,
time evolutions of BHs in higher dimensions, in particular, still encounter
stability issues which need to be overcome to facilitate a comprehensive un-
derstanding of the BH dynamics. The field of numerical relativity is thus a
highly dynamic field and it is quite possible that some chapter or other of
these notes may become outdated in the not-too-distant future. The Reader
is encouraged to stay tuned and remain on the lookout for new developments.
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