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We present a brief overview of tools and methods of noncommutative
geometry and its applications to theoretical physics. Starting with some
mathematical background and basic foundations of NCG, we describe the
new notion of geometry and demonstrate that changing the paradigm of ge-
ometry allows to interpret the physical reality of fundamental interactions
from a completely new angle. We present some easy do-it-yourself toy mod-
els, which help to understand the principles and results hidden behind the
interpretation of the Standard Model in the language of noncommutative
geometry.
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1. Introduction

The current status of fundamental physical theories appears to be only
partially satisfactory. On the one hand, the description of basic interactions
of particles is evidently a great success — with the recent discovery [1] of the
Higgs boson, all pieces of the Standard Model are put together and give a
working and correct description of the elementary bricks of the matter. On
the other hand, the arguments that the universe is filled with dark matter
and dark energy [3] prove that general relativity holds on a large scale in
space and was valid even at the early time of the universe history. Yet the
origin of both dark matter and dark energy remains a mystery as well as the
penultimate quest of physicists: a dream to unify Quantum Field Theory
and gravity.
∗ Based on talks presented at the LIII Cracow School of Theoretical Physics “Confor-
mal Symmetry and Perspectives in Quantum and Mathematical Gravity”, Zakopane,
Poland, June 28–July 7, 2013.
† Supported by the grant from The John Templeton Foundation.
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That Holy Grail of theoretical physics, despite various attempts and huge
efforts is still unattainable thus raising the questions about the validity of
our understanding of the world. Neither the String Theory (and its various
modifications and spin-offs) nor the Loop Quantum Gravity, which are often
presented as the two best candidates for the solution of this puzzle offer the
answer. In fact, none of the currently studied models gives an answer that
would be even remotely close to the solution.

If everything fails, then one has to start thinking why — and one of
the possible answers is that to go this one step forward we need to break
the paradigms of contemporary physics. The first one is that the world is
geometry and it is justified by the purely geometric description of gravity
through Riemannian (or, more correctly: pseudo-Riemannian) geometry and
the Yang–Mills theory describing all of gauge theories responsible for fun-
damental particle interactions. The second paradigm is quantisation, which
describes the spectra of atoms, together Quantum Field Theory which de-
scribes (albeit in a restricted way) many fine effects of particle interactions.
It is remarkable that the both paradigms are separate and there is no clear
and well-understood passage from the classical geometric world into the
quantum world. Therefore, if we fail to use these tools separately, maybe
the necessary step is to look for a more general mathematical theory, which
would imply both geometry as well a quantum theory. Noncommutative ge-
ometry is a proposition, which goes into this direction.

2. Why noncommutative geometry?

Before we start describing what is this theory, let us focus on some math-
ematical and physical motivations. Geometry is based on the principle of
describing spaces, which are sets of points equipped with an additional struc-
ture. Yet, physically a point is an elusive theoretical concept and, moreover,
even though we describe the world as a space (a collections of points), effec-
tively, we always use coordinates, which are functions on the space. There-
fore, the notion of a function (in particular a continuous function) appears to
be more fundamental than that of a point. In physics, this is clearly visible
when we take into account quantum effects, in particular, the Heisenberg
uncertainty principle. Then, it is impossible (both in theory and in prac-
tice) to observe a point or to fix the coordinates with an arbitrarily small
accuracy.

Even more important is, however, that the classical phase space (space of
possible positions and momenta) of a physical object is no longer a space in
quantum theory. Instead of using points, we already know that what we see
as coordinates are, in reality, operators on a Hilbert space. Moreover, what
we usually describe as a state of a physical object (by giving the coordinates
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describing position and momenta) corresponds to the expectations values of
these operators for a given state (a normalized vector) in the Hilbert space.

This change of paradigm, which happened around 100 years ago, is quite
astonishing, yet in the development of physics that followed there were very
few attempts to go forward and abandon the notion of space altogether.
Noncommutative geometry is the first sound mathematical concept, which
offers the consistent way of creating a geometry of quantum-like counterparts
of spaces — algebras.

Noncommutative geometry is not a finished chapter yet, it is a vast the-
ory, which is being developed, which has a lot of mathematical applications
(starting from the theory of C∗-algebras, K-theory, index theorem, Hopf al-
gebras etc.) as well as many interesting physical ones (the Standard Model,
Quantum Hall Effect, quantum computing, effective quantum field theories,
integrable systems).

The aim of this exposition is to demonstrate that noncommutative ge-
ometry provides tools, which could be effectively used to construct physi-
cal models. Then, in turn, one can invert the problem and by looking at
the world (in particular at the particle physics, described by the Standard
Model) try to recover the geometry behind that reality — expressed in non-
commutative terms.

The long term goal is certainly to provide a meaningful definition of ge-
ometry, which would allow to incorporate both the fundamental interactions
as we know them with the notion of quantised space (for some arguments
and models, see [19]).

3. From spaces to algebras

As we noted in the introduction, we do not actually see points of a space.
Of course, we can easily visualise a space, in particular, finite and discrete
spaces (lattices) as a collection of what we call points, however, to describe
any continuous space or manifold we need coordinates. A good notion of a
space is, therefore, provided by a collection of well-chosen functions, which
we then “measure” to fix an event or a place. Since we know that the
world distinguishes between places or events that are near or far from each
other, we necessarily introduce a very rough notion of what it means to be
close to each other. In the language of spaces, it is topology (this helps
to distinguish points) which then is translated to continuous functions. A
good set of coordinates on a space is, therefore, a collection of continuous
functions, which separate the points. Then, using it to build all complex
valued continuous functions, we see that they have a special structure, which
is so evident that we usually forget about it: functions form an involutive
algebra. Just to recall the obvious — an algebra is a linear space (here taken
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over C) equipped with an associative product and an antilinear involution
compatible with the product. Rephrasing it in easy words, we may multiply
the continuous functions and conjugate them, and the result is a continuous
functions. This is, in itself, not so exciting, as we can multiply and conjugate
all possible functions, not only the continuous ones. What makes this algebra
really interesting is the following:

Remark 3.1. If X is a (locally) compact Hausdorff space and C(X) is the
algebra of continuous functions on X, then C(X) is a commutative (non)
unital C∗-algebra.

