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After a brief introduction to classical relativity, we describe how to
solve the Cauchy problem in general relativity. In particular, we introduce
the notion of gauge source functions and explain how they can be used
in order to reduce the problem to that of solving a system of hyperbolic
partial differential equations. We then go on to explain how the initial
value problem is formulated for the so-called Einstein–Vlasov system and
describe a recent future global non-linear stability result in this setting. In
particular, this result applies to models of the universe which are consistent
with observations.
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1. Introduction

In the period following Einstein’s introduction of his equations [1, 2],
explicit solutions, such as the Schwarzschild solution, were found. Since
some of the space-times found appeared to have singularities, it was natural
to ask: are the singularities physical or a consequence of a high degree
of symmetry of the solutions? Einstein himself thought that singularities
would not appear in less symmetric solutions. An additional complication
that occurred in the attempts to understand the Schwarzschild solution was
the appearance of the r = 2M hypersurface with respect to the standard
coordinates. Did this hypersurface represent a singularity?

In the field of cosmology, Einstein suggested the solution which has since
been named the Einstein static universe as a model. However, by doing so
he overlooked the fact that expanding solutions are more natural in the
general theory of relativity (for stability reasons), so that he failed to make
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a theoretical prediction which would otherwise have served as a confirmation
of his theory; he had to introduce a cosmological constant in order to obtain
a static solution (something which, at the time, was not yet necessary); and
the solution which he advocated was unstable, and therefore not a reasonable
model of the universe.

In the 50s and 60s, the work of Hawking and Penrose shed important
light on the issue of singularities; cf., e.g., [3–6]. What Hawking and Penrose
proved was, roughly speaking, that space-times generally exhibit singular-
ities. The results have therefore been dubbed the ‘singularity theorems’.
However, it is important to remember that the notion of a singularity used
in the results is that of causal geodesic incompleteness. In particular, the
results do not state that there are singularities in the sense of curvature
blow up, something it would be desirable to prove. Moreover, there are ex-
amples of solutions which have singularities in the sense of causal geodesic
incompleteness, but which do not have curvature singularities. The perhaps
simplest example of this behaviour is the so-called flat Kasner solution

gF = −dt2 + t2dx2 + dy2 + dz2 (1)

on (0,∞)× R3. This solution is past causally geodesically incomplete, and
Hawking’s theorem applies to it; cf., e.g., [7, Theorem 55A, p. 431]. How-
ever, the Riemann curvature tensor of (1) is identically zero. From this point
of view, the t = 0 hypersurface can, therefore, not be considered to be a sin-
gularity. In fact, the above solution can be embedded into the Minkowski
space, and due to this embedding it is possible to extend the solution beyond
the t = 0 hypersurface without any singularities appearing. In short, the
singularity theorems are important, but they do leave questions of interest
unanswered. In connection with the appearance of the singularity theorems,
the subject of the Lorentz geometry developed into an important field in
its own right. The geometric perspectives it provided made it possible to
understand some of the fundamental solutions (such as the Schwarzschild
solution) in a satisfactory way. In particular, the r = 2M hypersurface in
the Schwarzschild obtained its proper interpretation.

In parallel with the Lorentz geometric perspective, the idea of formu-
lating Einstein’s equations as an initial value problem was developed. The
seminal work, illustrating that Einstein’s equations can be formulated as an
initial value problem, is due to Choquet-Bruhat; cf. [8]. The main result
of the paper is a proof of the fact that, given initial data, there is a cor-
responding solution to the equations. However, there are infinitely many
(inequivalent) developments corresponding to a given initial data set. It
would, therefore, be preferable to prove that there is a development which
is uniquely associated with the initial data. In order to obtain such a de-
velopment, it is necessary to demand some form of maximality. It turns out
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that demanding maximality in the class of all developments does not lead
to a unique object; cf., e.g., [9]. However, demanding maximality in the
class of globally hyperbolic developments does. That this is the case was
proven in the work of Choquet-Bruhat and Geroch; cf. [10]. It is impor-
tant to note that there are developments which are maximal in the class of
globally hyperbolic developments but which can nevertheless be extended.
In fact, there are sometimes inequivalent maximal extensions of the maxi-
mal globally hyperbolic development; cf. [9]. As a consequence, Einstein’s
general theory of relativity is not a deterministic theory; there is a lack of
predictability. On the other hand, the existing examples are very special,
an observation which leads to the strong cosmic censorship conjecture.
One formulation of this conjecture is that for generic initial data (in the
asymptotically flat or spatially compact setting), the associated maximal
globally hyperbolic development is inextendible.

