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The model of Causal Dynamical Triangulations is a nonperturbative
and background independent approach to quantum theory of gravity. In
this paper, we give introduction to the four dimensional framework of
Causal Dynamical Triangulations and present recent results. We describe
the phase structure of the model and show how a macroscopic four dimen-
sional de Sitter universe emerges dynamically from the full gravitational
path integral. We advocate that the effective action describing scale factor
fluctuations reconstructed from Monte Carlo data agrees with the minisu-
perspace model.
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1. Introduction

The model of Causal Dynamical Triangulations (CDT) is based on the
formalism of path integrals and lattice regularization. Its objective is to
quantize a theory of gravitation. The model was presented some years ago
by Ambjørn, Jurkiewicz and Loll in [1–3]. In the path integral formulation
of quantum gravity, the trajectories are represented by four-dimensional ge-
ometries of spacetime. CDT defines the way the path integral should be
calculated and specifies the class of spacetime histories which should con-
tribute to the path integral. A discretization is introduced, but only as a
regularization intended to be eliminated in the continuum limit. Discrete-
ness is not claimed to be a property of the universe.

∗ Presented at the LIII Cracow School of Theoretical Physics “Conformal Symme-
try and Perspectives in Quantum and Mathematical Gravity”, Zakopane, Poland,
June 28–July 7, 2013.

(2559)



2560 A. Görlich

According to General Relativity, the classical theory of gravitation, the
gravity is encoded in spacetime geometry. The considered degree of freedom
is the metric field gµν(x) and nonzero curvature is interpreted as a gravita-
tional field. The construction of the quantum theory starts from the classical
Einstein–Hilbert action

SEH[gµν ] =
1

16πG

∫
M

d4x
√
−det g (R− 2Λ) , (1)

where G and Λ are respectively the Newton’s gravitational constant and the
cosmological constant,M is the spacetime manifold equipped with a pseudo-
Riemannian metric gµν with Minkowskian signature {−,+,+,+} and R de-
notes the associated Ricci scalar curvature [4, 5]. We used the natural Planck
units c = ~ = 1 and assumed the topology ofM to be S1 × S3.

In order to quantize the theory of gravitation, we apply the Feynman’s
path integral formalism. The path integral or partition function of quantum
gravity is defined as a formal integral over all spacetime geometries

Z =

∫
DM[g] eiSEH[g] . (2)

A spacetime geometry [g], also called history, is defined as an equivalence
class of spacetime metrics g with respect to the diffeomorphism group onM.

The Causal Dynamical Triangulations model regularizes the formal par-
tition function (2) via discretization. The path integral is replaced by a sum
over a discrete set T of all causal triangulations T , thus it gains a meaningful
definition. The building blocks of four dimensional CDT are four-simplices.
A four-simplex is a generalization of a triangle to four dimensions, it is

Fig. 1. A sketch of four-simplices, the fundamental building blocks of four-
dimensional Causal Dynamical Triangulations. The simplices join two successive
slices t and t+ 1, and are grouped into two types: {4, 1} and {3, 2}. The simplices
are equipped with the flat Minkowski metric imposing the light-cone structure.
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composed of five vertices connected to each other. It is a subset of a four-
dimensional Minkowski spacetime and the induced metric inside a simplex
is flat. Figure 1 presents a sketch of four-simplices together with a light-
cone. A four-dimensional simplicial manifold is built from four-simplices
glued pairwise along tetrahedral faces so that topological conditions are pre-
served. The curvature is localized on triangles and, in general, such complex
cannot be embedded in R4.

1.1. Causality

Opposite to Euclidean Dynamical Triangulations (EDT) [8], Causal Dy-
namical Triangulations assume global proper-time foliation. In the Eu-
clidean version, configurations are dominated by creation of baby universes
and causal singularities. In order to prevent such behavior, CDT implements
the causality condition. Also, the original Lorentzian signature of spacetime
suggests that only causal geometries should contribute to the gravitational
path integral [6, 7]. The leaves of the time foliation, called slices, are spatial
three-dimensional Cauchy surfaces Σ with fixed topology. Figure 2 illus-
trates a triangulation with imposed foliation which violates the causality
condition. We chose the topology of slices to be a three sphere Σ = S3 and
establish periodic boundary conditions in the time direction. Therefore, the
spacetime topology isM = S1 × S3.