What is a C∗-algebra? Shortly speaking it is an involutive Banach alge-
bra A, that is, a complex normed algebra, which is complete as a topological
space in the norm, and for every element a ∈ A:

||aa∗|| = ||a||2 .

3.1. Examples

We have just met one but a vast set of examples of C∗-algebra: contin-
uous functions over a (locally) compact topological space. This is, however,
not the only one, in particular there are many other C∗-algebras. Let us see
more of them.

Example 3.2 (Finite dimensional C∗-algebras). For any n1, . . . , nk > 0

Mn1(C)⊕Mn2(C)⊕ · · · ⊕Mnk
(C) ,

is a C∗-algebra. In fact, every finite dimensional (as a vector space)
C∗-algebra is of that form.

Before we give two further examples, let us recall that a natural source
of algebras comes from linear transformations of a vector space. To have a
suitable norm over that algebra, we can take a Hilbert space (which could
be finite or infinite) and consider the norm of the linear operator T :

||T || = sup
v∈H,||v||=1

||Tv|| .

All operators for which the norm is defined form an algebra B(H) and are
called bounded operators.

Example 3.3 (Bounded operators on H). Take a separable Hilbert space
H and B(H), the algebra of all bounded operators on H (with the operator
norm). It is a C∗-algebra and every norm closed subalgebra of B(H) is a
C∗-algebra.
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Example 3.4 (Compact operators on H). The algebra K(H), which is the
closure of the algebra of operators of finite rank in the operator norm is a
C∗-algebra.

Observe that if the Hilbert space is finite dimensional H = Cn then both
the algebra of bounded and compact operators coincide and are isomorphic
to Mn(C). Finally, a big class of examples comes from groups.

Example 3.5 (Group algebras and Lie groups). For any discrete group Γ ,
we can consider the group algebra C[Γ ], for any Lie group G, we have
the convolution algebra over the space of continuous functions with com-
pact support Cc(G). Considering various representations of these algebras
on Hilbert spaces (and consequently various C∗-norms), we obtain nontrivial
C∗-algebras related to the respective groups.

3.2. The Gelfand–Naimark theorems

So far, we have encountered two types of C∗-algebra: continuous func-
tions over a particular topological space and algebras of operators on a
Hilbert space. We need to learn two important theorems, which set up
the scene for further considerations.

Theorem 3.6 (Gelfand–Naimark–Segal [23]). Every abstract C∗-algebra A
is isometrically ∗-isomorphic to a concrete C∗-algebra of operators on a
Hilbert space H. If the algebra A is separable then we can take H to be
separable.

Theorem 3.7 (Gelfand–Naimark [22]). If a C∗-algebra is commutative then
it is an algebra of continuous functions on some (locally compact, Hausdorff)
topological space.

The lesson drawn from the facts stated above is very simple. First of
all, every C∗-algebra is a norm-closed subalgebra of B(H) for some Hilbert
space H. Therefore, we do not need to look at abstract constructions —
the only thing we need is to look at bounded operators on a Hilbert space.
Furthermore, if the algebra is commutative then it is necessarily an algebra
of continuous functions on some topological Hausdorff space.

3.3. More examples of C∗-algebras

So far, we had just a couple of examples of C∗-algebras which were
either “classical” (that is described as functions on a space) or rather boring
(matrix algebras, all bounded and all compact operators). To see that there
are some nontrivial and interesting ones, let us show some easy yet amazing
constructions.
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Example 3.8 (Algebra generated by an operator). Let T be a bounded
operator on a Hilbert space H and T ∗ its Hermitian conjugate — we consider
the algebra C∗(T ) as the closure of the algebra of polynomials in T, T ∗.

In particular, if H = l2(Z) and T is the shift operator (Ten = en+1, for
the orthonormal basis {en}n∈Z of l2(Z)) then the algebra C∗(T ) is isomorphic
to C(S1) (all continuous functions on a circle).

Example 3.9 (Toeplitz algebra). Take H = l2(N) and Ts to be a unilateral
shift Tsen = en+1, n ≥ 0. Then the algebra C∗(Ts) is isomorphic to the
extension of the algebra C(S1) by compact operators K, in the following
sense, the sequence below is an exact sequence of C∗-algebras (the image of i
is the kernel of π, i is injective and π is surjective):

0 −→ K i−→ C∗(Ts)
π−→ C

(
S1
)
−→ 0 .

Example 3.10 (Irrational Rotation Algebra aka Noncommutative Torus).
Consider the Hilbert space L2(S1) and the following operators:

(Uf)(z) = zf(z) , (V f)(z) = f
(
e2πiθz

)
,

where 0 < θ < 1 is an irrational real number. We define T2
θ as a C∗-algebra

generated by the unitary operators U, V, U∗, V ∗. We easily check that

UV = e2πiθV U .