In the mathematics community, the focus of attention has gradually
shifted towards the initial value point of view in the study of Einstein’s
equations. Numerical studies of the equations are also largely based on this
perspective. Some of the fundamental mathematical problems associated
with the Cauchy problem are the following:
• Stability: Most of the solutions used by physicists to model the uni-

verse/isolated systems have a high degree of symmetry. It is, therefore,
of interest to ask if small perturbations of the corresponding initial
data yield solutions which are similar. The Einstein static universe is
an example of a solution which is unstable. In the isolated systems
setting, the fundamental problem is that of proving stability of Kerr.
In cosmology, proving future stability of standard models is of central
importance. Moreover, understanding what features of singularities
are robust is an important long term goal.

• Predictability: As described above, it is of central importance to
prove the strong cosmic censorship conjecture. If this conjecture is
not true, the value of considering Einstein’s equations as an initial
value problem is very limited (it would then be impossible to predict
the behaviour of the system on the basis of initial data).

• Singularities: As already noted, singularities occur in many of the
highly symmetric standard solutions used to model isolated systems
and the universe. Moreover, singularities in the sense of causal geodesic
incompleteness are generic. However, it is not clear that, for generic
initial data, the curvature blows up in the incomplete directions of
causal geodesics in the corresponding maximal Cauchy development.
Note that if one were able to prove the corresponding conjecture, then
the strong cosmic censorship conjecture would follow.
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• Homogenization/isotropization: The standard starting point in
cosmology is the cosmological principle; i.e., the assumption that the
universe is spatially homogeneous and isotropic. However, it would
be preferable to deduce this as a consequence of the evolution associ-
ated with Einstein’s equations, rather than putting it in by hand as
an assumption. In the presence of a positive cosmological constant,
there is a conjecture, which goes under the name of the cosmic no-hair
conjecture, which states that from the point of view of late time ob-
servers, the universe should approach de Sitter space asymptotically
(in regimes where there are no black holes etc.). There are also con-
jectures in the absence of a cosmological constant, but they are harder
to formulate.

It is of some interest to compare the mathematical perspective with the
numerical. The advantage of doing numerical computations is that it is pos-
sible to compute specific numbers that can be compared with observations.
This is typically not possible when taking the mathematical perspective.
One disadvantage of numerical studies is that it is only possible to consider
a finite number of solutions. Since the space of initial data is infinite dimen-
sional, there is thus the risk that something may be overlooked, and there
are examples of this. The advantage of the mathematical perspective is that
there is no problem with considering an infinite number of initial data sets
at the same time. Analysing asymptotics is also something which, at least
in some special situations, is actually easier to do mathematically than nu-
merically. Moreover, the idea is that when it is possible to prove results,
the proofs yield a deeper understanding of what is going on. On the other
hand, there are many situations in which a mathematical analysis cannot
be expected to be of use; computing the gravitational wave signal resulting
from inspiralling black holes mathematically, e.g., is not realistic. Needless
to say, there are plenty of other examples as well. In the end, combining the
two perspectives is with all probability the most fruitful approach.

2. Solving the initial value problem

In this section, we describe how to solve Einstein’s equations, given initial
data. We would also like to give a rough, heuristic justification of the choice
of initial data. But in order to develop some intuition, it is natural to start
by considering a simple example.

Example: Consider a spatially homogeneous and isotropic, and spa-
tially flat space-time, say (M, g). Then M = I × R3, where I is an open
interval, and the metric takes the form

g = −dt2 + a2(t)ḡ , (2)
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where ḡ is the standard flat Euclidean metric on R3 and a is a positive
scalar function on I. Say now that we want to find solutions to Einstein’s
equations with this type of symmetry and matter of dust type. In that case,
the stress energy tensor takes the form

T = ρdt2 ,

where ρ is the energy density (recall that dust corresponds to the pressure
being zero). Einstein’s equations take then the following form:

3

(
ȧ

a

)2

= ρ , (3)

0 = 0 , (4)

2
ä

a
+

(
ȧ

a

)2

= 0 , (5)

ρ̇+ 3
ȧ

a
ρ = 0 . (6)

These equations are, respectively, G00 = T00, G0i = T0i, Gij = Tij and
div T = 0, where we use the convention that Latin indices range from 1 to 3;
later on we shall use Greek indices, and they will range from 0 to 3. The
question is: how do you construct solutions to these equations? In some
respects, there seem to be too many equations. In the end, there are many
ways to proceed, but one way is to

• choose initial data (in other words, a, ȧ, and ρ at some time, say t0)
so that (3) holds,

• choose a and ρ to be the solution to (5) and (6),

• hope that the resulting solution is also a solution to (3) for t 6= t0.

A priori, it is not obvious why the solution constructed in the above way
should also solve (3) for t 6= t0. Let us, nevertheless, consider

f = 3

(
ȧ

a

)2

− ρ .

Using equations (5) and (6), it can then be computed that

ḟ = −3
ȧ

a
f .

