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For small values of the gauge coupling constant, we compare the densi-
ties of the energy of the vacuum and of the order parameter, evaluated in
the lattice Monte Carlo simulation and in the perturbative field theory at
two loop (Minkowski). The continuum calculation allows a very good fit of
the simulation results, away from the phase transition line. This confirms
the conjecture that the lattice provides a regularization of the (nonrenor-
malizable) massive Yang–Mills and moreover, it shows the physical meaning
of the parameters used in the simulation.
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1. Introduction

In a recent paper [1], a lattice gauge theory for massive SU(2) Yang–Mills
in dimension four has been proposed. The completely gauge independent
analysis shows the presence of a Transition Line (TL) in the parameter space
(m2 ∼ 1/β), which seems to indicate a phase transition (but it might also
be a cross over) for large β, starting from β ∼ 2.2. The large β limit value
of βm2

c , where m2
c is the critical value of m2 on the TL, is in good agree-

ment with the critical point of the nonlinear sigma model in four dimensions
quoted in Ref. [2], namely 0.65± 0.04.

The above-mentioned lattice gauge model has been studied previously
(see [3–10]) as an example of Higgs mechanism with a frozen length. In
Ref. [1], we showed that it is the perfect tool for the simulation of the
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massive Yang–Mills (i.e. with a mass à la Stückelberg). The phase TL has
an end-point around ( β ∼ 2.2, m2 ∼ 0.381): for smaller β there is a smooth
transition from one phase to the other, while for larger β there are numerical
indications of singularities in the derivatives with respect to m2 and to β of
the energy and of the order parameter (i.e. the lnm2 derivative of the free
energy).

The lattice model turns out to be extremely interesting by itself because
of the states structure, the dynamical content, the limit of small gauge cou-
pling, the complexity of the phase diagram in the parameter space (β,m2).
In this paper, we want to compare the lattice model with the Yang–Mills
gauge theory where a mass à la Stückelberg is introduced. The latter model
is nonrenormalizable, but we have devised a method to make a respectable
physical theory out of it [11–15]. The comparison of the two models, via an-
alytic continuation, can provide interesting results, if we find some physical
quantities where they are expected to give identical results. Global quanti-
ties might be good candidates in order to compare the two models and thus
to identify the physical meaning of the lattice parameters.

To this end, we investigate on the small gauge coupling behavior, i.e.
large β, of some global observables such as densities of the energy of the
vacuum and of the order parameter

EL = − 1

N
β
∂

∂β
lnZL ,

CL = − 1

N
m2 ∂

∂m2
lnZL , (1)

where N is the number of sites and ZL the partition function1. It should be
noticed that in Ref. [1] the order parameter is defined as

1− CL

m2Dβ
(2)

in order to put in evidence its behavior for m2 = 0 and m2 → ∞. Here
these properties are not relevant.

In this work, we discuss two important questions: (i) to understand the
phenomenological meaning of the parameters β and m2 (in the naive con-
tinuum limit, a→ 0 , β = 4g−2 and ma−1 is the mass of the vector mesons);
(ii) to compare the lattice regularization of the theory with the contin-
uum Minkowskian formulation of massive Yang–Mills theory proposed in
Refs. [11] and [12]. Regarding (i), we want to find the scales necessary in or-
der to interpret the otherwise dimensionless parameterm. For the point (ii),
we assume that the finite lattice artifacts are not relevant quantitatively for
the global quantities of Eq. (1).

1 ·M for Minkowski, ·E for Euclidean and ·L for Lattice.
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The transition from Euclidean to Minkowskian quantities is performed
in the usual conventional way: exp(iSM) is the weight in the path integral
and the arrow of time (i.e. anticlockwise Wick rotation) is chosen in order
to match the edge-of-the-wedge theorem [16].

In the subtraction procedure [13–15], a scale Λ of the radiative correction
is introduced, then it is natural to look for a correspondence implemented
by the mapping

g2 = f
(
β,m2

)
,

M2

Λ2
= s

(
β,m2

)
,

Ma = t
(
β,m2

)
, (3)

where the parameters g,M are the field theory coupling constant and mass
respectively, while a is the lattice spacing, i.e. a length introduced for dimen-
sional reasons. Equations (3) show that the mapping of the continuum field
theory onto the lattice implies a choice of a surface in the three-dimensional
space spanned by the dimensionless parameters (g, Ma and Λa). The con-
venience of these choices might be sustained and tested on the physical
observables to be compared.

