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The one-dimensional spin-1/2 quantum compass model is considered.
There is a multicritical point in the ground state magnetic phase diagram
of the model. By using the Jordan–Wigner transformation the diagonalized
Hamiltonian is obtained and analytic expressions for the spin–spin correla-
tion functions are determined at the multicritical point. On the other hand,
the critical exponent of the energy gap in the vicinity of the multicritical
point is calculated by a practical finite size scaling approach.
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1. Introduction

Commensurate–incommensurate (C-IC) phase transitions have been dis-
covered to have many interesting properties and can be characterized by
parameters known as critical exponents. In the ground state phase diagram
of any system containing different phases, there exists a special combination
of parameters, known as the critical point, at which the transition between
two phases becomes a C-IC phase transition. The C-IC phase transitions
arising in different systems often possess the same set of critical exponents
which is called the universality.

Multicritical points are special points in the ground state phase diagram
of some systems with a C-IC phase transition. At least two parameters
must be adjusted to reach a multicritical point. It is expected that, at a
multicritical point, the system belongs to a universality class different from
the normal universality class.

Low-dimensional spin systems are good candidate for studying the
C-IC phase transitions. In particular, we consider the 1D spin-1/2 quan-
tum compass model [1–7]. In fact, the quantum compass model is defined
for explaining the low-temperature behavior of some Mott insulators. In this
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model, the orbital degrees of freedom are represented by (pseudo)spin-1/2
operators and coupled anisotropically in such a way that they mimic the
competition between orbital ordering in different directions. By mapping
the model to a quantum Ising chain, an exact solution for the ground state
energy and the complete excitation spectrum are obtained [1]. It is shown
that the 1D quantum compass model exhibits a first-order phase transition
between two disordered phases with opposite signs of certain local spin cor-
relations. The model is also diagonalized exactly by a direct Jordan–Wigner
transformation [3]. The obtained by latter approach results, confirm the
existence of the first-order phase transition in the ground state phase dia-
gram. In a very interesting work [5], it is found that the reported first-order
phase transition, in fact, occurs at a multicritical point, where a line of the
first-order transition meets with a line of the second-order transition. Based
on a numerical analysis [6], the first and second order quantum phase tran-
sitions in the ground state phase diagram have been identified. The effect of
a transverse magnetic field on the 1D quantum compass model is also well
studied recently [8–13].

In the present work, we consider the 1D quantum compass model and
study the system at the multicritical point. First, by mapping the model
to the spin-1/2 XY chain [14, 15], we calculate the spin–spin correlation
functions at the multicritical point. Then, applying a practical finite size
scaling approach, we investigate the critical exponents of the energy gap, the
ground and first excited state energies in vicinity of the multicritical point.

The paper is organized as follows. In the forthcoming section, we present
our analytical results on the spin–spin correlation functions at the multicrit-
ical points. In Section 3, the numerical part of the work on deriving the
critical exponents is explained. Finally, in Section 4, we conclude and sum-
marize our results.

2. Correlation functions at the multicritical point

The Hamiltonian of the 1D quantum compass model with periodic bound-
ary conditions is defined as [5]

H =

N ′∑
j=1

(
J1σ

x
2j−1σ

x
2j + J2σ

y
2j−1σ

y
2j + Lσx2jσ

x
2j+1

)
, (1)

where σx,yj are the Pauli operators on the jth site and J1, J2, L are the ex-
change couplings N = 2N ′ is the number of spins. The ground state phase
diagram of the model is very rich including four different gapped phases
which are separated with the first-order (J1/L = 0) and the second-order
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(J2/L = 1) critical lines [5, 6]. The point where the line of the first-order
transition (J1/L = 0) meets with a line of the second-order (J2/L = 1) tran-
sition is called the multicritical point. This Hamiltonian at the multicritical
point can be rewritten as

H = J

N ′∑
j=1

(
σy2j−1σ

y
2j + σx2jσ

x
2j+1

)
, (2)

where J = J2 = L. Mapping the spin-12 operators onto Fermi operators by
means of the Jordan–Wigner transformation

S+
2j−1 = a†j e

iπ
(
Σj−1
m=1a

†
mam+Σj−1

m=1b
†
mbm

)
,

S+
2j = b†j e

iπ
(
Σjm=1a

†
mam+Σj−1

m=1b
†
mbm

)
, (3)

the quantum compass model at the multicritical point is transformed to a
1D noninteracting spinless fermion system as

H=J
∑
j=1

(
a†jbj + b†jaj − a

†
jb
†
j − bjaj + b†ja

†
j+1 + b†jaj+1 + a†j+1bj + aj+1bj

)
.

