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In this article, we present strategic lines necessary in order to construct
general nuclear mean-field Hamiltonians as allowed by symmetry principles,
keeping in mind a possible increase of their predictive power.
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1. Posing the problem

One of the, so far, most successful approaches to the nuclear structure
many-body problem has certainly been the nuclear mean-field theory. Often
used realisations involved self-consistent methods like the Skyrme–Hartree–
Fock theory. However, despite an impressive number of publications using
these methods, very little is known about the predictive power of such the-
ories, especially when it comes to performing calculations extended into
regimes that lie outside of the areas used for the parameter fit (extraneous
predictions). In fact, it can be shown that the mutual inter-dependence of
certain parameters of the model, cf. Ref. [1] for illustrations, destabilises
the implied theory predictions: Small changes in the input imply significant
changes in the theory results — effectively destroying the predictive power.
In the case of the mentioned Skyrme–Hartree–Fock Hamiltonian, this prob-
lem can be considered serious: There exist over 250 different parametriza-
tions of the corresponding Hamiltonian, non-equivalent and occasionally,
mutually contradicting e.g. terms attractive within one parameterization
are repulsive within another, cf. Ref. [2]. The corresponding Hamiltoni-
ans generally lead to extraneous predictions which can hardly be considered
compatible.
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Constructing quantum theories of the nuclear many-body problem and
at the same time imposing the condition that the theory’s extraneous pre-
dictions are stable, is generally a complex issue. It has to do with the notion
of the inverse problem of applied mathematics which we recall briefly. Given
theory T represented by an operator Ô which allows to obtain the theory
results1 referred to as data, d th, through action on parameter set p. When
operating on parameters to obtain theory predictions, Ô(p) = d th — we
say that we solve the direct problem. However, to be able to perform such
calculations, to start with we need to know the parameters what implies
that at least once at the beginning we must solve the

Inverse Problem : Ô−1(d exp) = p , (1)

where d exp represents the set of all the experimental data. When theory
parameters are correlated (as it is the case of the Skyrme–Hartree–Fock
Hamiltonian), one can demonstrate rigorously that the inverse in the above
relation does not exist — in which case the formalism does not provide
any relation between the experimental data and parameters: The formalism
simply cannot be parametrized.

However, the parameter finding algorithms in all cases of practical im-
portance involve the χ2 parameter-fitting rather than the formal analysis
of the inverse problem with the misleading consequences: The χ2 algorithm
most of the time provides a very good fit to the experiment so that the graph
of comparison between the theory and data “looks good”. Since, however,
in this case the inverse problem is ill-posed the so-obtained parameters may
lie in the unphysical ranges and, moreover, the implied parameterization is
unstable.

There exists no satisfactory remedy known today for the nuclear physics
inverse problem discussed — however, perhaps surprisingly — the underly-
ing mathematical formalism is rather well known. It involves the techniques
of elimination of parametric inter-dependencies as well as the so-called regu-
larisation techniques among which the method of Tikhonov and the so-called
Singular Value Decomposition are about the best known. From what has
been said it follows that the choice of the underlying Hamiltonian plays a
crucial role: If one or more terms of physical significance are missing, the
remaining terms will be parametrized incorrectly since the absence of certain
components of the interaction (an ignorance) will be numerically compen-
sated by over- (under-) evaluated parameter values. If that happens the
predictive power is lost.

As a consequence, Hamiltonians underlying the constructed theory should
contain all possible terms permitted by the fundamental symmetries which

1 In some cases Ô can be identified with the Hamiltonian of the system; sometimes it
may involve other formalisms such as the theory of the electromagnetic transitions.
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the considered interaction must obey. In other words: All the mean-field
interaction components which are permitted by the fundamental symme-
tries must appear in the formalism at the very beginning. Their relative
importance is to be determined only as the next step.

In order to construct the most general form of the nucleon–nucleon inter-
action as allowed by symmetry considerations, one may employ the so-called
spin-tensor decomposition [3, 4]. Within this formalism, one constructs the
following six tensors of rank k = 0, 1, 2 in spin-space

S
(0)
1 = 1 , S

(0)
2 = {~σ1 ⊗ ~σ2}(0) , S

(1)
3 = ~σ1 + ~σ2 , (2)

S
(2)
4 = {~σ1 ⊗ ~σ2}(2) , S

(1)
5 = {~σ1 ⊗ ~σ2}(1) , S

(1)
6 = ~σ1 − ~σ2 , (3)

where ~σ1 and ~σ2 represent the spins of the two nucleons, labelled “1” and “2”,
respectively. These spin tensors can, in turn, be coupled to tensors in the
configuration space X(k)

µ and Y
(k)
µ with the same rank k to form scalar

interactions

V (1, 2) =
6∑

µ=1

({
X(k)
µ ⊗ S(k)

µ

}(0)
PT=0 +

{
Y (k)
µ ⊗ S(k)

µ

}(0)
PT=1

)
, (4)

PT=0 and PT=1 denoting isospin projectors. Expression (4) is the required
form of the nucleon–nucleon interaction which will enter the mean-field de-
scription. Coupling of tensors with k = 0, k = 1 and k = 2 leads to the
scalar, vector and tensor forces, respectively.