Fig. 2. A visualization of a two-dimensional triangulation with a light-cone struc-
ture and a branching point marked. In Causal Dynamical Triangulations spatial
slices are not allowed to split, which prevents singularities of the time arrow.

On piecewise linear manifolds, the spatial slices T (3)(i) are enumerated
by a discrete time coordinate i. Each slice is a triangulation of S3 made up
of equilateral tetrahedra with a side length as > 0. The induced metric of
spatial tetrahedra has a Euclidean signature. Each vertex of the triangula-
tion is assigned a discrete time coordinate i which corresponds to a slice it
lies in. A layer between two successive slices T (3)(i) and T (3)(i+ 1) is filled



2562 A. Görlich

with four-simplices so that it forms of a four-dimensional slab with a topol-
ogy of [0, 1]× S3. A series of slabs glued one after another builds the whole
simplicial complex and preserves the causal structure. The triangulation of
the later slice wholly lies in the future of the earlier one.

Due to the foliation, there are two kinds of simplices. Simplices of the
first type are called {4, 1} and have four vertices in one spatial slice, while
the fifth vertex lies in the previous or next slice. Simplices of the second
type, called {3, 2}, have three vertices in one spatial slice and two in the
previous or next slice. Figure 1 illustrates four-simplices of type {4, 1} and
{3, 2} connecting slices T (3)(t) and T (3)(t+ 1). There are also two kinds of
links. The space-like links connect two vertices in the same slice and have
length as > 0. The time-like links connect two vertices in adjacent slices
and have length at. In Causal Dynamical Triangulations, the lengths as and
at are constant but not necessarily equal. Let us introduce the asymmetry
factor α such that a2t = α × a2s . In the Lorentzian case, α is negative. The
volumes and angles of simplices are fully determined by as and at. They
differ for the two types of simplices. Since no coordinates are introduced,
the CDT model is manifestly diffeomorphism-invariant. Such a formulation
involves only geometric invariants like lengths and angles.

1.2. Lattice regularization and the Regge action

The Einstein–Hilbert action (1) has a natural realization on piecewise
linear geometries. Let us denote the number of simplices of type {4, 1} by
N41, and the number of simplices of type {3, 2} by N32. The total number of
simplices is then given by N4 = N41 +N32. The total physical four-volume∫
T d

4x
√
| det g| can be expressed by a linear combination of N41 and N32.

Similarly, the global curvature
∫
T d

4x
√
| det g|R can be expressed using the

angle deficits which are localized at triangles, and is a linear function of
N32, N41 and the number of vertices N0. The Einstein–Hilbert action (1)
calculated for a causal triangulation T is called the Regge action and can
be written in a very simple form

S[T ] ≡ −K0 N0[T ] +K4 N4[T ] +∆ (N41[T ]− 6N0[T ]) , (3)

where K0, K4 and ∆ are bare coupling constants. They are nonlinear func-
tions of G and Λ appearing in the continuous (1) action, and the asymmetry
factor α [3]. As the bare coupling constant K4 is conjugate to N4, it con-
trols the total volume and can be considered as a cosmological constant. K0

is related to the inverse of the gravitational coupling constant G and ∆ is
related to the asymmetry factor α. ∆ will play an important role as it will
allow observing new geometric phases.
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Causal Dynamical Triangulations provide a lattice regularization of his-
tories appearing in the formal gravitational path integral (2). The discretiza-
tion procedure replaces the integral with a sum over the set of all causal
triangulations T weighted by the Regge action (3), providing a meaningful
definition of the partition function

Z ≡
∑
T ∈T

eiS[T ] . (4)