The fit indicates that far from m2
c (m2 > m2

c) and for large β the field
theory predictions at two-loop describe very well the lattice simulation data
and moreover, a ∼ M−1, m ∼ Λ−1M and the Yang–Mills coupling con-
stant g is a mildly decreasing function of β (the lattice parameter) with
g2 ∼ 4/β at β = 20.

2. Massive Yang–Mills in field theory (Minkowski)

In the continuum quantum field theory, the classical action is

SM =
Λ(D−4)

g2

∫
dDx

(
−1

4
Gaµν [A]Gµνa [A] +

M2

2
(Aaµ − Faµ)2

)
. (4)

The path integral functional ZM is obtained by integration over the fields
Aµ and Ω ∈ SU(2), where (τ are the Pauli matrices)

Ω = φ0 + iτjφj , Fµ ≡ iΩ∂µΩ† . (5)

The constraint on Ω

1 = φ2
0 + ~φ 2 (6)

renders the theory in Eq. (4) nonrenormalizable. The procedure of subtrac-
tion of the infinities in perturbation theory is described in detail in Ref. [11].
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Here we account only for the final practical rule: only pure pole subtraction
is performed on the dimensionally regularized Feynman amplitudes normal-
ized by

Λ(4−D)A . (7)

No additional finite adjustment is allowed, e.g. on-shell normalization.
We use Landau gauge because it is very useful in a massive theory, where

the massless modes are all unphysical. The absence of the massless modes
contributions provides a good check for the calculation of the physical ob-
servables.

The energy of the vacuum per hypercube a4 is then given by the path
integral mean value 〈〉M

EM(g,M,Λ, a) =

〈
−a

4

g2

(
−1

4
Gaµν [A]Gµνa [A] +

M2

2
A2
aµ . . .

)〉
M

, (8)

where . . . stand for the counterterms and for the terms of the classical action
depending on the unphysical fields as Ω and Faddeev–Popov ghosts c, c̄. The
full expression is given in Ref. [11].

The O(g0) of EM is zero. This result can be proved formally by applying
the operator g ∂

∂g to ZM before and after the rescaling of the field Aµ → gAµ.
The O(g2) part amounts to the evaluation of the graphs in Fig. 1; i.e. after
rescaling

EM =

〈
a4 g

2

∂

∂g

(
−1

4
Gaµν [A]Gµνa [A] +

M2

2
A2
aµ . . .

)〉
M

. (9)

1 2 3 4

Fig. 1. The Goldstone boson lines are dashed. The Faddeev–Popov propagators
are dotted.

2.1. Two loop amplitude

A straightforward calculation gives the Feynman amplitude properly nor-
malized [13] by the factor Λ(4−D)

E1M = −3
2a

4g2
[
3
(
D − 5

4

)
M2I2[M ]−

(
D2 − 4D + 15

4

)
A0[M ]2

]
. (10)
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The integrals are defined by

I2[M ] =

∫
M

dDq

(2π)D

∫
M

dDp

(2π)D
Λ(8−2D)

(q2 −M2) (p2 −M2) [(q + p)2 −M2]
,

A0[M ] =

∫
M

dDq

(2π)D
Λ(4−D)

(q2 −M2)
. (11)

It should be noticed that all contributions by the massless modes cancel out
(no contributions from the unphysical sector).

