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The Skyrme nuclear energy density functional theory (DFT) is used
to model neutron-induced fission in actinides. This paper focuses on the
numerical implementation of the theory. In particular, it reports recent
advances in DFT code development on leadership class computers, and
presents a detailed analysis of the numerical accuracy of DFT solvers for
near-scission calculations.
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1. Introduction

In spite of successful applications in energy production and national se-
curity, relatively little is known about the fundamental mechanisms of the
nuclear fission process. Even today, the most widely used theories of fis-
sion rely on the macroscopic–microscopic approach to nuclear structure and
semi-classical dynamics based on the Langevin equations. These methods
are quite powerful but, in the long term, cannot be expected to yield the
predictive power needed to understand the fission of very neutron-rich nuclei
in the fission-recycling stage of the formation of elements, or to give enough
accuracy for precise simulations of new generations of nuclear reactors.

Already in the 1980s, promising attempts were made to understand fis-
sion in a microscopic framework based on the self-consistent nuclear mean-
field theory with effective pseudo-potentials [1, 2]. At the time, the com-
puting power was not sufficient for these approaches to compete with more
empirical models, but these pioneer works yielded a lot of insight on the
quantum mechanics of fission. In the recent years, the rapid development of
leadership-class computers scaling to hundreds of thousands, and soon mil-
lions, of processing units has given us for the first time the computing power
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needed to successfully implement the full microscopic theory of fission. In
parallel, novel forms of scientific collaborations gathering nuclear theorists,
applied mathematicians and computer scientists have considerably improved
our ability to utilize such large-scale machines [3].

The goal of this paper is to provide some tools to verify and validate DFT
simulations of nuclear fission. In particular, we pay special attention to the
problem of the numerical accuracy of DFT solvers at very large deformations.
After a brief reminder on the theoretical framework, we recall some of the
recent developments in DFT calculations on leadership class computers, then
give a detailed analysis of truncation errors arising in DFT implementations
using the one-center finite harmonic oscillator basis.

2. Theoretical framework

The nucleus is described in the local density approximation at the
Hartree–Fock–Bogoliubov (HFB) approximation. The particle–hole chan-
nel is modeled by effective pseudo-potentials up to second-order derivatives
in the density. In practice, this is equivalent to using zero-range effective
interactions of the Skyrme type [4, 5]. The results presented below were thus
obtained with the SkM* parameterization of the Skyrme interaction [6]. The
particle–particle channel is characterized by a density-dependent contact in-
teraction with mixed volume and surface character [7]. An energy cut-off
of Ecut = 60MeV is used to reduce the number of quasi-particles in the
definition of the densities. The HFB equations are solved in a one-center
harmonic oscillator basis.

In the DFT picture of nuclear fission, the HFB energy of the nucleus
depends on an ensemble of collective variables q = (q1, . . . , qN ). These can
be, for example, variables describing the nuclear shape, excitation or spin.
In this work, we considered as collective variables the expectation value (on
the HFB ground-state) of the multipole moments Q̂λµ. In practice, the axial
Q̂20 and triaxial Q̂22, as well as the mass octupole Q̂30 and hexadecapole
Q̂40 moments were considered. The collective space is thus four-dimensional.
Expectation values of Q̂λµ will simply be denoted Qλµ ≡ 〈Q̂λµ〉.

In the actinide region, the part of the potential energy surface relevant
to nuclear fission spans a rather large range in deformations. The axial
quadrupole moments runs typically from∼ 30 b in the ground-state to nearly
600 b at scission for symmetric fission; the octupole moment from 0 to about
70 b3/2 for very asymmetric fission (cluster radioactivity, see [8, 9]); the
hexadecapole moment from nearly ∼ 3 b2 near the ground-state to typically
more than ∼ 350 b2 for symmetric fission. Assuming for sake of simplicity
a uniform sampling of each degree of freedom, and a 1 bλ/2 mesh size, the size
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of the collective space is more than 1.4 millions points, only for the axial
collective variables. Adding triaxiality multiplies this estimate by another 2
orders of magnitude.