3.4. The first dictionary

In the previous sections, we have shown an equivalence between commu-
tative C∗-algebras and spaces. A natural question is whether this analogy
could be promoted to other topological constructions, like continuous maps
between spaces, Cartesian products etc. The answer is generally yes, and
we can write a short list of corresponding operations:

Topology Algebra

locally compact Hausdorff topological space nonunital C∗-algebra
homeomorphism automorphism
continuous proper map morphism
compact Hausdorff topological space unital C∗-algebra
open (dense) subset (essential) ideal
compactification unitization
Stone–Čech compactification multiplier algebra
Cartesian product tensor product
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Note that, so far, we have just a correspondence between a very rough
notion of geometry, which basically tells us about the topology and does not
distinguish between a ball and a cube. Of course, there is much more to
geometry than topology alone. Noncommutative geometry aims to provide
a meaning to the geometric extension of the above table.

4. How to differentiate?

In the course of basic analysis, one first defines a derivative of a func-
tion, followed by defining the space of differentiable and (finally) smooth
functions. A remarkable fact is that thanks to the Leibniz rule both differ-
entiable functions as well the smooth functions are still an algebra.

From the point of view of algebraic approach, the derivative is a deriva-
tion of an algebra: a linear map, which obeys the Leibniz rule. If we pass to
the noncommutative algebras, we find that derivations split into the trivial
ones (those that come from commutators with an element of an algebra —
such derivations are call inner) and the interesting outer derivations (simply
those that are not inner). All derivations of commutative algebras are, of
course, outer, whereas for the noncommutative ones, we might have plenty
(too many) inner ones and very few (or even none) outer derivations.

Therefore, the idea to repeat the classical construction of derivatives,
differentiation and then vector fields (if we pass to the case of manifolds)
appears not to be very practical. Instead, we might pass directly to the
construction, which in the classical differential geometry is obtained only
after some efforts. Here, we need to start with that from the very beginning
— with the differential forms.

Let us recall the notion of a module. If A is an algebra, then we say
that N is a left module, if it is a linear space with a bilinear map: A×N 3
(a, n)→ a · n ∈ N such that:

a · (b · n) = (ab) · n , ∀a, b ∈ A, n ∈ N .

Similarly, we define a right-module, than we say thatM is a bimodule if it
is simultaneously a left and a right module with mutually commuting left
and right multiplications:

a · (m · b) = (a ·m) · b , ∀a, b ∈ A,m ∈M .

Remark 4.1. Differential one-forms Ω1(M) over a manifold M are a bi-
module over the algebra of smooth functions C∞(M) and the external deriva-
tive d : C∞(M) → Ω1(M) is a bimodule-valued derivation on the algebra
C∞(M):

d(fg) = (df) · g + f · (dg) , ∀f, g ∈ C∞(M) .
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Observe that the external derivative satisfies the Leibniz rule (so it is
a derivation) independently of the fact that the algebra is commutative.
Therefore, we can define such a bimodule-valued derivation over any algebra,
even if it is noncommutative.

Definition 4.2. Let A be an algebra. The first-order differential calculus
(FODC) over A is a pair (Ω1(A), d) where Ω1(A) is a bimodule over A and
d is an Ω1(A)-valued derivation of A:

d(ab) = (da) · b+ a · (db) , ∀a, b ∈ A .

Remark 4.3. Although we can define differential forms and external deriva-
tives for arbitrary (even noncommutative) algebras this definition has a huge
drawback: the construction is by no means unique: there are many (even too
many) differential calculi over algebras.

To see how it works, let us show some examples.

Example 4.4 (The universal calculus). Let A be a unital algebra and
Ω1
u(A) = ker µ, where

µ : A⊗A → A , µ(a⊗ a′) = aa′ .

The universal FODC is Ω1
u(A) with the universal differential

du(a) = a⊗ 1− 1⊗ a .

Example 4.5 (Inner FODC). We say that FODC is inner if there exists an
element X ∈ Ω1(A) such that

da = X · a− a ·X , ∀a ∈ A .

Example 4.6 (Two points space and its differential calculus). The algebra
of complex-valued functions over a two points space could be identified with
the algebra of complex diagonal matrices inside M2(C). We define Ω1 to be
all M2(C) matrices and set

d

(
c1 0
0 c2

)
=

[(
0 1
1 0

)
,

(
c1 0
0 c2

)]
.

Next, let us compute the universal calculus. An arbitrary element of the
algebra is of the form c1e1 + c2e2, where c1, c2 ∈ C, e2i = ei, e1e2 = e2e1 =
0, e1 + e2 = 1. First,

dei = ei ⊗ 1− 1⊗ ei = ei ⊗ ei′ − ei′ ⊗ ei ,
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where e1′ = e2 and e2′ = e1. Then,

d(c1e1 + c2e2) = c1(e1 ⊗ e2 − e2 ⊗ e1) + c2(e2 ⊗ e1 − e1 ⊗ e2)
= (c1 − c2)(e1 ⊗ e2) + (c2 − c1)(e2 ⊗ e1) .

We leave as an easy and entertaining exercise to the Reader to show that
the universal calculus is exactly the one as defined earlier using matrices and
to check whether this calculus is inner.

Having defined the external derivative, we might want to come a step
back and see what happened to the vector fields. In fact, they are not entirely
lost — if we consider them not to be acting on the algebra of functions but
rather on the Hilbert space on which the algebra is represented faithfully.

Remark 4.7. Imagine the full graded differential algebra over C∞(M) and
take as the Hilbert space the completion (in the L2 norm) of the module of
one-forms. Then the external derivative d could be seen as densely defined
operator on the Hilbert space, and

(df)Ψ = d(f · Ψ)− f · (dΨ) = [d, f ]Ψ

for f ∈ C∞(M) and Ψ ∈ Ω∗(M).

Therefore, we can encode the derivatives and differential forms through
commutators with some operators, which in this case are first-order differen-
tial operators. Our aim will be to extend this notion to the general situation
of noncommutative algebras.