In particular, if f(t0) = 0, then the solution equals zero for all times such
that the solution is defined. Note also that f , depending on the sign of ȧ/a,
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either increases or decreases exponentially. If f is non-zero initially (which
can certainly happen in a numerical simulation), then it can certainly grow
exponentially.

Summarizing the above simple example, it is useful to note the following:

• We have broken the diffeomorphism invariance by demanding that the
geometry and the coordinates be related according to (2).

• As a result, we have obtained a system of evolution equations and
constraints; (3) and (4) are the constraints and (5) and (6) are the
evolution equations.

The idea is to start with initial data solving the constraints and then to
solve the evolution equations. Finally, you prove that the constraints are
propagated. In what follows, we wish to illustrate that these are general
aspects of solving the initial value problem for Einstein’s equations.

2.1. Gauge source functions

Let us now consider the equations without any symmetry assumptions.
For the sake of convenience, we shall restrict our attention to the vacuum
case. The vacuum equations are given by

Rαβ = 0 . (7)

Considering the Ricci tensor with respect to local coordinates, we can con-
sider it to be a differential operator acting on the components of the metric.
In fact, one way of writing the Ricci tensor is

Rµν = −1
2g
αβ∂α∂βgµν+∇(µΓν)+g

αβgγδ [ΓαγµΓβδν + ΓαγµΓβνδ + ΓαγνΓβµδ] .
(8)

In this equation

Γαγβ = 1
2 (∂αgβγ + ∂βgαγ − ∂γgαβ) ,

Γα = gµνΓµαν ,

∇µΓν = ∂µΓν − gαβΓµανΓβ ,
∇(µΓν) = 1

2 (∇µΓν +∇νΓµ) .

From a PDE point of view, the last term on the right-hand side of (8)
is harmless. If it were not for the second term on the right-hand side,
Einstein’s vacuum equations would be a system of hyperbolic PDEs to which
the standard local existence theory would apply. On the other hand, we
would then obtain uniqueness of a form we know cannot hold; due to the
diffeomorphism invariance of the equations, coordinate representations are
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not unique. In order to obtain an equation with unique solutions, we need to
break the diffeomorphism invariance, as in the model example. One way of
doing this is by introducing the so-called gauge source functions. The idea is
to replace Γν in the second term on the right-hand side of (8) with another
function, say Fν . The function Fν is allowed to depend on the coordinates
and on the metric, but not on the derivatives of the metric. In other words,
we introduce the modified Ricci tensor

R̂µν = Rµν +∇(µDν) ,

where Dµ = Fµ − Γµ. Then,
R̂µν = 0 (9)

is a system of hyperbolic PDEs to which the standard theory applies. On
the other hand, this is not the equation we wish to solve. It is therefore of
interest to relate the two equations. Let us assume that we have a solution
to (9) (since this is the equation we know how to solve). Due to the definition
of R̂µν , we then conclude that

Rµν = −∇(µDν) .

Taking the trace of this equation, we can compute the scalar curvature in
terms of D. As a consequence, we obtain

Gµν = −∇(µDν) + 1
2∇

γDγgµν , (10)

where Gµν = Rµν − Rgµν/2 is the Einstein tensor. Taking the divergence
of (10), the left-hand side vanishes (due to the Bianchi identities) and we
obtain

∇µ∇µDν +R µ
ν Dµ = 0 . (11)

Note that this is a homogeneous wave equation for Dµ. If we can arrange
for the initial data to be such that Dµ and ∇νDµ are zero initially, then Dµ
is identically zero, wherever the solution is defined. As a consequence, we
obtain a solution to the original equation, just as in the example described
above.

The crucial question is then: how should we choose the initial data? It is
also of interest to ask: where should the initial data be specified? Since the
equation (9) is a system of wave equations for the metric components, it is
natural to recall the initial value problem for the ordinary wave equation in
order to develop some intuition. One natural hypersurface on which to spec-
ify initial data for the wave equation is a t = const. hypersurface. Recalling
that the standard wave equation is the wave equation with respect to the
Minkowski metric, it is of interest to note that the t = const. hypersurfaces
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are space-like hypersurfaces with respect to the Minkowski metric (in fact,
they are space-like Cauchy hypersurfaces). In what follows, we shall also
restrict ourselves to space-like hypersurfaces. That is not to say that it is
impossible to consider other situations, but the case with space-like hyper-
surfaces constitutes the simplest case. Schematically, the equation we are
interested in solving is of the form

gµν∂µ∂νgαβ = Fαβ(g, ∂g) , (12)

where g is a shorthand for all the components of g, and ∂g is a shorthand for
all first derivatives of all components of g. In the case of the wave equation,
we specify the function and its first time derivative as initial data. In the
present situation, it thus seems reasonable to specify the metric as well as its
normal derivative on a hypersurface, say Σ. Since we want Σ to be a space-
like hypersurface with respect to the metric, the induced metric on Σ should
be Riemannian. Moreover, the normal should be time-like. Note, however,
that in order to obtain a unique solution to (12), we need more than just
the induced metric; we need all the components of the metric initially. The
same goes for the normal derivative; we need all the components. On the
other hand, if we want a geometric initial value problem, this is not a good
choice of initial data; they are coordinate dependent. However, there are
geometric candidates

Geometric initial data: the induced metric and the second fundamen-
tal form.