(4)
By a Fourier transformation, a†j =

1√
N ′
Σka

†
ke
ikj , the Hamiltonian Eq. (4) is

simplified as

H =
∑
k>0

A
(
a†kbk + b†−ka−k − a

†
kb
†
−k − bka−k

)
+
∑
k>0

A∗
(
b†kak + a†−kb−k − a

†
−kb
†
−k − b−kak

)
, (5)

where A = J(1 + eik). Using the following unitary (or Bogoliubov) trans-
formations

ak =

√
A

εk

(
αk + β†−k

)
,

bk =

√
A∗

εk

(
αk − β†−k

)
, (6)

the diagonalized Hamiltonian is given by

H =
∑
k

(
α†kαk − 1/2

)
εk , (7)
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where εk = 2
√
AA∗ is the energy spectrum. However, as is seen, only states

with even or odd numbers of Bogoliubov quasiparticles belong to the physical
spectrum of the Hamiltonian in the multicritical point [1].

Using the diagonalized form, one can find a general form for the spin–spin
correlation functions at the multicritical point as

〈
σx2j−1σ

x
2j−1+2n

〉
=
〈
σy2j−1σ

y
2j−1+2n

〉
= 0 ,〈

σx2jσ
x
2j+2n

〉
=
〈
σy2jσ

y
2j+2n

〉
= 0 ,〈

σx2j−1σ
x
2j+2n

〉
=
〈
σy2j−1σ

y
2j+2n

〉
= − 2

π

[
(−1)n

1 + 2n

]
. (8)

We emphasize that the spins in the quantum compass model are not cor-
related along the z direction. We have to mentioned that the spin–spin cor-
relation functions only for the nearest neighbor spins have been calculated [1]
as 〈σy2j−1σ

y
2j〉 = 〈σx2jσx2j+1〉 = − 2

Π , which confirms our results (Eq. (8)).

3. Gap exponent in the vicinity of the multicritical point

The finite size scaling method is an efficient way for extracting critical
exponents from finite-size systems results [16, 17]. In this method, one
should compare a sequence of finite lattices. The finite lattice systems are
solved exactly, and various quantities can be calculated as a function of the
lattice size N , for small values of N . Finally, these functions are scaled up
to N −→∞. Two steps are needed before these ideas can be realized. First,
one needs a procedure for solving the finite lattice systems exactly. Second,
one needs a procedure for extrapolating from finite to infinite N . In the
step one, we have used the numerical Lanczos method to obtain the energy
gap. We recognized the energy gap as the difference between the first and
the ground state energies in finite chains and also did not find any irregular
size dependence in our numerical results.

Using the Lanczos method, we have computed the energy gap as a func-
tion of the chain length N and the different values of the exchange pa-
rameter J1 very close to the multicritical point (please note that we have
considered J2

L = 1− J1
L ). We have implemented the Lanczos algorithm on fi-

nite size chains N = 8, 12, 16, 20, 24 by using periodic boundary conditions.
The energy gap as a function of the chain length N and exchange J1 is
defined as

G(N, J1) = E1(N, J1)− E0(N, J1) , (9)

where E0(N, J1) and E1(N, J1) are the ground and first excited energies.
At the multicritical point (J1 = 0), the spectrum is gapless. When the
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exchange J1 is added, a non zero gap develops and in the thermodynamic
limit behaves as

G(J1) ∝ Jν1 , J1 −→ 0 , (10)

where ν is the critical exponent of the energy gap. With our Lanczos scheme
we can compute G(N, J1), which approaches G(J1) when N is large. We
write the scaling function f(x) as the following expression

N G(N, J1) = N (E1(N, J1)− E0(N, J1)) = f(x) , (11)

where x = NJν1 is a scaling parameter. As expected, the behavior of this
equation in the combined limit

N −→∞ , J1 −→ 0 (x� 1) (12)

is consistent with Eq. (10). Thus, it can be assumed that the asymptotic
form of the scaling function is

f(x) ∼ xφ (13)

and the φ-exponent in the large-x regime, x � 1, must be equal to one
(φ = 1). Then we get in the large-x regime

lim
N−→∞(x�1)

f(x) = N (E1(N, J1)− E0(N, J1)) ∼ x . (14)

This equation shows that the large-x behavior of the scaling function
f(x) is linear in x = NJν1 , where the scaling exponent of the energy gap
is ν. We should note that in using the Lanczos method we are limited to
consider very small sizes (Nmax = 24). Moreover, since the scaling behavior
is restricted to the limit J1 −→ 0, to find the correct exponent of the energy
gap, we should consider very small values of J1 < 0.01. Therefore, using the
Lanczos method, the value of scaling variable x cannot be increased into the
required amount. However, we are not allowed to read the scaling exponent
of the energy gap which exists in the thermodynamic limit (N −→ ∞ or
x� 1). Thus, we have to find the scaling behavior from the small-x regime.