5. The Dirac operator

The external derivative is a natural candidate for a reasonable first-order
differential operator, however, as it is certainly not a selfadjoint operator, one
must look for its natural extension, the signature operator. This operator
falls into the class of generalised Dirac operators.

The recipe to construct the Dirac operator over a spin manifold is quite
easy. You start with a Riemannian manifold (compact, closed) with a fixed
metric g. Find the Clifford algebra bundle, identify the spinor bundle, then
lift the metric connection (the Levi-Civita one if you want the true Dirac),
then lift it to the spinor bundle, compose with the Clifford map and you
get D: the first-order differential operator on the sections of the spinor bun-
dle. Then comes the hard stuff — you need prove some theorems about D.

However, we might take a different approach and follow the operational
definition, which is as follows. Take an algebra of functions C∞(M) repre-
sented on a Hilbert space of some sections of a suitable vector bundle overM
and look for operators, which behave like the Dirac operator. That is, they
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need to be first-order differential operator, from which you can recover the
bimodule of differential forms by setting

da := [D, a] ,

as an operator on the Hilbert space. Moreover, from the following formula,
you are expected to recover the metric on your manifold

d(x, y) = sup
||[D,f ]||≤1,f∈C∞(M)

|f(x)− f(y)| , ∀x, y ∈M .

Additionally, the operator should be unbounded, have discrete spectrum and
the eigenvalues should have certain growth property.

In fact, the Dirac operator (and that includes the signature operator
as well) carries a lot of information about the additional structures on the
manifold. We have already mentioned the differential calculus and the met-
ric. What is also interesting that having the Dirac operator we may directly
recover the dimension of the manifold as well as perform the integration —
using the spectral properties of the Dirac.

5.1. An interlude: what are vector bundles?

Before we proceed with the construction of noncommutative Dirac op-
erators, we need to understand what replaces vector bundles when we pass
from commutative algebras to noncommutative ones. Let us quote the fun-
damental theorem.

Theorem 5.1 (Serre–Swan). Let M be a compact manifold, and E → M
a finite dimensional complex vector bundle. Then the space of continuous
sections of E is a finitely generated projective modules over C(X) and every
such module is a space of sections of a vector bundle over M .

To explain, we need to explain what are projective modules. First, we
define a free module over an algebra A, which is just An for some n ≥ 1,
with the natural addition and multiplication by the elements of A. Then,
we have

Definition 5.2. A module M over an algebra A is projective if and only
if M is a summand of a free module, there exists a module N such that:
M⊕N = An, for some n ≥ 1.

Let us explain the word “projective” in projective modules, which also
demonstrates how to construct projective modules. Take an algebra A and
take a free module An, then take p ∈Mn(A) such that p2 = p = p∗. Such p
is called a projection, for instance, if A = C(M) then p is a matrix-valued
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continuous function over M such that p(x) is a projection (as a complex
matrix) for every x ∈M . If we define

Mp = Anp

thenMp is a projective module. It is easy to see why: if p is a projection so
is 1−p (so that p and 1−p are mutually orthogonal pair of projections) and
M1−p = An(1− p) is the complement ofMp so thatMp ⊕M1−p = An.

The above construction gives us a finitely generated projective module, so
a projective module, which has a finite number of elements which generate
it (over the algebra A) as a module.

Finally, let us mention one simple though a very interesting property of
projective modules: the existence of connections.

Definition 5.3. Let M be a left module over A and Ω1(A) be the first-
order differential calculus over A. The map ∇ : M → Ω1(A) ⊗AM is a
connection if:

∇(aξ) = a∇(ξ) + da⊗A ξ , ∀a ∈ A, ξ ∈M .

Then,

Remark 5.4. If the moduleM is projective then there always exists a con-
nection — and, in fact, every module for which connection exists must be
projective. This is the seminal result of Cuntz and Quillen [16].

6. Spectral triples

We are ready now to put forward a proposition for a generalisation of the
Riemannian spin geometry to the realm of noncommutative algebras, which
is based on the properties of Dirac operators and constructions we discussed
earlier.

Definition 6.1. A spectral triple is a collection of the following data: an
algebra A (which is a dense subalgebra of a C∗-algebra) together with its
faithful representation π on a Hilbert space H and a densely defined selfad-
joint operator D (called later Dirac operator), satisfying several conditions:

1. ∀a ∈ A [D,π(a)] ∈ B(H),

2. even spectral triples: ∃γ ∈ A′ : γ2 = 1, γ = γ†, γD +Dγ = 0,

3. ∃J , antilinear J2 = ±1, JJ† = 1,
Jγ = ±γJ, JD = ±DJ, [Jπ(a)J, π(b)] = 0,

4. [[D, a], Jπ(b)J ] = 0 (D: first-order differential operator),
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5. D has a compact resolvent (so the spectrum of |D| is discrete and its
eigenvalues have no other accumulation point than +∞),

6. + several conditions (more of “analysis” type), which guarantee that we
indeed work with differentiable “functions” and the “noncommutative
space” is not singular. We skip details here.

Theorem 6.2. If A = C∞(M), M is a spin Riemannian compact manifold,
H = L2(S) is the Hilbert space of summable sections of the spinor bundle
and D is the Dirac operator on M then to (A,H, D) is a spectral triple (with
a real structure).

The definition (more or less in this form) was proposed by Connes in [10]
then developed later by many authors. Details of the proof of the above
theorem could be found in [2].

6.1. Examples of spectral triples

Apart from the classical case of smooth functions over a compact spin
manifold, there are several examples of genuinely noncommutative spectral
geometries. Before we list them, let us mention that spectral triples over
commutative algebras (which satisfy some additional requirements) are in
fact only of that type, thanks to Connes’ reconstruction theorem [14]. Hence,
commutative spectral triples are equivalent (in the sense of 1:1 correspon-
dence) to compact spin manifolds.