3. Large-scale potential energy surfaces

In this section, we present the performance of our DFT solver, and pro-
vide a detailed analysis of convergence properties of our Skyrme HFB cal-
culations in the case of 240Pu.

3.1. DFT solvers on leadership class computers

All calculations were performed with the DFT solvers HFBTHO [10] and
HFODD [11]. Both codes solve the HFB equations in the harmonic oscil-
lator (HO) basis. The program HFBTHO assumes axial and time-reversal
symmetry, while HFODD is fully symmetry-unrestricted. The two programs
have been benchmarked against one another and agree within a few eV for
an axial configuration [10] .

Owing to the block-diagonal structure of the HFB matrix induced by ax-
ial symmetry, the typical runtime of HFBTHO is of the order of the minute
(depending on the type of nucleus, size of the basis and ‘difficulty’ of con-
verging the HFB iterations). By contrast, it is of the order of several hours
for HFODD. In practice, HFBTHO is used as pre-conditioner for HFODD:
for any given point q in the collective space, the HFB iterations are first
solved with HFBTHO, and the densities at convergence are used to ini-
tialize HFODD. If the point of the collective space is axial, no additional
iterations are, therefore, needed.

Clearly, the very large size of the collective space together with the cur-
rent runtime of the DFT solvers requires using today’s most powerful super-
computers. A lot of effort was, therefore, devoted to porting our codes to
leadership class computers, and ensuring that good scaling with the num-
ber of processing units could be achieved. From a computational point of
view, mapping the nuclear collective space in DFT is a naturally parallel
problem. The code HFODD has, therefore, a hybrid MPI/OpenMP pro-
gramming model, where points in the collective space are distributed across
the MPI grid, and on-node multi-threading enables to take advantage of
highly optimized linear algebra libraries. Figure 1 shows the performance
of HFODD on the Titan supercomputer at the Oak Ridge Leadership Com-
puting Facility. In this experiment, up to 300,000 processors were used in
parallel. The slight degradation of the computing time is due to the orig-
inal input/output backend, which has not been optimized and taxes the
operating system at large scale.
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Fig. 1. Performance of the DFT solver HFODD on the Titan supercomputer at
the Oak Ridge Leadership Computing Facility in Oak Ridge. Each experiment
measures the time of performing six full HFB iterations. The term ‘deformation
point’ refers to a set of constraints on multipole moments, i.e. a point in the
collective space.

3.2. Numerical accuracy

Modeling nuclear fission requires to explore regions of the collective space
with extreme deformations. The finite size of the HO basis may thus lead
to a significant dependence of the results on the basis parameters. In our
calculations, we only considered axially-deformed bases, characterized by a
quadrupole deformation β and an oscillator frequency ω0. The maximum
number of shells is denoted by Nmax and the maximum number of states by
Nstates. In the case of a full spherical HO basis, the two are related through
the well-known relation Nstates = (Nmax + 1)(Nmax + 2)(Nmax + 3)/6. This
relation is not valid anymore for a deformed basis. In practice, we introduce
two cut-offs, one on the number of shells and another on the number of
states. Note that the cut-off on the number of states is only the practical
consequence of using a symmetry-unrestricted solver, for which the size of
the matrices involved goes approximately as 2N3

max. By contrast, the block
structure induced by the built-in axial symmetry in HFBTHO would enable
to consider all full shells up to Nmax.

Basis dependence of the calculations thus comes from 4 parameters
(i) the maximum number of shells Nmax, (ii) the maximum number of states
Nstates, (iii) the oscillator frequency ω and (iv) the basis deformation β2. In
principle, at every point q in the collective space, we should seek the HFB
solution that is the minimum in this 4-dimensional parameter space. Clearly,
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such a strategy is not sustainable even on today’s largest computers. Instead,
one is bound to estimate truncation errors by exploring the parameter space
locally, and extracting asymptotic expressions.