1.3. The Wick rotation

In contrast to the two dimensional case, lack of analytical tools in four
dimensions forces us to use numerical methods to gain the nonperturbative
information about fluctuating geometries. The number of configurations is
finite for finite size triangulations. Nevertheless, this number grows expo-
nentially with the number of simplices N4 and the oscillatory nature of the
integrand (4) precludes usage of numerical techniques. We may bypass this
problem by applying a trick called Wick rotation. Roughly, it is based on
the analytic continuation of the time coordinate to imaginary values. Hence,
the spacetime signature changes from Lorentzian to Euclidean and complex
amplitudes are substituted by real probabilities eiSLor → e−S

Euc . Because
of the global proper-time foliation, we have a distinction between time-like
and space-like links, and the Wick rotation is well defined. It can be simply
implemented by analytic continuation of the lengths of all time-like edges,
at → iat

a2t = αa2s , α > 0 .

The Regge action rotated to the Euclidean sector, after the redefinition
SEuc = −iSLor, has exactly the same simple form as its original Lorentzian
version (3). An exact derivation of the Wick rotated Regge action can be
found in [3].

As a consequence of the lattice regularization procedure and the Wick
rotation, the partition function (2) is finally written as a real sum over the
set of all causal triangulations T

Z =
∑
T ∈T

e−S[T ] . (5)

Both the Euclidean Regge action S[T ] as well as the partition function Z
depend on bare coupling constants K0, K4 and ∆.

1.4. The numerical setup

The formal gravitational path integral (2), after Wick rotation, defines
the quantum expectation value
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〈O[g]〉 ≡ 1

Z

∫
D[g] e−SEH[g] , (6)

where O[g] denotes some observable defined on a geometry [g]. Cognately,
the probability distribution P [T ] associated with the partition function (5),
defines its discrete counterpart

〈O[T ]〉 ≡
∑
T ∈T
O[T ]P [T ] , P [T ] ≡ 1

Z
e−S[T ] . (7)

Here, O[T ] denotes an observable measured on triangulation T .
The CDT framework, strictly based on lattice regularization, enables

application of effective Monte Carlo techniques. The partition function (5)
defines a statistical mechanical problem which is free of oscillations. It is the
starting point for computer simulations which further allow us to measure
expectation values defined by (7) in an approximate manner and gain phys-
ically relevant information. Numerical simulations consist in generating a
sequence of spacetime geometries, being causal triangulations T , according
to the probability distribution (7). Given a sufficiently large set of K sta-
tistically independent Monte Carlo configurations {T (k), k = 1 . . .K}, we
approximate the average (7)

〈O[T ]〉 ≈ 1

K

K∑
k=1

O
[
T (k)

]
. (8)

The probability distribution P [T ] is not evident in the above equation,
because by construction the output configurations of the Monte Carlo algo-
rithm are weighted by the Regge action.

2. The macroscopic universe

An example of the simplest observable providing information about the
universe geometry is the spatial three-volume ni. It is defined as a number
of tetrahedra building a spatial slice T (3)(i), where i = 1 . . . T . It sums up
to the total volume N = N41 =

∑T
i=1 ni (up to a constant factor 1

2).
An individual spacetime history contributing to the partition function is

not an observable, precisely in the same way as a trajectory of a particle in
the quantum-mechanical path integral is not an observable. However, it is
perfectly legitimate to talk about the expectation value 〈ni〉 as well as about
the fluctuations around the mean.

Hereinafter, let us restrict our considerations to the spatial volume ni.
Hence, we reduce the problem to one-dimensional quantum mechanics. We
should keep in mind that many three-dimensional triangulations of spatial
slices might have the same spatial volume n.
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2.1. The phase diagram

The Regge action (3) has three bare coupling constants, namely the in-
verse of the gravitational constant K0, the cosmological constant K4 and
the asymmetry constant ∆. For technical reasons, it is convenient to keep
the total four-volume N4 fluctuating around some prescribed value during
Monte Carlo simulations. The cosmological constant K4 acts as Lagrange
multiplier and needs to be tuned to its critical value in order to suppress
the contribution to the partition function coming from extremely large con-
figurations. Because the number of configurations grows exponentially with
the size, a value of K4 below the critical value would make the partition
function ill-defined. Effectively, K4 does not appear as a coupling constant.