Thus we might look for the noncommutative examples as some nontrivial
generalisations of spin manifolds to (using a figure of speech) “noncommu-
tative manifolds”.

Let us list some of the examples with the relevant references:

• The Noncommutative Torus: UV = e2πiθV U
Dirac operator the same as on the torus [10, 35].

• Theta deformations of manifolds (NC Torus is a special case)
Dirac operator the same as on the original manifold [15].

• Finite matrix algebras: Mn1(C)⊕Mn2(C)⊕ · · ·
Dirac operator is a finite Hermitian matrix [30, 33].

• Quantum spaces (q-deformations of spheres, SUq(2))
Requires some modifications of the definition [17, 18].

• Moyal deformation [xµ, xν ] = θµν

The same Dirac as on R2n [21].
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• κ-deformation [x0, xi] = 1
iκx

i, where κ is a real parameter,
relevant for Doubly Special Relativity, requires twisting of spectral
triples [26, 31] .

Remark 6.3 (How to construct spectral triples?). There is so far no general
method. Mathematically, spectral triple is an unbounded Fredholm module,
a representative of the K-homology class of the algebra A, hence taking a
representative of that class gives a bare skeleton to construct a spectral triple.
However, there are very few general results whether this is possible, see [39]
for details.

6.2. Getting some numbers

In physics, having a general construction of the model is just the starting
point, which needs to be later developed to a theory, in which, at the end,
we want to obtain some numbers. This is, in fact, what is hidden all over
in physics: computing the action in the classical mechanics and classical
field theory and calculating expectation values in quantum mechanics and
quantum field theory.

Therefore, we need to learn how to use the tools defined above to get
down to things, which are indeed computable. To reach this aim, we need to
use some of the advanced theory of exotic traces, using the methods, which
resemble the regularisation techniques.

6.3. Regularisation and exotic traces

Imagine we have a positive operator T on an infinite dimensional sepa-
rable Hilbert space, such that its spectrum is discrete. Then, arranging its
eigenvalues in an increasing order (and taking into account the multiplici-
ties), we might define

Trω(T ) = lim
N→∞

1

logN

N∑
i=1

µi(T ) ,

where µi(T ) is the ith eigenvalue of T .
Of course, such limit may not even exist and certainly it does not for

a huge class of operators, whereas for some it is just +∞. However, there
exists a big family of operators, for which the limit exists and is finite and,
moreover, that family is an ideal in the algebra of bounded operators on
that Hilbert space. What is even more surprising, this functional is then a
trace, so

Trω(TS) = Trω(ST )

for T, S such that the functional is well defined on their product. This was
found by Dixmier, hence the functional is called Dixmier trace and is an
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example of so-called exotic traces. Note, that if T is trace class itself then,
of course, Trω(T ) = 0. For this reason, the Dixmier trace is nothing else but
a regularisation of the usual trace for the family of operators, for which the
trace is a priori infinite.

One may wonder whether some other methods of regularisations used
in quantum field theory, for instance, the zeta function regularisation, may
be also applied. Surprisingly, yes and in the same spirit we may define the
following functionals.

Let T be a compact positive operator such that for sufficiently large
r > 0 the operator T r is trace class. Therefore, the function

ζT (z) := Tr |T |z

is well defined and holomorphic for <(z) > r. Taking the analytic continu-
ation of ζT (z) to the rest of the complex plane, we obtain a function, which
has (possibly) some poles. We may then set for any d ∈ R

τ(T ) := Resz=dζT (z) .

It appears that for each d there exists a large class of operators, so that
the residue is nontrivial and for some, the functional τ has again the trace
property.

In fact, if D is the Dirac operator on a spin manifold of dimension n then
the function ζ|D|−1 (if D has a kernel it is certainly finite dimensional and
we can neglect it) may have only first-order poles only at integers on the
real axis not exceeding n and, in particular, has a nonzero residue at z = n.
Just to shorten the notation, we shall write ζD (meaning ζ|D|−1).

Example 6.4. Take an example of a circle, S1. The Hilbert space L2(S1)
has an orthonormal basis en, n ∈ Z and the usual Dirac operator is Den =
nen. The ζ function of the Dirac operator on the circle is:

ζD(z) = 2

∞∑
n=1

1

nz
= 2ζ(z) .

Having the zeta function, we may look at its poles which are located
generally in a half of the complex plane and are not necessarily real. The
collection of all points, which are the poles of the zeta function of the oper-
ator D from a given spectral triple we call the dimension spectrum. So, the
dimension is not a number — it is a discrete set in a complex plane!

Remark 6.5. The dimension spectrum of a compact spin manifoldM , given
by its spectral triple (C∞(M), L2(S), D) is contained in a set: {n, n − 1,
n−2, . . .}, where n is the classical dimension of M . In fact, z = n is always
in the dimension spectrum, whereas not all of other the points of the set may
belong to the dimension spectrum.
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Remark 6.6. The dimension spectrum may contain complex numbers (with
nonzero imaginary part) and any real numbers (for instance, if one considers
fractals).

7. Towards physics

Our aim in this section will be to construct a classical field theory, which
mimics the gauge theory and formulate it using exclusively with the use of
the tools of noncommutative geometry.

First of all, having a “noncommutative geometry” in terms of a spectral
triple, we may wonder what is the set of all possible physical degrees of
freedom — that is physical fields. Keeping in mind that we consider the
geometry — the appropriate choice of fields is like in the case of gravity where
the relevant field is the metric. Therefore, since in the case of spectral triples
metric is replaced by the Dirac operator, we need to take as a dynamical
variable of our theory the Dirac operator itself.