In the following, to find the critical exponent of the energy gap in the
small-x region, we apply an applicable method based on perturbation theory
[18–20]. In vicinity of the multicritical point, the Hamiltonian can be divided
into unperturbed (H0) and perturbed (H1) parts as

H0 =

N/2∑
j=1

(
σy2j−1σ

y
2j + σx2jσ

x
2j+1

)
,

H1 =

N/2∑
j=1

(
J1σ

x
2j−1σ

x
2j − J1σ

y
2j−1σ

y
2j

)
. (15)
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In this case, the energy gap basically represents the perturbed behavior

G(N, J1) = B(0)(N) +B(1)(N)J1 +B(2)(N)J2
1 + . . . (16)

The effect of higher-order terms can be neglected for J1 < 0.01 to a very
good approximation. The first coefficient in the perturbation expansion
B0(N) is the same as G(N, 0). To find a relation between other coefficients
and correct critical exponent of the gap of energy, it is more convenient to
rewrite the energy gap (Eq. (11)) as

N G(N, J1) = g
(
(NJν1 )

1
ν

)
, (17)

where f(x) = Ng(x). This implies

∂mG

∂Jm1
|J1=0 = N

m
ν × const , (18)

where m is the order of the leading term in the perturbation expansion.
Using Eq. (16), we obtain

B(m)(N) ∝ N
m
ν . (19)

Now, by considering the large-N behavior of B(m)(N) as

lim
N→∞

B(m)(N) ' a1N θ , (20)

we find that the critical exponent of the energy gap is related to the
θ-exponent as

ν =
m

1 + θ
. (21)

The above arguments suggest that we should look for the large-N behav-
ior of the coefficient B(m)(N). To do this, in the first step, we plotted in
Fig. 1 the energy gap G(N, J1) versus J1 (0.001 < J1 < 0.01) for a fixed
size N = 24. The best fit to our data is obtained with m = 1. We have also
implemented our procedure for different values of sizes N = 8, 12, 16, 20 and
found the same results for m, as expected. In the second step, we fitted the
results of the energy gap G(N, J1) to the polynomials for values of J1 close
to J1 = 0 up to m = 1. Using this procedure, we found the coefficient of
the first-order correction perturbation, B(1)(N), as a function of N . Then
we plotted in Fig. 2 the function B(1)(N) versus N . The results have been
plotted for different sizes N = 8, 12, 16, 20, 24 to derive the θ-exponent. We



Multicritical Point in the One-dimensional Quantum Compass Model 227

found the best fit data for θ = 0.0. Therefore, using Eq. (21) we have
computed the exponent of the energy gap in the vicinity of the multicritical
point, ν = 1.0±0.01 is in complete agreement with the analytical results [5].

Fig. 1. The energy gap, G(N, J1) is plotted as a function of J1 (0.001 < J1 < 0.01)
for the chain size N = 24.

Fig. 2. The values of functionB(1)(N) versusN . The numerical results are obtained
for different sizes N = 8, 12, 16, 20, 24.

There is an ambiguity in degeneracy of the ground state of energy [1, 2].
It has been calculated and different results have been obtained. Therefore,
to find a better picture of degeneracy, we have calculated energy spectrum
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of the model at the multicritical point by using full diagonalization method.
Our results show that degeneracy of the ground state energy is 2

N
2
−1 and

in complete agreement with the results of Brzezicki [1]. Furthermore, we
have investigated the degeneracy of the first excited state energy and found
it 2

N
2 .

4. Conclusion

In this work, we have considered the 1D spin-1/2 quantum compass
model. The ground state phase diagram of the model is known very well.
It was shown that there is a multicritical point, where the line of the
first-order transition (J1/L = 0) meets with a line of the second-order
(J2/L = 1) transition. Using the fermionization technique, we have di-
agonalized the Hamiltonian of the model in the multicritical point. Using
the fermion operators, we have found exact expressions for the spin–spin
correlation functions in the multicritical point. The results show that the
spins on odd (or even) sites are not correlated but otherwise spin–spin cor-
relation functions in the x and y directions are the same and behave as
〈σx2j−1σx2j+2n〉 = 〈σ

y
2j−1σ

y
2j+2n〉 = −

2
π [

(−1)n
1+2n ]. We should mention that the

correlation function in the z direction is zero.
On the other hand, we have calculated the critical exponent of energy

gap in the vicinity of the multicritical point by using the finite size scaling
method. Our results show the critical exponent of the energy gap is equal to
one ν = 1 and in good agreement with the analytical results. Furthermore,
the degeneracy of the ground state and first excited state of energies have
been determined by the full diagonalization method, respectively, 2

N
2
−1 and

2
N
2 .
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