We observe three qualitatively different behaviors of a typical configura-
tion depending on the values of the two remaining bare coupling constants
K0 and ∆. In [2] it was shown that the model consists of three phases, which
were labeled A, B and C. A detailed phase diagram obtained due to large-
scale computer simulations was described in [9]. The phase diagram, based
on Monte Carlo measurements, is presented in Fig. 3. The solid lines denote
observed phase transition points for configurations of size 80 000 simplices,
while the dashed lines represent an interpolation.

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5

∆

K0

A

B

C

Triple point

Fig. 3. A sketch of the phase diagram. The phases correspond to regions on the
bare coupling constant K0–∆ plane. We observe three phases: a crumpled phase A,
a branched polymer phase B and the most interesting a genuinely four-dimensional
de Sitter phase C.
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Figure 4 displays volume profiles ni of typical configurations of the three
phases:

— Phase A. For large values of K0 (cf. Fig. 3), the universe disintegrates
into uncorrelated irregular sequences of maxima and minima with time
extent of few steps. When looking along the time direction, we observe
a number of universes oscillating in the time direction which are con-
nected by necks of negligible sizes.

— Phase B. For small values of ∆, nearly all simplices collapse into one
spatial slice. Although this slice has a topology of a three-sphere S3,
the measured Hausdorff dimension is very high, if not infinite.

— Phase C. For larger values of ∆, a typical configuration is bell-shaped
and behaves like a well defined four-dimensional manifold. The mea-
surements of the Hausdorff dimensions confirm that at large scales the
universe is genuinely four-dimensional [2].

Only in the latter phase, the configurations have a finite time and spatial
extents, which scale as expected for a four-dimensional object. Hence, only
phase C is regarded physical. The averaged profile 〈ni〉 corresponds to Eu-
clidean de Sitter space S4 and thus this phase is also called the de Sitter
phase.
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Fig. 4. Snapshot of a spatial volume ni for a typical configuration of phases A, B
and C. A typical configuration in phase C is bell-shaped with well-defined spatial
and time extent.

2.2. The de Sitter universe

In phase C, the time translational symmetry is spontaneously broken and
the distribution ni is bell-shaped. Let us focus on pointK0 = 2.2, ∆ = 0.6 of
the phase diagram which is firmly placed in phase C. A snapshot of a volume
profile ni of a typical configuration with the total volume N = 160 000
simplices and time-period T = 80 is shown in Fig. 5. For this value of N ,
the universe does not extend over the entire time-axis, but is localized in
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a much shorter range. The Regge action, as derived from the Einstein–
Hilber action, is time translationally invariant. For time-periodic boundary
conditions, a direct average 〈ni〉 would give a constant function of time i,
not capturing the shape of individual configurations. Therefore, to obtain a
meaningful expectation value of ni, we fix the position of the center of mass
before performing the average over triangulations (8) [10].

Figure 5 shows the measured 〈ni〉 (black thick line). The boxes visible on
the plot indicate the amplitude of quantum fluctuations of ni, their height
is equal to standard deviation σi =

√
〈n2i 〉 − 〈ni〉2. The average volume 〈ni〉

is with high accuracy given by formula

〈ni〉 = H cos3 (i/W ) . (9)

Here, W is the time extent of the universe and H is the maximal spatial vol-
ume. The function (9) with fittedH andW is plotted in Fig. 5 with a dashed
line, but it is indistinguishable from the measured curve. The formula (9)
describes the background geometry. It was not put by hand but emerged
dynamically. Moreover, it corresponds to the maximally symmetric solution
of classical Einstein equations with a positive cosmological constant [11, 12],
i.e. Euclidean de Sitter space — geometry of a four-sphere S4. Although by
construction the topology of the spacetime is enforced to beM = S1 × S3,
in the large N limit the stalk can be neglected and the topology transmutes
into S4.
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Fig. 5. Spatial volume ni of a randomly chosen typical configuration (gray line) and
the background geometry 〈ni〉 (black line): Monte Carlo measurements for fixed
N41 = 160 000,K0 = 2.2, ∆ = 0.6. The best fit (9) yield indistinguishable curves
at given plot resolution. The bars height indicate the average size of quantum
fluctuations.
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2.3. The minisuperspace model