Our initial data is therefore an algebra (a suitable dense subalgebra of a
C∗-algebra), its representation on the Hilbert space (elements of which are
to be identified with spinor fields) and the set of fields, which are identified
with all possible Dirac operators.

Of course, we need to understand how to find a family of Dirac oper-
ators. Classically, on a spin manifold, the Dirac operator depends alone
on the metric, however, if we twist the spinor bundle (by tensoring it with
an additional vector bundle) and twist the Dirac by a connection on the
additional bundle, we still have a Dirac operator. In the noncommutative
situation, this translates to the so-called inner fluctuations.

Remark 7.1 (Family of Dirac operators). Once we have Dirac operator for
a given spectral triple, we have an entire family of them by taking all inner
fluctuations of Dirac operators:

DA =
{
D′ : D′ = D +A

}
,

where A is a self-adjoint one-form A =
∑

i ai[D, bi]. Classically, this cor-
responds to the twisting of the Dirac operator by a (trivial) complex line
bundle, or — using physics terminology — so adding U(1) gauge field.

Of course, one could ask a question whether the family we get depends
on the starting point (that is whether the family is the same if we start with
the Dirac already perturbed by a one-form) and it is very convenient that
indeed the inner fluctuation of inner fluctuation are inner fluctuations so
the family we obtain is not dependent on the initial choice.
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Remark 7.2 (A warning). The space of all possible Dirac operators is much
bigger in the classical case than the space of metrics (but for real spectral
geometries it excludes U(1) gauge connections). The Dirac operators with
torsion are, for instance, allowed.

7.1. A proposition for the action . . .

Having fixed the background for the physical model (geometry and space
of dynamical fields), we can look for the action — the universal principle in
all of fundamental theoretical physics. Recall, that our physical field is, in
fact, not a field but an operator D, which belongs to a family of operators,
which we shall denote Dg,A.

Definition 7.3 (Let the action be spectral!). For a fixed function f (playing
the role of cutoff), consider the following functional on the space of Dg,A

S(Dg,A) = Tr f

(
D2
g,A

Λ2

)
.

Note that the above expression makes sense only for certain functions f ,
in particular, the standard choice will be the Heaviside function f(x) = 1
for 0 ≤ x ≤ 1 and 0 otherwise. In such a case, the action just counts
the number of eigenvalues of the Dirac operator, which are (their absolute
value) less (or equal) Λ. As the action depends explicitly on the function f
and the cutoff parameter Λ, we might wonder whether one can read out of
it anything interesting. The answer comes from the asymptotic expansion,
that is the expansion of the action functional as a polynomial in Λ.

Lemma 7.4. With certain assumptions on the dimension spectrum Sd of
the spectral triple (discrete, real points with simple poles) we have that for
large Λ

S(Dg,A, f, Λ) =
∑
k∈Sd+

fk Λ
k
(
Resz=kζDg,A

(z)
)
+ f(0) ζDg,A

(0) +O
(
Λ−2

)
,

where Sd+ is the positive part of the dimension spectrum of (A,H, D) and
the coefficients fk = 1

2

∫∞
0 f(t) tk/2−1 dt are the momenta of the cutoff func-

tion f . Moreover, the scale invariant part of the spectral action (independent
of Λ) depends on the inner perturbation A in the following way:

ζDA
(0)− ζD(0) =

n∑
q=1

(−1)q
q Resz=d

(
Tr
(
(AD−1)q|D|−z

))
.

The spectral action in its form was proposed by Chamseddine and
Connes [5] and developed later in [9] but the idea could be traced back
to Sakharov [37].
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7.2. The meaning of all that

Before we explain in details the terms of the spectral action which arise,
let us discuss what the spectral action gives if we consider a genuine, true,
metric-dependent Dirac operator over a compact spin manifold of a physi-
cally relevant dimension D.

If M is a compact spin manifold of dimension 4 and D is the Dirac
operator over the spinor bundle (for a particular choice of a spin structure)
then the spectral action has the following expansion:

S(D) =
1

2π2
f4 Λ

4

∫
√
g d4x+

1

24π2
f2 Λ

2

∫
R
√
g d4x

− 1

320π2
f(0)

∫
Cµνρσ C

µνρσ√g d4x+O
(
Λ−2

)
,

where R is the scalar curvature, Cµνρσ is the Weyl tensor and we omit the
topological term (corresponding to Gauss–Bonnet term but in 4 dimensions).

So we have recovered the usual gravity (albeit Euclidean!) in 4-dimen-
sions, featuring the cosmological constant (leading term at Λ4), the Einstein–
Hilbert action (the term at Λ2) and some scale-invariant corrections, often
considered by people investigating extensions of general relativity models.

To go beyond the classical case (since in the above example although we
use the techniques of noncommutative geometry the entire construction is
still classical), let us merge the model we just studied with the one mentioned
earlier, the one that describes the geometry of a two-point space.

Example 7.5 (A spectral triple over two points). Consider the example
of the algebra of functions over two points, A2 identified with the diagonal
matrices in M2(C). We shall give an example of a real spectral triple, which
yields the differential calculus described earlier. It appears that to satisfy
all conditions of a real spectral triple one cannot take the irreducible rep-
resentation of A2 (which would be on C2). The reason for this is simple,
the existence of the real structure requires that the Hilbert space becomes a
module over differential forms, such that the action of one-forms commutes
with the right multiplication by the elements of the algebra. The smallest
representation space, which allows is on C2 ⊗ C2, where we have

A2 3 a =

(
c+ 0
0 c−

)
⊗ id ,

J(v ⊗ w) = w∗ ⊗ v∗ , v, w ∈ C2 .