These data constitute information of the above type, and they are ge-
ometric in nature. However, they are insufficient in order to guarantee a
unique solution to (12). The question is then how the remaining data should
be specified. In part there is a freedom; the initial lapse and shift can be
chosen freely; i.e., roughly speaking, g00 and g0i. This choice simply cor-
responds to how you parametrize the time coordinate initially (lapse) and
how you shift the coordinates around with time (shift). However, once these
components have been chosen, the remaining components are uniquely fixed
by the requirement that Dµ = 0 on Σ. Clearly, we thus have a problem:
in order to obtain a solution to Einstein’s vacuum equations, we need to
know that ∇νDµ = 0 on Σ, but there is no freedom left in choosing the
initial data. This problem naturally leads us to the topic of the constraint
equations.

2.2. Constraint equations

Assuming (M, g) to be a solution to Einstein’s vacuum equations and Σ
to be a space-like hypersurface in (M, g), we know that

G(N,N) = 0 , G(N,X) = 0 ,
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where N is normal and X is tangential to Σ. Using the so-called Gauss and
Codazzi equations, the right-hand sides of these equations can be expressed
solely in terms of the induced metric and second fundamental form on Σ;
they are given by

R̄− k̄ij k̄ij +
(
tr k̄
)2

= 0 , (13)

∇̄j k̄ji − ∇̄itr k̄ = 0 . (14)

In these equations, R̄ and ∇̄ are the scalar curvature and the Levi-Civita
connection of the induced metric ḡ respectively, and k̄ is the induced second
fundamental form. Moreover, indices are raised and lowered with ḡ. In
order for it to be possible to obtain a solution, the constraint equations
consequently have to be satisfied. Finally, we are thus able to summarize
how to solve Einstein’s equations, given initial data.

2.3. Solving the vacuum equations

Step 1: Let Σ (a manifold) be given; it should be thought of as the
initial hypersurface.

Step 2: Let ḡ and k̄ be a Riemannian metric and a symmetric covariant
2-tensor field on Σ; ḡ and k̄ should be thought of as the induced metric and
second fundamental form on the initial hypersurface.

Step 3: Assume ḡ and k̄ to solve the vacuum constraint equations (13)
and (14).

Step 4: Choose local coordinates (x̄, U) on Σ. These coordinates yield
local coordinates (x,R× U) on R×Σ.

Step 5: Choose gauge source functions Fµ on R × U ; the gauge source
functions are also allowed to depend on the metric components (though not
on the derivatives).

Step 6: Choose initial data gµν |t=0 and ∂tgµν |t=0 which induce ḡ and k̄
and are such that Dµ|t=0 = 0.

Step 7: Solve (9) in a neighbourhood of {0} × U , given these initial
data; this is a matter of standard PDE theory (which is, however, a subject
in its own right).
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Step 8: Recall that (10) holds; this equation is a consequence of (9).
Contracting this identity with the normal to the hypersurface twice, the left-
hand side is zero, since the constraint equation (13) is fulfilled. Contracting
the equation with one normal vector and one vector which is tangential to
the initial hypersurface yields zero, since (14) is satisfied. Combining these
observations with the fact that Dµ|t=0 = 0, it is possible to conclude that
(∇µDν)|t=0 = 0; this is essentially a matter of algebraic manipulations.
Since Dα satisfies the homogeneous wave equation (11), we conclude that
Dµ = 0 wherever the solution is defined. As a consequence, the solution
to (9) is actually a solution to (7); we have a solution to Einstein’s vacuum
equations with the specified initial data in a neighbourhood of {0} × U .

Step 9: Patching together the local solutions leads to a development of
the initial data set (Σ, ḡ, k̄).

To conclude the above discussion, there is a globally hyperbolic develop-
ment, given initial data.

2.4. Maximal Cauchy development

Even though it is of interest to know that there is a globally hyperbolic
development, given initial data, the result is unsatisfactory in one respect:
there are infinitely many inequivalent globally hyperbolic developments of
the same initial data. In order to speak of a solution, it is necessary to con-
struct a development which is uniquely determined by the initial data. In
order to obtain something which is unique, it is necessary to demand some
form of maximality. As has already been mentioned, requiring maximality
in the class of globally hyperbolic developments is an appropriate choice. In
fact, as mentioned, there is a unique maximal globally hyperbolic develop-
ment associated with initial data, due to the work of Choquet-Bruhat and
Geroch; cf. [10]. This object is, in a sense, the development of the initial
data.