The solution (9) 〈ni〉 = H cos3 (i/W ) comes as a classical solution of the
minisuperspace model. This quantum cosmological model was developed by
Hartle and Hawking in their semiclassical evaluation of the wave function of
the universe [21]. The key assumption is spatial homogeneity and isotropy,
i.e. all degrees of freedom except the three-volume (scale factor) are frozen
and the Euclidean spacetime metric is given by

ds2 = dτ2 + a2(τ)dΩ2
3 . (10)

Here a(τ) is the scale factor depending on the proper time τ and dΩ2
3 denotes

the line element on S3. The universe topology is S1 × S3.
In the CDT model no degrees of freedom are excluded, but we integrate

out all of them except the scale factor. Nevertheless, in both cases results
demonstrate high similarity. The physical volume of a spatial slice for a
given time τ is equal v(τ) =

∫
dΩ3

√
det g|S3 = 2π2a(τ)3.

The minisuperspace action is the Einstein–Hilbert action (1) calculated
for the Euclidean metric (10) [5], up to boundary terms it is given by

S[a] =
2π2

16πG

∫
dτ
(
−6aȧ2 − 6a+ 2Λa3

)
. (11)

The Wick rotated Einstein–Hilbert action (1) suffers from the unbound-
edness of the conformal mode. As seen in the minisuperspace action (11),
this is caused by the wrong sign of the kinetic term. As a consequence, the
Regge action (3) is also unbounded from below but due to the UV lattice
regularization it is always finite for an individual triangulation. The problem
of infinities is revived when taking the continuum limit. Fortunately, in the
nonperturbative approaches, like CDT, the partition function emerges as a
subtle interplay of the entropic nature of triangulations and the bare action.
It occurs that the entropy factor suppresses the unbounded contributions
coming from the conformal factor, and the effective action for ni is equal to
the minisuperspace action (11), but with an opposite sign of the conformal
mode, and is thus bounded from below [14]. Together with a convergence
of the coupling constants to their critical values, if such a point exists, the
entropic and action terms should be balanced, and one hopes to obtain the
proper continuum behavior.

In terms of the spatial volume, the minisuperspace action (11) can be
rewritten as

S[v] = − 1

24πG

∫
dτ

(
v̇2

v
+ βv1/3 − 3Λv

)
, β = 9

(
2π2
)2/3

. (12)



Introduction to 4D Causal Dynamical Triangulations 2569

The classical trajectory, solving the Euler–Lagrange equation, is given by

〈v(τ)〉 = 2π2R3 cos3
( τ
R

)
, R = (Λ/3)−1/2 . (13)

The physical volume 〈v(τ)〉 describes the maximally symmetric space for
a positive cosmological constant, namely the Euclidean de Sitter universe
(a geometry of a four-sphere S4 with radius R). The very same solution
emerged dynamically as a background geometry in the CDT model.

2.4. The Hausdorff dimension

The dependence of the volume profile 〈ni〉 on the total volume N shows
that the universe emerging in the CDT model is genuinely four dimensional.
Keeping the coupling constants K0 and ∆ fixed, which naïvely means that
the geometry of simplices is not changed, we measure the expectation value
〈ni〉 for different total volumes N .

Assuming the scaling dimension is dH, the time extension expressed in
lattice spacing should scale as N1/dH and the spatial volume should scale as
N1−1/dH . The physical volume, which should be independent of the number
of simplices N , is then given by

n(t) ≡ N−1+
1

dH 〈ni〉 , t ≡ N−
1

dH i . (14)

For very large N , the scaled time variable can be treated as continuous and
the normalization condition reads