The grading γ could be any diagonal matrix on C2⊗C2 with entries ±1,
and the Dirac operator any selfadjoint linear operator on C2 ⊗ C2, which
anticommutes with γ, commutes with J and satisfies the order one condition.
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Using explicitly elements of M4, we rewrite first the representation and J

A2 3 a =


c+ 0 0 0
0 c+ 0 0
0 0 c− 0
0 0 0 c−

 ,

J


v1
v2
w1

w2

 =


v∗1
w∗1
v∗2
w∗2

 ,

so that Ja∗J becomes

Ja∗J =


c+ 0 0 0
0 c− 0 0
0 0 c+ 0
0 0 0 c−

 .

The grading γ compatible with J , so that Jγ = γJ is

γ


v1
v2
w1

w2

 =


+v1
−v2
−w1

+w2

 .

The Dirac operator is a priori a selfadjoint matrix in M4(C), however,
using its commutation relations with γ, J and the order-one condition, one
can actually find that the following satisfies all conditions (the Reader is
encouraged to check whether this is the only one, and if not to find all such
operators)

D


v1
v2
w1

w2

 =


φw1 + φ∗v2
0
0
φ∗v2 + φw1

 .

To see, let us check DJ = JD

DJ


v1
v2
w1

w2

=


φv∗2 + φ∗w∗1
0
0
φ∗w∗1 + φv∗2

 , JD


v1
v2
w1

w2

=


φ∗w∗1 + φv∗2
0
0
φv∗2 + φ∗w∗1

 ,

D =


0 φ∗ φ 0
φ 0 0 0
φ∗ 0 0 0
0 0 0 0

 .
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Finally, for the order one condition, we compute

[D, a] =


0 0 φ(c− − c+) 0
0 0 0 0
φ∗(c+ − c−) 0 0 0
0 0 0 0

 ,

so that

J [D, a]J =


0 φ∗(c− − c+)∗ 0 0
φ(c+ − c−)∗ 0 0 0
0 0 0 0
0 0 0 0

 ,

and it is clear that the order-one condition is satisfied.

The details on how to construct finite spectral triples, that is triples
over finite dimensional algebras could be found in [33] and [30], the use of
symmetries to restrict some Dirac operators to equivariant ones was further
developed in [36].

Example 7.6 (The two-sheet spacetime). Consider the algebra of smooth
functions over a 4-dimensional compact spin manifold M , which are valued
in diagonal matrices within M2(C). This algebra is indeed the algebra of
functions on two disjoint copies of the same manifold, yet using noncommu-
tative geometry we shall be able to say a lot more about its geometry than
the usual differential geometry teaches us. The reason for this is that spec-
tral triples exist for both components: the classical manifold as well as the
discrete two-point space and there is an easy method to construct a spectral
triple for the product geometry.

Let γM , JM , DM denote the Z2-grading, real structure and the Dirac oper-
ator for the manifold and γF , JF , DF denote the same objects for the spectral
triple over two-point space we described in the previous example.

Then, by taking the tensor algebra C∞(M)⊗A2, and its representation
on L2(S)⊗ V , where S denotes a chosen spinor bundle over M and V is a
finite dimensional space on which we represent the finite subalgebra (so, for
the two-point space it is C4, and setting

γ = γM ⊗ γF ,
J = JM ⊗ JF ,
D = DM ⊗ γF + id⊗DF ,

we obtain a real spectral triple for the algebra of smooth functions over the
product geometry M × Z2 (two-point space could be identified with the Z2

group).
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Observe that D2 is easily calculated

D2 = D2
M +D2

F ,

and using the results from the previous example (so assuming the form of
the Dirac operator we have taken), we obtain

D2 = D2
M ⊗ id+ id⊗ 2φφ∗E1 ,

where φ becomes a complex-valued scalar field over M , and E1 is the rank 1
projection in M4(C).

Finally, we can use that to compute the spectral action, and compare
with the previous result for the “pure gravity case”. We obtain (again, up to
topological terms)

S(D) =
2

π2
f4 Λ

4

∫
√
g d4x+

1

6π2
f2 Λ

2

∫ (
R+

1

2
φφ∗

)
√
g d4x

+
1

320π2
f(0)

∫ (
−4Cµνρσ Cµνρσ + 10(φφ∗)2 +

10

3
R(φφ∗)

)
√
g d4x

+O
(
Λ−2

)
.

When we forget about the gravity (thus ignoring all terms with R and
the Weyl tensor), we see that we obtain a model for a classical complex field
theory with the natural potential that contains a quadratic φφ∗ and quartic
(φφ∗)2 terms.

7.3. A more refined model . . .

In the above model, which was just a toy example whose only purpose was
to indicate that playing with some finite geometries one may get nontrivial
results, we have ignored all other internal fluctuations of the Dirac and omit
some other admissible operators. Generally, for the geometries of the type
M × F , where M is a Riemannian manifold and F is a discrete geometry
(not necessarily of a commutative type), we shall obtain similar results as
in the previous section with the addition of the Yang–Mills action for the
usual, gauge-type perturbations of the Dirac operator.
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Let us look at the following action, which strongly resembles something
quite well known for particle physicists

S =
1

π2

(
48 f4 Λ

4 − f2 Λ2 c+
f0
4
d

) ∫
√
g d4x

+
96 f2 Λ

2 − f0 c
24π2

∫
R
√
g d4x

+
f0

10π2

∫ (
11

6
R∗R∗ − 3Cµνρσ C

µνρσ

)
√
g d4x

+
(−2 a f2 Λ2 + e f0)

π2

∫
|ϕ|2√g d4x

+
f0
2π2

∫
a |Dµϕ|2

√
g d4x

− f0
12π2

∫
aR |ϕ|2√g d4x

+
f0
2π2

∫ (
g23 G

i
µν G

µνi + g22 F
α
µν F

µνα +
5

3
g21 Bµν B

µν

)
√
g d4x

+
f0
2π2

∫
b |ϕ|4√g d4x ,

where c, b, a, g1, g2, g3 are some constants, which correspond to the param-
eters of the models (and that includes the masses of fermions and gauge
couplings).