The tadpole integral is

A0[M ] = i
M2

(4π)2

[
− 2

D − 4
− ln∆

−1

4
(D − 4)

(
ln2∆+ 1 +

π2

6

)]
+O

(
(D − 4)2

)
, (12)

where

∆ =
e(γ−1)M2

4πΛ2
. (13)

Consequently, one gets

A0[M ]2 = − M4

(4π)4

[
4

(D − 4)2
+

4

D − 4
ln∆+ 1 +

π2

6
+ 2 ln2∆

]
. (14)

The two-loop integral can be found in the literature (see Ref. [17])

I2[M ] = 3
M2

(4π)4

[
− 2

(D − 4)2
+

1

D − 4
(1− 2 ln∆)

−
(
− ln∆+

π2

12
+

3

2
+ ln2∆

)
+

2√
3

Cl2

(π
3

)]
, (15)

where the Euler–Mascheroni constant and the Clausen function are

γ = 0.5772156649 ,

Cl2

(π
3

)
= 1.014941606 . (16)
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Finally, the contributions of the graphs in Fig. 1 add up to

E1M = −3

2
a4g2 M4

(4π)4

[
− 69

2

1

(D − 4)2
− 1

(D − 4)

(
−91

4
+

69

2
ln∆

)

−163

8
+

91

4
ln∆− 69

4
ln2∆− 23

16
π2 +

99

2
√

3
Cl2

(π
3

)]
. (17)

2.2. Contribution of the counterterms

In order to evaluate the contribution of the counterterms, we use the
results of Ref. [12] Eq. (29)

Γ̂ (1) ≡
∫
dDx γ̂(1)(x)

=
Λ(D−4)

(4π)2

1

D − 4

∫
dDx

[
17

4

(
∂µAaν∂

µAνa − (∂Aa)
2
)

+
3

2
M2A2

a

]
. (18)

Then the contribution of the counterterms is

E2M = −ia
4g2M2

(4π)2

D − 1

D − 4

69

4
A0

[
M2
]

= −3

2

a4g2M4

(4π)4

[
69

(D − 4)2
+

1

D − 4

(
23 +

69

2
ln∆

)

+
23

2
ln∆+

69

8

(
ln2∆+ 1 +

π2

6

)]
. (19)

The final result for the energy of the vacuum to order O(g2) is

EM = E1M + E2M = −3

2
a4g2 M4

(4π)4

[
69

2

1

(D − 4)2
+

183

4

1

(D − 4)

−69

8
ln2∆+

137

4
ln∆− 47

4
+

99

2
√

3
Cl2

(π
3

)]
. (20)

Notice that the singular part has no dependence on ∆. The finite part is
then

EM = −3

2
a4g2 M4

(4π)4

[
−69

8
ln2∆+

137

4
ln∆− 47

4
+

99

2
√

3
Cl2

(π
3

)]
. (21)
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2.3. The order parameter

The order parameter at O(g0) is given by

C
(0)
M = −a4

〈
M2

2
(Aaµ − Faµ)2

〉(0)

M

=
3

2

a4M4

(4π)2

(
6

D − 4
+ 3 ln∆+ 2

)
, (22)

where the path integral mean value is taken with the free part of the action.
The O(g2) can be easily evaluated with a trick. We use the fields scaled in
such a way that the coupling constant appears only in the interacting part
of the action. Then we have the identity

C
(2)
M =

g

2

∂

∂g
C

(2)
M = i

M2

N

∂

∂M2

g

2

∂

∂g
lnZM = −M2 ∂

∂M2
EM . (23)

Thus we use the expression in Eq. (20)

C
(2)
M =

3

2
g2a

4M4

(4π)4

[
69

1

(D − 4)2
+

183

2

1

D − 4

−69

4
ln2∆+

205

4
ln∆+

43

4
+ 33
√

3 Cl2

(π
3

)]
. (24)

We notice that once again the singular terms depending on ∆ cancel out in
the final amplitudes.

3. Euclidean–Minkowskian correspondence

The correspondence is established by requiring that the observables have
the same value. The mapping is obtained by the substitution

x4 = −ix0 ,

A4 = iA0 (25)

and by performing an anticlockwise Wick rotation on the x0 integration (to
match the statement of the edge-of-the-wedge theorem [16]). The generating
functionals are obtained by summing over the field configurations with the
weights

e−SE

eiSM (26)

for the Euclidean 〈〉E and Minkowskian 〈〉M mean values, where SE is the
Euclidean action obtained from SM by using the mapping in Eq. (25). Then
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we use the correspondence