∫
n(t)dt = 1

N

∑
i ni = 1. We fit the scaling

dimension dH so that the overlap of n(t) for different Ns is the best [2]. The
best fit gives dH = 3.98 ± 0.10. The expected value dH = 4 is very close
to the measured result, and is well within the margin of error. Figure 6
plots the scaled three-volumes n(t) for K0 = 2.2, ∆ = 0.6 and various total
volumes N . It shows that n(t) does not depend on N . From equation (9)
and scaling (14) for dH = 4, we get formulas

n(t) =
3

4ω
cos3

(
t

ω

)
, 〈ni〉 =

3N3/4

4ω
cos3

(
i

ωN1/4

)
, (15)

where ω depends only on the coupling constants K0 and ∆, but not on N .
For the mentioned values of the coupling constants, the measured value is
ω ≈ 0.69. The time extent of the universe, measured in lattice units, scales
as Tuniv ∼ ωN1/4. Such a scaling means that the lattice spacings behave as
at, as ∝ N−1/4 which is expected for a four-dimensional spacetime.

By rescaling the continuous time t to the proper time τ , the scaled volume
n(t) can be mapped into the physical volume v(τ) given by (13) which
corresponds to a four-sphere with radius R [10].
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Fig. 6. Average scaled spatial volume n(t) for a variety of total volumes N cal-
culated for the scaling dimension dH = 4. Measured in Monte Carlo simulations
for K0 = 2.2 and ∆ = 0.6. We omit the error bars not to obscure the picture. The
dashed line plots the fit n(t) = 3

4ω cos3 (t/ω), where ω = 0.69.

2.5. The spectral dimension

The spectral dimension dS is another quantity revealing information
about the geometry and is related to the diffusion phenomena. Let us con-
sider such process on a d-dimensional manifold with a fixed and smooth Rie-
mannian metric gµν(x). The probability density of finding a particle at posi-
tion x after some fictitious diffusion time σ is denoted by ρ(x,x0;σ). The ini-
tial position at σ = 0 is fixed at x0, ρ(x,x0;σ = 0) = det−1/2 g(x)δ(x−x0).
The process is described by the diffusion equation

∂σρ(x,x0;σ) = 4gρ(x,x0;σ) , (16)

where 4g is the Laplace operator corresponding to gµν(x). The return
probability of finding a particle at the initial point after diffusion time σ can
be used to calculate the spectral dimension dS defined by

dS ≡ −2
d logP (σ)

d log σ
. (17)

The average return probability P (σ) in (17), supplying a global information
about geometries, is given by

P (σ) =

〈
1

V4

∫
ddx

√
det g(x)ρ(x,x;σ)

〉
, (18)
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where V4 =
∫
ddx

√
det g(x) is the total spacetime volume and the average is

also performed over the ensemble of geometries. For Euclidean flat manifold
Rd, the spectral dimension dS calculated from (17) and (18) is equal to the
topological dimension d and Hausdorff dimensions dH.

Since it is easy to perform numerical simulations of a diffusion pro-
cess in the CDT framework, the measurement of the return probability
and the spectral dimension is particularly convenient. While the space-
time geometry is regularized by piecewise flat manifolds built from four-
simplices, the diffusion equation (16) is given by its discrete counterpart
ρ(i, i0;σ + 1) = 1

5

∑
j↔i ρ(j, i0;σ). Here, the sum is evaluated over all sim-

plices j adjacent to i. To evaluate ρ(i, i0;σ), we pick an initial four-simplex
i0 lying in the central slice, impose the initial condition ρ(i, i0;σ = 0) = δi i0
and iterate the diffusion equation. We repeat the above operations for a
number of random starting points i0 (∼ 100) and a number of configura-
tions (∼ 1000). Further, we calculate the average return probability P (σ),
and the spectral dimension dS from (17).

Figure 7 shows the measured spectral dimension dS as a function of the
diffusion time steps σ. For small values of σ < 30, because of strong lattice
artifacts, the spectral dimension cleaves for even and odd time steps. As a
result of the finite volumes of configurations, for very large σ � 500, the
spectral dimension dS eventually falls down to zero. In the presented range
40 < σ < 500, the spectral dimension can be expressed by the formula

dS(σ) = a− b

c+ σ
= 4.02− 120

58 + σ
, (19)

where variables a, b and c were obtained from the best fit. Because the
spectral dimension changes in diffusion time, it is scale dependent. Small σ,
means that the diffusion process probes only the nearest vicinity of the initial
point. Extrapolation of results gives the short-distance limit of the spectral
dimension

dS(σ → 0) = 1.95± 0.10 .