How is it done? First, we choose a suitable finite geometry

F = C⊕H⊕M3(C) .

Then, by taking a product geometry

A = C∞(M)⊗ F ,

where M is a 4-dimensional compact spin manifold and taking a suitable
choice of the representation of the algebra, the real structure and the grad-
ing on the finite algebra (which could be either guessed, derived from some
ad hoc principles or just read from the contents of particle physics text-
books), we can look for all admissible Dirac operators. The first free param-
eter is obviously the metric on M , then the space of all internal fluctuations
of the Dirac. The space-like internal fluctuations are one forms valued in
some subspace of the algebra. Since the algebra is semisimple, we can split
them into three parts and identify the relevant one-forms as arising from
a U(1), SU(2) and SU(3) connections (it helps that the unitary elements
of the algebra F form a U(1) × SU(2) × U(3) group, adding unimodularity
condition one recovers the Standard Model gauge connections).
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In the discrete space direction, we have almost the same situation as in
the model of two-point space we discussed. The exact form of the reality
structure and the admissible Dirac (though one needs some extra ad hoc
principle to avoid some leptoquarks, see [34] for details) enforces that the
only field, which appears is quaternionic-valued and (since quaternions are
in fact a pair of complex numbers) we recover something, which is easily
interpreted as the Higgs doublet.

So, on the classical level, we have reinterpreted the Lagrangian of the
Standard Model as arising from some Kaluza–Klein type geometry but with
the geometry playing the role of compact dimension being genuinely non-
commutative (though it is the easiest and very mild type of noncommu-
tativity). By doing that, we did reconstruct all the terms in the classical
bosonic Lagrangian (there is no problem with the action for fermions, where
one recovers the minimal coupling as in the Standard Model) including the
Higgs doublet symmetry-breaking potential. All fields in this model have a
geometric interpretation as gauge potentials (they come as the parameters of
the admissible Dirac operators) and the action arises in a completely natural
way, without any terms inserted “by hand”.

Of course, generally, there is much more freedom in the choice of the
Dirac operators, than we have discussed here. There is a possibility of
torsion or other perturbations [24, 40], dilaton field and some additional
fermionic terms if one includes extra fermions and looks for Majorana mass
terms [6]. Nevertheless, even if the story is not finished and the picture
has many gaps, it becomes obvious that the Standard Model as it is, with
the Higgs and the symmetry breaking mechanism has a beautiful geometric
interpretation.

To end this section, let us note that there are several ways to choose
the algebra and the Hilbert space. For instance, one can start from a big-
ger algebra (see [13] for details), take its fundamental representation and
then look for all possible Dirac operators, which satisfy order one connec-
tion and connect all disconnected components. Take AF as the maximal
subalgebra such that [D,AF ] 6= 0. Equivalently, one may just take the in-
put from physics or look for some symmetries (including the natural idea
of the covering of rotation group: its double cover gives spinors and though
no nontrivial covers are possible in the groups, there exist a nontrivial cover
in the noncommutative world, in the category of Hopf algebras). All these
ideas require further exploration.
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8. Conclusions

Having started this review with some dictionary reviewing the topolog-
ical counterparts in the language of spaces and algebras, we might propose
its extension. It should not be treated as a definitive one but just a hint
that geometry is much more extensive and bigger than we might have orig-
inally believed. Many of the notions, which are listed below, have not even
been mentioned here — we refer the Reader to many textbooks and review
papers, which we list later.

8.1. The dictionary (continued)

Geometry Algebra

sections of a vector bundle finitely generated projective module
differential forms differential forms
differential forms Hochschild homology
de Rham cohomology cyclic cohomology
vector fields operators
group Hopf algebra
Lie algebra Hopf algebra
principal fibre bundle Hopf–Galois extension
measurable functions von Neumann algebra
infinitesimals compact operators
metric Dirac operator
spinc geometry spectral triple
spin geometry real spectral triple
integrals exotic traces

To summarise, let us say that noncommutative geometry is a tool, which
allows to describe geometry more generally and allows for much broader
scope than differential geometry alone. Now, there is a way to study ge-
ometry (in such a language) of discrete spaces, fractals, noncommutative
algebras — and it is all sound and beautiful mathematics.

Of course, one should distinguish between the methods (shown here), the
models applicable to particle physics (like the one discussed above) and some
toy models that aim to study “quantum spacetime” (like Moyal deformation
or the κ-Minkowski). Those models are, however, a very useful tool in our
way towards understanding the structure and the geometry of spacetime.

8.2. Further reading

The mathematical foundations of noncommutative geometry could be
found in the original paper by Connes [7] and the book [8]. More recent book
by Connes and Marcolli [13] includes also details on the noncommutative
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description of the Standard Model. A good basic and thorough textbook
(again, mathematically oriented) is the one by Gracia-Bondia, Várilly and
Figureoa [2], some other aspects are presented in a textbook by Khalkhali
[29]. There are numerous old and new reviews and lecture notes like [11, 12],
a collection of short expositions [38] and some expository articles [28]. A
slightly different approach could be found in [20]. Specific explanation on
the Standard Model (more on to the physics side) could be found in [27], a
similar (more mathematical review) in [41]. A concise and excellent review
of spectral geometry, spectral action and exotic traces is in [25].
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