The above description is a bit brief. A more extensive discussion, which
is nevertheless of an overview character, is to be found in [11, Chapter 2];
this chapter also contains a brief discussion of non-linear wave equations.
In [12], there is a complete proof of the existence of a maximal Cauchy
development in the Einstein-non-linear scalar field setting, and in [11] the
Einstein–Vlasov-non-linear scalar field setting is treated.

3. On the topology and future stability of the universe

The remainder of this article is devoted to a discussion of the topology
and future stability of models of the universe. The first topic is that of future
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stability of standard models. As a consequence, it is natural to begin by
describing the standard perspective. The starting point is the cosmological
principle; the assumption that the universe is spatially homogeneous and
isotropic. As a consequence of this assumption, the only freedom left in
Einstein’s theory is the choice of one of three spatial geometries and a scalar
function of time; the scale factor. The currently preferred spatial geometry
is flat.

Turning to the matter content, it consists of ordinary matter (such as
dust and radiation), dark matter (often modelled by dust, though there are
many options), and dark energy (again, there are many options for mod-
elling this type of matter, but we shall here simply equate it with a positive
cosmological constant). Mathematically, the matter content is usually de-
scribed by perfect fluids, but we shall here use kinetic theory; we shall return
to this topic in greater detail below.

In short, the currently preferred picture is illustrated in figure 1: there
is a Big Bang, inflation, decoupling, a period of slow expansion, and finally
an onset of accelerated expansion caused by dark energy.

Fig. 1. Currently preferred model of the universe, courtesy of NASA/WMAP Sci-
ence Team.
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3.1. Questions

The above description yields a very nice picture, but it does lead to a
few questions.

Stability: The universe may, or may not, be almost spatially homoge-
neous and isotropic, but it is clear that it is not exactly spatially homoge-
neous and isotropic. As a consequence, it is natural to ask if the standard
models are future stable. In other words, if we perturb initial data corre-
sponding to a standard solution, do we obtain a space-time which is globally
similar to the future?

Topology: Another question concerns the global topology of the uni-
verse. The standard models only admit a very limited class of topologies
(even if one is prepared to admit locally spatially homogeneous and isotropic
solutions). However, it is not so clear what happens if we only assume every
observer to consider the universe to be almost spatially homogeneous and
isotropic.

3.2. Matter models

Let us now turn to the subject of the matter models in greater detail. In
the standard models, the matter is usually described by perfect fluids. In the
spatially homogeneous and isotropic setting, perfect fluids are characterized
by an energy density, say ρ and a pressure, say p. In order to obtain equations
for the matter, an equation of state, expressing p in terms of ρ, is often
imposed. Two common choices are dust, in which case the equation of state
is p = 0, and radiation, in which case the equation of state is p = ρ/3.

Vlasov matter. Here we shall prefer kinetic theory, or, more specifi-
cally, the Vlasov matter in order to model the matter content of the universe.
The intuitive interpretation of the Vlasov matter is the following: consider
a collection of particles, all having unit mass. At a space-time point, such
a particle is represented by a future directed unit time-like vector. Assum-
ing collisions to be sufficiently rare that they can be neglected, the particles
travel along time-like geodesics. On the other hand, the particles collectively
generate a gravitational field which influences the geometry and, thereby, the
geodesics. In order to describe the collection of particles, we use a distribu-
tion function. It should be thought of as representing the average properties
of an ensemble of collections of particles. Turning to a mathematical descrip-
tion, the relevant mathematical structures are the following. To begin with,
the mass shell is defined to be the set of future directed unit time-like vectors
in the space-time (M, g) and is denoted by P . An element of P represents
the time, space and momentum coordinates of a particle; i.e., P is the space
of states of particles. In order to describe the matter, we use a distribution
function, say f , which is simply a non-negative function on the mass shell;
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though in practice, we need to impose regularity and fall off conditions on
the distribution function in order for the theory to make sense. In order
to connect the matter model with Einstein’s general theory of relativity, it
is necessary to describe how to construct a stress energy tensor out of the
distribution function. The relevant prescription is

Tαβ|ξ =

∫
Pξ

fpαpβµPξ . (15)

In this expression, ξ ∈ M ; α and β refer to components with respect to
some coordinates, say x; Pξ denotes the mass shell above ξ (i.e., the set of
future directed unit time-like vectors based at ξ); for p ∈ Pξ, pα denotes
the components of p with respect to the coordinates x; pα = gαβp

β ; and
µPξ is defined as follows: the Lorentz metric g induces a Lorentz metric
on TξM , the tangent space at ξ; this Lorentz metric, in its turn, induces a
Riemannian metric on Pξ (note that, with respect to a suitable orthonormal
frame, Pξ is simply the hyperboloid sitting inside the Minkowski space); and
this Riemannian metric induces a volume form on Pξ, denoted µPξ . Note
that in order for this definition to make sense, it is necessary to require some
degree of fall off of the distribution function f . Turning to the equation the
Vlasov matter has to satisfy, it is given by

Lf = 0 . (16)

Here, L is the vector field induced by the geodesic flow on the mass shell.
Another way of formulating equation (16) is to say that f is constant along
future directed unit time-like geodesics, the intuitive motivation being that
collisions are neglected. It is of interest to note that (16) is equivalent to (15)
being divergence free.