In the long-distance limit, the spectral dimension tends to

dS(σ →∞) = 4.02± 0.05 .

The short-range value of the spectral dimension dS = 2, much smaller than
the scaling dimension dH, suggests a fractal nature of geometries appear-
ing in the path integral at short distances. At long distances dS = 4, and
configurations resemble a smooth manifold. Amazingly, such nontrivial scale
dependence of the spectral dimension of the quantum spacetime, the same in-
frared (dS = 4) and ultra-violet (dS = 2) behavior, is also present in Hořava–
Lifshitz gravity [15] and in the Renormalization Group approach [16].
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Fig. 7. The spectral dimension dS of the universe as a function of diffusion time σ,
measured for K0 = 2.2, ∆ = 0.6 and N = 160k. The thick curve plots the average
measured spectral dimension, while the highlighted area represents the error bars.
The best fit dS(σ) = 4.02− 120

58+σ is drawn with a dashed line.

3. The effective action

The minisuperspace model describes with great accuracy the background
geometry which emerged in the CDT model. This encourages us to check
whether it also properly describes quantum fluctuations around the classical
trajectory. The model of Causal Dynamical Triangulations is a genuinely
nonperturbative approach to quantum gravity. It takes into account both
the entropy factor and the bare action (3). However, we can consider the
semiclassical limit of the lattice approach and extract the effective action
that controls the three-volume ni. In analogy to the path integral formula-
tion of quantum mechanics, ni describes the position at discrete time i of a
nonphysical particle trajectory, giving a contribution to the partition func-
tion. Let us denote the deviation of ni from the expectation value 〈ni〉 by

ηi = ni − 〈ni〉 .

In the semiclassical approximation, we expand the effective action up to
quadratic terms in ηi

S[n = 〈n〉+ η] ≈ S[〈n〉] + 1
2

∑
i,j

ηiP ij ηj +O
(
η3
)
. (20)

The sum is performed over time slices i, j = 1 . . . T . The Sturm–Liouville
operator P carries information about quantum fluctuations and may be
extracted from numerical data.
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Similarly to 〈ni〉, we measure the covariance matrix C of volume fluctu-
ations using Monte Carlo techniques (7)

Cij ≡ 〈ηiηj〉 . (21)

If the quadratic approximation is accurate, the propagator C and the ma-
trix P are directly related, C = P−1.

For numerical convenience the measurements were performed only for
triangulations with a fixed total volumeN . Such constraint introduces a zero
eigenvalue to the spectrum of C. Because a straightforward inversion is not
possible, we first project C on the subspace orthogonal to the corresponding
eigenvector. Details of this procedure are described in [12]. We measure in
Monte Carlo simulations the covariance matrix C, and subsequently extract
P which can then be compared with the predictions of the minisuperspace
model.

It was shown that the empirical effective action indeed corresponds to a
discretization of the minisuperspace action (12) up to an overall sign [17].
A discretized, dimensionless version of the action (12) is given by

S[n] =
∑
i

g1
(ni+1 − ni)2

ni+1 + ni
+ g2n

1/3
i − g3ni . (22)

The constants G, Λ and β present in (12) are incorporated into gs. We used
the standard discretization of the time derivative, v̇ → ni+1−ni. Inside the
blob region, the discrete volume ni may be treated as a continuous variable.
Because the stalk region is governed by very strong lattice artifacts, the
semiclassical approximation is not reliable there.

The Sturm–Liouville operator defined in (20) can be calculated from

P ij =
∂2S[n]

∂ni∂nj

∣∣∣∣
n=〈n〉

.

For action (22), it is given by

ηiP ij ηj =
(ηi+1 − ηi)2

ki
− uiη2i , ki = g−11 〈ni〉 , ui = g2〈ni〉−

5/3 .

(23)
The kinetic part ki is proportional to the average volume 〈ni〉 and the po-
tential part ui behaves like 〈ni〉−5/3.