〈(. . . φ(xj) . . . Aµk(xk) . . .)〉M

∣∣∣∣
x0 = i x4
A0 = −iA4

= 〈(. . . φ(xj) . . . Aµk(xk) . . .)〉E . (27)

In the Minkowski case, the field theory is made finite by the procedure
briefly outlined at the beginning of Sec. 2. For the Euclidean formulation,
we want to investigate the possibility to approximate the amplitudes by a
gauge lattice model given by an appropriate action SL introduced in Ref. [1]
and discussed later on. In fact, the paper is devoted to this comparison by
considering the global quantities EL and CL in lattice gauge theory in the
limit of weak coupling (β � 1), where perturbation theory can be used for
the theory in the continuum.

4. The lattice model

The action in Eq. (4) is invariant under gL(x) ∈ SU(2)L local-left and
gR ∈ SU(2)R global-right transformations. On the lattice, one can imple-
ment the same transformations by using link variables U(x, µ) and site vari-
ables Ω(x) ∈ SU(2). We have

SU(2)L

Ω
′(x)=gL(x)Ω(x)

U ′(x, µ)=gL(x)U(x, µ)g†L(x+µ)
, SU(2)R

Ω′(x)=Ω(x)g†R
U ′(x, µ)=U(x, µ)

. (28)

The lattice model is constructed by assuming the same invariance proper-
ties. The nearest neighbor interaction is required to map naïvely into the
action (4) for zero lattice spacing. The link variable is taken to be

U(x, µ) ' exp(−iaAµ(x)) . (29)

Thus the action is

SL =
β

2
Re
∑
2

Tr {1− U2}+
β

2
m2Re

∑
xµ

Tr
{

1−Ω(x)†U(x, µ)Ω(x+ µ)
}
,

(30)
where the sum over the plaquette is the Wilson action [18] and the mass
term has the (Euclidean) continuum limit

β

2
M2a2Re

∑
xµ

Tr
{

1−Ω(x)†U(x, µ)Ω(x+ µ)
}

→ M2

g2

∫
d4xTr

{(
Aµ − iΩ∂µΩ†

)2
}

(31)

to be compared with the corresponding term in Eq. (4).
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5. The lattice simulation

The partition function is obtained by summing over all configurations
given by the link variables and the SU(2)-valued field Ω

ZL

[
β,m2, N

]
=
∑
{U,Ω}

e−SL , (32)

where N is the number of sites.
In principle, the integration over Ω(x) is redundant, since by a change of

variables (UΩ(x, µ) := Ω(x)†U(x, µ)Ω(x+µ)) we can factor out the volume
of the group. ZL[β,m2, N ] becomes

[∑
{Ω}

]∑
{U}

exp−β
2

(
Re
∑
2

Tr {1− U2}+m2Re
∑
xµ

Tr {1− U(x, µ)}

)
.

(33)
However, in Eq. (32) we force the integration over the gauge orbit UΩ by
means of the explicit sum over Ω. In doing this, we gain an interesting
theoretical setup of the model; in practice, our formalism is fully gauge
invariant. Moreover, by forcing the integration over the gauge orbit UΩ,
we get results which are less noisy than those obtained by using only the
integration over the link variables in Eq. (33).

5.1. Numerical results

The numerical analysis of the model [1] shows the existence of a line
(Fig. 2), where the functions E and C have inflection points in m2 and β.
In the region β > 2.2, the line separates the unconfined phase with vector
mesons from the phase where confinement may occur.

In the region of weak coupling (large β) and above the transition line
we have evaluated the energy of the vacuum E and the order parameter
C per site for m2 = 0.1 . . . 8. We have used a cubic lattice with size 84

and 124. No difference could be spotted in the results for the two choices.
We have taken 103 measures separated by 15 updatings. For β = 10, we
have performed 104 measures in order to reduce the statistical errors, but
no appreciable improvement was observed. Some results are given in Figs. 3
and 4. It is very interesting that both these global quantities converge for
large m2 to values independent from β. From Eq. (30), one would expect
a strong dependence from the mass. From both figures, we see that near
the transition line the dependence on β becomes strong. In Fig. 4, we show
a simple fit of the data at β = 3, 10 with polynomials of second degree in
ln(m2).
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Fig. 2. The transition line. The arrow marks the position of the end point. In the
figures of the present paper the statistical errors are not displayed since they are
too small to be shown.
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Fig. 3. Energy per site at β = 3, 5, 6, 10, 20 as function of m2.
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Fig. 4. Order parameter C per site at β = 3, 4, 5, 10, 20 as function of m2.