The Einstein–Vlasov system. To summarize: the Einstein–Vlasov
system is given by the equations

G+ Λg = T ,

Lf = 0 ,

where G is the Einstein tensor, Λ is the (positive) cosmological constant, g is
the metric, and T is given by (15). This is a system of geometric, non-linear
integro-partial differential equations.

3.3. Standard models, approximating fluids

Before proceeding, it is useful to say a few words concerning the model
we are going to prove the stability of. It is also of interest to compare kinetic
theory with the matter models usually used in the standard models.
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The assumption of spatial homogeneity, isotropy and spatial flatness im-
ply that the metric takes the form

g = −dt2 + a2(t)ḡ .

In this expression, ḡ is the standard flat metric on R3 and a is a positive
function of time; the metric is defined on I×R3, where I is an open interval.
Under these circumstances, the stress energy tensor of the Vlasov matter
takes perfect fluid form (as a consequence of the symmetry requirements).
However, there is, in general, no equation of state relating the pressure and
energy density. On the other hand, it is possible to express the energy density
and pressure in terms of the initial datum for the distribution function and
the scale factor a

ρVl(t) =

∫
R3

f̄ (a(t)q̄)
(
1 + |q̄|2

)1/2
dq̄ ,

pVl(t) =
1

3

∫
R3

f̄ (a(t)q̄)
|q̄|2

(1 + |q̄|2)1/2
dq̄ ,

where f̄, a function on R3, is a symmetry reduced version of the initial datum
for the distribution function.

The matter models that are commonly used in the standard models are
dust and radiation. It is therefore of interest to ask: what is the relation be-
tween such models and the Vlasov matter? Replacing f̄ by a Dirac δ-function
at the origin yields zero pressure, but non-zero energy density; in fact, we
recover dust. In the case of massless particles, the expressions (1 + |q̄|2)1/2
appearing in the above formulae are replaced by |q̄|. As a consequence,
pVl = ρVl/3, and we recover radiation. As an alternative, it is possible to
demand that f̄ only be non-zero for very large |q̄|; the behaviour of the mat-
ter is then, in practice, as that of a radiation fluid. However, it is of interest
to note that f̄ naturally behaves as a radiation fluid close to the singularity
and as dust in the expanding direction, something which, in a sense, has to
be put in by hand in the standard models. If one wants to approximate both
dust and a radiation fluid with matter of the Vlasov type, the initial datum
for the distribution function can be taken to be the sum of two parts: one
which approximates a Dirac δ-function and one which has support very far
from the origin.

3.4. Initial data

In order to formulate a stability result, it is necessary to explain what
is meant by initial data, as well as what is meant by two initial data sets
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being ‘close’. In order to develop some intuition, let us assume that we have
a solution (M, g, f) to the Einstein–Vlasov system. Just as in the vacuum
setting, we shall also focus on the case when the initial data are specified on
a space-like hypersurface. We shall, therefore, assume Σ to be a space-like
hypersurface in (M, g). Just as in the vacuum case, the initial data for the
geometry are given by the induced (Riemannian) metric and the induced
second fundamental form; say (ḡ, k̄). Concerning the distribution function,
we only need its initial datum, since the Vlasov equation is a first order equa-
tion. However, there is a slight technical problem; the distribution function
is defined on the mass shell, and the mass shell is not intrinsic to the ini-
tial hypersurface. However, there is a diffeomorphism from the mass shell
above Σ to the tangent space of Σ obtained by projecting orthogonally to
the normal. We shall, therefore, think of the initial datum for the distribu-
tion function, say f̄ , to be defined on TΣ. Due to the fact that (M, g, f)
is a solution to the Einstein–Vlasov system, the initial data (ḡ, k̄, f̄) have
to satisfy the corresponding constraint equations; they are similar to (13)
and (14); the only difference is that there is right-hand side which can be
computed in terms of f̄ and ḡ.

So far, we have assumed that we have a solution and then defined initial
data induced on a space-like hypersurface. However, we would like to go in
the other direction. Given (Σ, ḡ, k̄, f̄), where ḡ is a Riemannian metric on
Σ, k̄ is a symmetric covariant 2-tensor field on Σ and f̄ is a non-negative
function on TΣ (all having a suitable degree of regularity and, in the case of
f̄ , appropriate fall off), satisfying the Einstein–Vlasov constraint equations,
the question is: is there a corresponding globally hyperbolic development;
i.e., a solution to the Einstein–Vlasov system inducing the given initial data
on a hypersurface diffeomorphic to Σ? The answer to this question is yes.
In fact, just as in the vacuum case, there is a unique maximal Cauchy de-
velopment associated with the initial data.