As expected, up to a numerical noise, the measured matrix P has a
tridiagonal structure and the coefficients {ki} and {ui} can be extracted
from empirical data. The nonzero subdiagonal elements of P come from the
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kinetic part, which couples volumes of successive slices. Additionally, the po-
tential part contributes to the diagonal. Indeed, the measured values agree
with the expectations for the minisuperspace model (23). Figure 8 presents
the measured values of g1ki and 〈ni〉 for various total volumes N . The the-
oretical fit (23) agrees very well with the measured quantities. Additionally,
the effective coupling constant g1 does not depend on N in the margin of
error. For K0 = 2.2, ∆ = 0.6, we measured g1 = 0.038 ± 0.002. The ki-
netic part of the quantum fluctuations is described by the minisuperspace
action (12).
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〈n i
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k i
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Fig. 8. Kinetic term: The directly measured expectation values 〈ni〉 (black line),
compared to g1ki (thick gray line) extracted from the measured covariance ma-
trix C for K0 = 2.2, ∆ = 0.6 and various total volumes N ranging from 20 000

to 160 000 simplices. The theoretical prediction g1ki = 〈ni〉 is realized with a very
high accuracy. The value of g1 is constant for all volumes N .

The same is true for the potential term {ui}. Figure 9 shows the mea-
sured values of coefficients ui extracted from the empirical matrix P as a
function of 〈ni〉. Because the kinetic term is dominating in the continuum
limit N → ∞, in this case the statistical errors are larger. The physically
interesting region of large volumes corresponds to relatively small values of
ui as they are expected to fall as 〈ni〉−5/3. Nonetheless, due to sufficiently
long Monte Carlo sample, the results confirm that the formula (23) is in
agreement with measurements. The selected range of ni corresponds to the
bulk. The best fit of the form f(x) = a x−c to the empirical values ui as a
function of 〈ni〉 gives c = −1.658± 0.096 which is very close to the theoret-
ical value c = −5/3. The fit f(x) = a x−5/3, corresponding to the potential
part of action (22) is presented in Fig. 9 with a thin line.
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Fig. 9. The extracted potential term ui as a function of average volume 〈ni〉. The fit
c2v̄

−5/3
t presents the behavior expected for the minisuperspace model. The visible

points correspond to the blob region.

Both the kinetic part as well as the potential part of the measured Sturm–
Liouville operator P agree with the expectations for the minisuperspace ac-
tion. Recently, the effective action was determined using a new, more direct,
method based on the transfer matrices [22]. Those results are consistent with
the one presented in this article.

4. Conclusions

The model of Causal Dynamical Triangulations is a nonperturbative and
background independent approach to quantum gravity. The foundation of
this model is the formalism of path-integrals applied to quantize a theory
of gravitation. This method is a natural generalization of discretization
procedure, introduced in the definition of quantum mechanical Feynman’s
path integral, to higher dimensions. The introduction of Wick rotation al-
lows us to use very powerful Monte Carlo techniques and calculate quantum
expectation values of observables.

Among the three phases, the de Sitter phase seems to be physically rele-
vant. In this phase, the time translational symmetry is spontaneously broken
and the scale factor as a function of time is given by a bell-shaped distri-
bution. Recent results show that a universe emerges dynamically in Causal
Dynamical Triangulations. Its geometry is genuinely four-dimensional and
corresponds to de Siter space, the maximally symmetric solution to the clas-
sical Einstein equations in the presence of a positive cosmological constant.
At large scales, both the Hausdorff and spectral dimensions are equal 4.
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CDT presents a picture of the universe with superimposed finite quantum
fluctuations around the classical trajectory. The measurements of the covari-
ance matrix in the semiclassical regime allowed us to reconstruct the discrete
effective action describing quantum fluctuations of the three-volume ni. The
effective action can be identified with the minisuperspace action, although
the CDT model does not reduce any degrees of freedom.

The author would like to thank Jerzy Jurkiewicz and Jan Ambjørn for
introducing him into this fascinating topic and for a fruitful collaboration.
The author acknowledges support from the ERC-Advance grant 291092,
“Exploring the Quantum Universe” (EQU).
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