Of course, the form-factors of such an interaction cannot be derived from
symmetry considerations, and have to be deduced by adjustment of some pa-
rameters to the appropriately chosen experimental data whose instrumental
and systematic uncertainties are well under control. At this point, a number
of important questions immediately arise. For example, is there any hier-
archy in the importance of various contributions? How can one adequately
determine their relative importance knowing that the adjusted parameters
generally depend on the sampling (experimental data input)? Another fun-
damental issue is related to possible interrelations between parameters con-
trolling different terms of the interaction. Are some parameters related to
other ones? If yes, how can one overcome, totally or at least partially, this
difficulty, since this would lead to instabilities of the theoretical calculations
and eventually to the impossibility of extraneous predictions?

Surprisingly, such issues belong to the everyday research program in
many domains of science, but have been seldom posed in subatomic physics.
As an example of typical parametric correlations, imagine a phenomenolog-
ical mean-field Hamiltonian including a central and a spin-orbit field. If
a contribution due to a nucleon–nucleon tensor-force is added (symmetry
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principles allow its presence) but if such a term is omitted for so-called sim-
plicity, the form-factors of the central and spin-orbit terms with parameters
fitted to experiment will partially ‘compensate’ for this absence. The con-
sequence of such a procedure would be (at least partially) a loss of physical
adequacy of such interactions. [Note in passing that it is well known that
both the nucleon–nucleon tensor and spin-orbit interactions give raise to
contributions of the spin-orbit splitting in nuclei.]

Among many advantages of the mean-field approach, one can notice that,
even if some terms in the spin-tensor decomposition are sensu stricto forbid-
den by symmetry considerations for the nucleon–nucleon interactions, they
may be incorporated, however, in effective one-body formalisms. This is the
case for instance for the so-called anti-symmetric spin-orbit interaction that
may be constructed out of the terms S(1)

5 = {~σ1⊗~σ2}(1) and S(1)
6 = ~σ1 − ~σ2,

in contrast to S(1)
3 = ~σ1+~σ2 which is at the origin of the standard spin-orbit

potential.

2. Summary

In this article, we emphasise the fundamental problem of the predictive
power of theories in the domain of nuclear structure calculations. The accent
has been put on the concept of the nuclear mean-field, whose components
should, as a matter of principle, stem from the more fundamental nucleon–
nucleon interaction. The structural form of the latter interaction is governed
by symmetry principles, and this can be achieved in a systematic way by
using the spin-tensor decomposition technique. However, the form factors
entering the various terms have to be parametrized in some phenomeno-
logical way, rendering unavoidable the introduction of some parameter sets.
New questions arise at this stage, as possible hierarchization of different con-
tributions as well as possible interrelations between the parameters. This, in
turn, leads to the necessity of controlling the predictive power of the theory
by analysing the parametric correlations and possibly finding some ways to
remedy this difficulty via regularisation techniques.

The loss of predictive power in any mathematical modelling is related to
the fact that the associated inverse problem (cf. e.g. Ref. [5]) is ill-posed.
The ill-posedeness is a very common phenomenon in many scientific domains
in which the inverse problem theory is applied, cf. Sect. 6 in Ref. [1], however
very importantly, in particular also in the case of Skyrme–Hartree–Fock cal-
culations in nuclear structure physics, cf. e.g. Fig. 7 in the same reference.
This ill-posedeness is a direct result of the fact that the parameters of the
Hamiltonian used turn out to be correlated. [There exist certain well known
regularization procedures which can be applied to diminish the implications
of the parametric correlations, those former ones, however, have generally
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not been applied so far, at least in most of the sub-atomic physics studies.]
It turns out that the actual nuclear mean-field Hamiltonians suffer from
parametric correlations — thus from ill-posedeness — and consequently the
instability of the extraneous predictions (for the distinction between intra-
neous and extraneous predictions cf. Ref. [1]).

In the case of the nuclear mean field applications, the situation, already
grave because of the ill-posedeness due to the parametric correlations, can
even be made worse(!) by adjusting the parameters to the observables which
these Hamiltonians are not constructed to reproduce. For instance: by
adjusting the parameters of the mean-field Hamiltonians, the latter rep-
resenting merely the mean-field degrees of freedom such as single particle
energies, to the nuclear masses, the latter sensitive to the nucleon–nucleon
interactions, which are absent in the mean-field approximation, we deliber-
ately falsify the fit (sometimes referred to as ‘wrong fitting’) by forcing the
parameters of the mean field to describe partly the effects of the 2-body
correlations — absent in these Hamiltonians.

In the situation of ill-posedeness, and thus with the issue of theory’s
predictive power resting on the ‘shaky’ grounds, there are some observables
on which the damaging impact may be less important than on the others.
For instance, it seems quite reasonable to expect that predictions based
on single-particle properties used for the parametric fits as well as for the
observables directly related to those of the single particle properties should
suffer less severely from the lack of predictive power than other quantities.
As an example, giant resonances essentially imply particle-hole excitations
related to the single-particle degrees of freedom, and may, therefore, benefit
from better extrapolations properties in such a case.
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