What remains to be explained is how to measure the distance between
initial data sets. In the case of ḡ and k̄, we shall use the so-called Sobolev
spaces. In the case of f̄ , we shall use slight generalizations thereof (which
include weights in the tangential directions). We omit the details of how
these spaces are defined; the interested Reader is referred to [11, 12] for the
details.

3.5. Previous results

Before proceeding to a statement of stability, it is natural to say a few
words concerning previous results that have been obtained in the case of
accelerated expansion. To the best of our knowledge, the first results were
obtained by H. Friedrich. In [13], he proved among other things, stability
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of 3 + 1-dimensional de Sitter space. Later, he generalized his results to the
presence of Yang–Mills and Maxwell fields; cf. [14]. Anderson continued in
the same vein by proving stability of the even dimensional de Sitter spaces;
cf. [15]. All of these results are based on using a conformal reformulation
of the equations so that the question of future global non-linear stability
becomes a question of local stability in the conformally rescaled picture.
However, in order for this to be possible, it is necessary to reformulate the
equations appropriately. Friedrich succeeded in finding such a reformulation
in [16].

Since the methods used by Friedrich and Anderson seem to be dependent
on conformal invariance properties of the equations, we developed a different
approach to proving stability in [17]. The methods developed in this paper
have since been used in several proofs of future global non-linear stability;
cf., e.g., [18–23]. Moreover, the stability result in the Einstein–Vlasov setting
that is the subject of the present section, cf. [11], is also based on the methods
developed in [17]. Finally, let us note that the results of [17] immediately
imply that the de Sitter space is stable in all space-time dimensions ≥ 4; the
issue of odd and even spatial dimensions does not arise.

3.6. Statement of the stability result

Let us begin by describing the solutions we are going to prove stability of.
There are several ways of doing so, but we shall here prefer to characterize
the solutions in terms of their initial data. Since we are interested in proving
stability of spatially homogeneous solutions, there are two natural cases:

• either you have left invariant initial data on a 3-dimensional Lie group,
or

• you have initial data on S2×R which are invariant under the isometry
group of the standard metric on S2 ×R.

The latter case is somewhat special, and we are going to ignore it in what
follows (which is not to say that it is not possible to prove stability of some
solutions in this category). Instead, we shall focus on left invariant initial
data on Lie groups and we shall refer to such data as Bianchi initial data.
Formally, Bianchi initial data consist of:

• a 3-dimensional Lie group, say G,

• a left invariant Riemannian metric, say ḡbg and symmetric covariant
2-tensor field on G, say k̄bg,

• a left invariant initial datum f̄bg on TG with appropriate fall off con-
ditions in the momentum directions.
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Then (G, ḡbg, k̄bg, f̄bg) are referred to as Bianchi initial data to the Einstein–
Vlasov system, assuming they satisfy the constraints. It should also be
pointed out that there are solutions to the Einstein–Vlasov system which
are:

• consistent with the observations, and

• induce initial data of this type.

In fact, it is sufficient to choose G = R3, ḡbg and k̄bg to be suitable multiples
of the standard Euclidean metric and to make an appropriate choice of f̄bg.
In short, models consistent with observations are a very small subclass of
the situation considered above.

Stability. In order to formulate a stability result, let (G, ḡbg, k̄bg, f̄bg)
be Bianchi initial data to the Einstein–Vlasov system. In order to prove
future stability, we need to impose two conditions. First of all:

• the universal covering group of G should not be isomorphic to SU(2),

• the mean curvature of the initial data should be strictly positive ini-
tially.

Why do we impose these conditions? To begin with: what is so special with
SU(2)? The point is that SU(2) is the only simply connected 3-dimensional
Lie group which admits a left invariant metric of positive scalar curvature.
Moreover, positive scalar curvature plays an important role in the analysis.
In fact, there are initial data on SU(2) such that the solution has a Big Bang
and a big crunch. But there are also solutions that have a Big Bang and then
expand forever. In the cases that you obtain sufficiently fast expansion, there
should be no problem in proving stability, and in fact, there are stability
results in the SU(2)-case; cf. [11]. However, in order to obtain a clean
statement, we have here decided to exclude SU(2) completely. The condition
on the mean curvature is simply there to ensure that the expanding direction
is to the future.