6. The fit

In the present section, we try a fit of the analytic results of Sec. 2 to
the data obtained by simulation in Sec. 5. We use a simplified form of the
mapping (3)

g2 = f(β) ,

M2

Λ2
= m2 s(β) ,

aM = t(β) , (34)

where the numerical values of f, s, t are determined by the fit. The results
of Sec. 2 become

E(2)
M =

3

2
g2a

4M4

(4π)4
8.625

[(
lnm2 + ln s− 4.939

)2 − 5.943
]

+ e0 ,

C
(0)
M =

3

2

a4M4

(4π)2
8.625

[
0.348

(
lnm2 + ln s− 2.954

)
+ 0.232

]
,

C
(2)
M =

3

2
g2a

4M4

(4π)4
8.625

[
−2
(
lnm2 + ln s− 4.439

)2
+ 12.386

]
. (35)

The parameters are fitted according to the following steps: (i) first, we fit
the energy, since it is O(g2); (ii) then, we enter the parameters obtained
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by (i) ([g2(aM)4] and ln s) into CM and we perform the best fit for

C
(0)
M + C

(2)
M + e1 (36)

on a range ofm2 far from the transition line. The output of the fit procedure
are the parameters g2, aM, ln s, e0, e1. For convenience, we shall display the
quantity

βfit ≡
4

g2
, (37)

where g2 is the value obtained from the fit, in order to have a prompt
comparison with the lattice parameter β.

The strategy is dictated by the fact that the direct fit of the order param-
eter does not determine properly the values of aM and ln s, since these last
parameters have weak effect in comparison with the O(g0) term. Thus, it is
better to work at first with a O(g2) quantity: the vacuum energy. However,
the results of the first step depend strongly on the range of m2; therefore, we
choose the interval that yields a common value for ln s according to the pa-
rameterization of Eq. (34). The interval is reported in Table I in the second
column.

TABLE I

The fit of energy of the vacuum according to (35). ln s is defined in Eq. (34).

β Fit range ln s χ2

3 [0.5:8.5] 1.009 ± 0.047 4.3e-06
4 [0.218:8.5] 0.99 ± 0.16 7.8e-05
5 [0.165:8.5] 1.07 ± 0.23 1.1e-04
6 [0.147:8.5] 1.13 ± 0.26 9.3e-05
7 [0.125:8.5] 1.28 ± 0.28 9.8e-05
8 [0.115:8.5] 1.17 ± 0.29 7.2 e-05
9 [0.109:8.5] 1.28 ± 0.30 6.7e-05
10 [0.106:8.5] 0.97 ± 0.31 4.0e-05
20 [0.07:8.5] 1.03 ± 0.25 1.6e-05

6.1. Fit of the vacuum energy

We perform the fit of the total energy E(2)
M of Eq. (35) for β = 3,4,5,6,7,

8,9,10,20. Figures 5 and 6 give a reasonable account of the match between
lattice gauge theory and the field theory calculation with our subtraction
procedure. In Table I, we list some of the data of the fit: in particular ln s,
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the m2 interval and χ2 (which is very small). It should be noticed that aM
and g2 can be determined only by using the fit of the order parameter, since
the energy expression contains only the product [g2(aM)4].
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Fig. 5. Fit of the field theory prediction (Eq. (35)) to the lattice data for β = 3.
The parameters are g2(aM)4, ln s, e0.
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Fig. 6. See caption of Fig. 5 for β = 10.
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TABLE II

The fit of the order parameter according to (35). βfit is defined in Eq. (37).