As a first example, we show in figure 2 the dependence of the HFB
energy on the spherical-equivalent frequency of the harmonic oscillator ω0,
that is the frequency such that ω3

0 = ωxωyωz. The deformation of the basis
is fixed at each point according to the formula (2). Two typical points in the
collective space are considered, one near the ground-state with deformation
Q20 = 30 b, one way past the second barrier on the descent to scission at
Q20 = 300b and Q40 = 120b2. We note that the dependence on ω0 is more
marked at large deformations, and that the optimal frequency shifts toward
smaller values as the deformation increases, which is consistent with the need
to then include basis states with a larger spatial extension. Importantly, it is
possible to extend this analysis and extract an empirical fit ω0(Q20) giving
the optimal basis frequency as function of the quadrupole moment of the
collective point. In our tests, we found that the expression

ω0 =

{
0.1×Q20e

−0.02Q20 + 6.5MeV if |Q20| ≤ 30 b ,
8.14MeV if |Q20| > 30 b

(1)

gives a reasonably accurate fit of the frequency as function of the quadrupole
moment.
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Fig. 2. Convergence of the HFB energy as function of the oscillator frequency ω0,
for two configurations characterized by Q20 = 30b (black squares) and Q20 = 300b
and Q40 = 120 b2 (gray/red circles). The deformation β is adjusted according to
the formula (2).
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The dependence of the HFB energy on the deformation of the basis, for a
fixed Nmax and basis deformation, is illustrated in figure 3. Not surprisingly,
the minimum is always obtained for basis deformation that are ‘close’ to the
requested value of the axial quadrupole moment. Note that the dependence
on deformation is rather marked. However, as for the oscillator frequency,
it is a priori possible to obtain a fit β(Q20) such that the optimal basis
deformation is chosen at point in the collective space. Our tests showed
that the simple formula

β = 0.05
√
Q20 (2)

provides a reasonable expression that remains applicable up to the largest
values of Q̂20.
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Fig. 3. Convergence of the HFB energy as function of the basis deformation β.
The oscillator frequency is adjusted according to the formula (1). For the second
configuration, an additional constraint on Q̂60 to Q60 = 150b3 was added.

Last but not least, we show in figure 4 the error induced by the truncation
of the number of states. Contrary to the previous two parameters of the HO
basis, this truncation is imposed by memory limitations, and cannot really
be mitigated: for a given value of Nmax, the optimal number of states is
always given by Nstates = (Nmax + 1)(Nmax + 2)(Nmax + 3)/6, a number
that can grow very large for large Nmax For example, at Nmax = 30, we
have Nstates = 5456. Taking into account the spin degree of freedom, the
total number of basis states is more than 10,000, which implies that the
size of the HFB matrix exceeds 20, 000 × 20, 000. At this time, it is not
possible to handle in a reasonable time frame iterative processes involving
dense, complex matrices in double precision of that size. As can be seen from
figure 4, restricting Nstates to manageable values around Nstates ≈ 1000–1200
may easily lead to 2 to 3MeV errors beyond the second fission barrier.
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Fig. 4. Convergence of the HFB energy as function of the number of states Nstates.

To finish this section, we would like to emphasize two important conse-
quences of basis truncation effects:

• At constant truncation, the error increases with deformation, albeit
not necessarily linearly. This is bound to have a very significant im-
pact for, e.g., calculations of barrier penetrability, since the numerical
precision is not the same at the entry and exit points, and errors of
the order of the MeV can lead to orders of magnitude uncertainties on
fission lifetimes;
• Truncations magnify the impact of discontinuities in the potential en-

ergy landscape. In practice, calculations with very different basis char-
acteristics initialized with similar density/wave-functions could con-
verge to two very different points of the multi-dimensional PES. This
effect is the reason why, in the lower panel of figure 3, an additional
constraint on Q̂60 had to be added: without it the calculation did not
converge to the same point in the collective space at small and large
basis deformations.

4. Conclusions

The nuclear energy density functional theory is currently the only viable
option to achieve a microscopic description of nuclear fission. On-going de-
velopment of leadership class computing facilities all over the world offer a
unique opportunity to finally develop the nuclear DFT at very high preci-
sion. In this work, we have discussed some of the numerical uncertainties
associated with implementations of DFT in the one-center harmonic oscilla-
tor basis. They clearly point to the need of developing bases that are better
adapted to the extreme elongations characterizing the region near scission.
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