In addition to these requirements, we also demand that there be a co-
compact subgroup of the isometry group of the initial data, say Γ , and we
shall think of the initial data as being defined on the quotient, say Σ. The
question is then: why restrict to a compact hypersurface? We expect that
it should be possible to prove results in the non-compact setting, but the
statement would certainly be much more technical; it would be necessary to
introduce much more complicated norms. The statement is then the follow-
ing: Given Bianchi initial data satisfying the above conditions, there is an
ε > 0 such that if (Σ, ḡ, k̄, f̄) are initial data satisfying

‖ḡ − ḡbg‖H5 + ‖k̄ − k̄bg‖H4 + ‖f̄ − f̄bg‖H4
Vl,µ
≤ ε ,
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then the maximal Cauchy development of (Σ, ḡ, k̄, f̄) is future causally
geodesically complete (the Reader interested in the definition of the rele-
vant norms is referred to [11]). Moreover, the solution is asymptotically the
de Sitter-like (in other words, the cosmic no-hair conjecture holds). In addi-
tion, it is also possible to derive detailed asymptotics; the interested Reader
is referred to [11] for a more complete description.

3.7. On the topology of the universe

Let us now turn to the question of the global topology phrased at the
beginning: what are the limitations on the global topology imposed by the
constraint that every observer considers the universe to be close to one of
the standard models? To be more precise, assume that:

• the observational data indicate that, to our past, the universe is well
approximated by one of the standard models,

• interpreting the data in this model, we only have information concern-
ing the universe for t ≥ t0 (here, it is natural to think of this time as
representing decoupling; the models we are discussing here are only
relevant after decoupling),

• there is a Big Bang (at least in the sense of past causal geodesic in-
completeness),

• analogous statements apply to all observers in the universe (with the
same standard model and t0).

The question is then: what conclusions are we allowed to draw concerning
the global spatial topology of the universe? We here want to argue that
we are not allowed to draw any conclusions. It is of interest to note that if
you assume every observer to see something which is exactly like a standard
model, then there are very strong restrictions on the topology. However, if
you only assume every observer to see something which is very close to a
standard model, then there are no restrictions. In this sense, the conclusions
depend discontinuously on the assumptions. The statement is still a bit
vague, but let us take one more step in the direction towards a mathematical
statement.

Assume that we are given:

• a standard model, characterized by an existence interval I, a scale
factor a etc.; this is how the universe should appear to an observer,

• a t0 ∈ I, which represents the time to the future of which we wish
the approximation to be valid; it can be thought of as representing
decoupling,
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• a positive integer l, specifying the norm with respect to which we
measure proximity to the standard model; once we are given an l, the
distance will be measured using the C l-norm,

• an ε > 0, characterising the size of the distance,

• a closed 3-manifold Σ; this will be the spatial topology of the con-
structed space-time.

Given this information, there is then a solution (M, g, f) with the following
properties:

• (M, g, f) is a maximal Cauchy development of initial data,

• (M, g) is future causally geodesically complete; in this sense, there is
an expanding direction,

• there is a Cauchy hypersurface, say S̄, in (M, g), diffeomorphic to
Σ; S̄ should be thought of corresponding to the t = t0 hypersurface
in the background model, or decoupling. As a consequence, M is
diffeomorphic to R×Σ, so that the spatial topology is Σ.

The crucial question is now: how do you compare the constructed solution
with the standard solution? The point is that you only want to compare
regions seen by observers. Let us, for that reason, start with an observer
in the space-time, in other words with a causal curve, say γ, in (M, g).
Note that the largest region that an observer can see is its causal past,
denoted J−(γ). On the other hand, γ can, by assumption only observe
things that occurred to the future of S̄ (decoupling), and the future of the
set S̄ is denoted by J+(S̄). To summarize, the largest region that can be
seen by γ is J−(γ) ∩ J+(S̄). At this stage, we want to compare what is
seen by γ with a standard solution. In order to be able to do so, we need
a local diffeomorphism of regions containing the portion of the space-time
that observers can see. In fact, we have the following statement:

• given an observer γ in (M, g), there is a neighbourhood, say U , of

J−(γ) ∩ J+
(
S̄
)

and a diffeomorphism from U to an open neighbourhood, say V , of
a solid cylinder of the form [t0,∞) × B̄R(0) in the specified standard
model,

• pulling back the solution (M, g, f) to V using this diffeomorphism and
computing the difference between the resulting solution and the pre-
specified background solutions yields an error which is smaller than ε
with respect to the pre-specified norm,
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• all time-like geodesics in (M, g) are past incomplete; in this sense,
there is a Big Bang,

• the solution is stable with these properties; in other words, the con-
struction is robust, it is not simply some special example.

To conclude the above discussion, there is no limitation on the global topol-
ogy; any closed 3-manifold will do. It would perhaps be desirable to prove
the same result in the case of any 3-manifold topology. It seems reasonable
to expect that it should be possible to to so, but no complete proof has yet
been written down.

3.8. References

The description given in the present section is a short summary of the
results obtained in [11]. Interested Readers are referred to this book for
more details.
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