β m2
c Fit range aM βfit χ2

3 0.235 [1.0:8.5] 2.151 ± 0.011 1.506 ± 0.038 0.003
4 0.175 [1.0:8.5] 2.2357 ± 0.0089 2.66 ± 0.13 0.003
5 0.135 [1.0:8.5] 2.2774 ± 0.0081 3.80 ± 0.25 2.7e-03
6 0.11 [1.0:8.5] 2.2906 ± 0.0082 4.87 ± 0.35 2.8e-03
7 0.1 [1.0:8.5] 2.3067 ± 0.0079 5.82 ± 0.47 2.7e-03
8 0.08 [1.0:8.5] 2.3155 ± 0.0078 7.17 ± 0.58 2.6e-03
9 0.07 [1.0:8.5] 2.3237 ± 0.0077 8.13 ± 0.69 2.6e-03
10 0.06 [1.0:8.5] 2.3273 ± 0.0075 10.16 ± 0.83 2.5e-03
20 0.035 [1.0:8.5] 2.3492 ± 0.0051 21.27 ± 1.34 2.4e-03

6.2. Combined fit of the vacuum energy and the order parameter

In the second step we fit the order parameter; thus we find the value
of g2 and aM . The results of the procedure are listed in Table II (aM ,
βfit = 4/g2 and χ2 of the fit). In Figs. 7 and 8, we depict the results of the
fit procedure for the values β = 3, 10. The plots include also the value of
the Wilson action of the vacuum (E − C). The figures show explicitly that
the fit procedure intentionally excludes the region near the transition line
(at m2

c).
The numerical results show that the field theory two-loop calculation of

the energy of the vacuum and the order parameter provides a good fit of
the lattice data on the surface given by the parametric equations (34). The
data in Tables I and II indicate that aM is almost constant for high values
of β. Instead βfit shows a steady increase. It should be noticed that for high
values of β the errors on the fit parameters become larger and larger.

The results of the fit are rather surprising. The fundamental length a is
provided by the mass of the continuous theory

a ' 2.3M−1 , (38)

while the values of m2 correspond to different values of the scale Λ of the
subtraction procedure of the divergences

m2 ' 1

3

M2

Λ2
. (39)

Thus the fit departs substantially from the naïve identification m = Ma,
where a is the lattice spacing. This seems to be the unavoidable price for a
mapping of the continuum theory equipped with more scales than the lattice
can accommodate.



On the Weak Coupling Limit for Massive Yang–Mills 191

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8

V
a

c
u

u
m

 E
n

e
rg

ie
s
 a

n
d

 O
rd

e
r 

P
a

ra
m

e
te

r

m
2
 (arrow at mc

2
=0.235)

β=3, Size 8
4
, Ensemble 10

3

gfit = 1.63
x2 = 0.5
x0 = 1
glat = 1.15

aM = 2.15βfit = 1.51 , ln(s) = 1.01 ,

 x=[x2:8.5],energy(x)
x=[x0:8.5],mass(x)

wilson(x)

Fig. 7. Fit of the field theory predictions (Eqs. (35), (36)) to the lattice data
on vacuum energy and order parameter for β = 3. The variables in the order
parameter are aM and e1, while g2(aM)4 and ln s are imported from the fit of the
vacuum energy.
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7. Conclusions

We have investigated the deconfined phase of a massive Yang–Mills
model. In particular, we have considered the weak coupling limit (large
β and m2 > m2

c) of two global observables: the vacuum energy density and
the order parameter density. The lattice simulation data (dependent on β
and m2) have been fitted with the analytic two-loop calculations of the con-
tinuum field theory (dependent on the mass M , the ultraviolet cut-off Λ
and the lattice spacing a). The fit turns out to be very promising both in
supporting the conjecture of the lattice as a regulator for nonlinear gauge
theories and in the comprehension of the lattice parameters in phenomenol-
ogy.

After these results a tantalizing question remains: whether a higher loop
calculation (3 loop) of the energy and order parameter density would improve
the agreement between lattice and continuum perturbation theory.

The outlook is for a comparison of the lattice data on the energy gaps
with the radiative correction of the masses (self-energies). Moreover, the
lattice simulations might provide quantitative predictions near the phase
transition line [19].

One of us (R.F.) is honored to thank the warm hospitality of the Center
for Theoretical Physics at MIT, Massachusetts, where part of the present
work has been done.
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