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A collective approach combining zero- and one-phonon excitations in
nuclear quadrupole and octupole modes together with the rotational mo-
tion up to spin J = 5 is used to verify the possibility of reproducing the
experimental electric B(Eλ) probabilities in 156Gd nucleus in presence of
the high-rank tetrahedral/octahedral symmetries in collective quadrupole,
octupole and rotational states.
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1. Introduction

Systematic knowledge of electromagnetic reduced transition probabili-
ties, B(Eλ), is essential for discovering possible high-rank symmetries, such
as, e.g., tetrahedral or octahedral ones, in nuclear systems. Symmetries are
known to be the key factor determining the structure of the wave functions,
thus strongly affecting the reduced transition probabilities. In this paper,
we apply a harmonic-like model, discussed in details in Ref. [1], to reproduce
the experimental B(E1) and B(E2) probabilities in 156Gd, a nucleus sup-
posed to possess low-lying tetrahedral, negative-parity band and for which
some data of interest are available from the recent experiments [2, 3]. We
thus analyze the behaviour of the electric transition probabilities within and
between the ground-state and the negative-parity bands in order to find
out to which irreducible representation of the tetrahedral group Td (or the
octahedral group O) the state of interest could belong.

The proposed collective model contains twelve collective variables (α20,
α22, {α3ν}, {Ω}, ν = 0,±1,±2,±3), describing respectively the axial and
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non-axial quadrupole vibrational modes, all the seven octupole vibrational
modes and the three rotational modes described by the Euler angles. Nuclear
surface in the intrinsic coordinate system is described in terms of those nine
shape variables (α20, α22, {α3ν}) using the multipole expansion given, e.g.
in Ref. [4]. In this work, for simplicity of calculations and focusing on our
strategical goal, we apply the idea of the adiabatic separation of vibrational
and rotational motions. As a consequence, we introduce a factorized wave
function of the form

ψ ≡ ψΓ1Γ2
vib (α20, α22, α3ν)R

Γ3
JM (Ω) = ψΓ1

vib,2(α20, α22)ψ
Γ2
vib,3(α3ν)R

Γ3
JM (1)

composed of products of the vibrational quadrupole ψΓ1
vib,2(α20, α22), oc-

tupole ψΓ2
vib,3(α3ν) and rotational RΓ3

JM (Ω) solutions corresponding to un-
coupled Hamiltonians. Each of those three ψ-functions belongs to only one
irreducible representation Γi of the octahedral group O or the tetrahedral
group Td. One should realize that both those groups are isomorphic, thus
having the same set of the irreducible representation matrices. On the other
hand, the proposed states (1) span the collective space of our model in
which a collective Hamiltonian should be constructed. It is the symmetry
of that Hamiltonian which uniquely determines the symmetry properties of
its eigensolutions built as the linear combinations of the basis functions (1).
Therefore, at this stage, one is not able to unambiguously judge which of
those two symmetries the underlying system really possesses.

As often assumed in simplistic collective approaches, the overall be-
haviour of a low-lying state can be crudely reproduced by the zero- and
one-phonon harmonic oscillator eigensolution. Since a collective Hamilto-
nian, able to reasonably reproduce the transitional probabilities is not known
at this moment, we choose the physical states ψΓ1

vib,2(α20, α22), ψΓ2
vib,3(α3ν) of

Eq. (1) to be the specific and complicated linear combinations of the zero-
and one-phonon harmonic oscillator solutions transforming according to a
given irreducible representation Γ of the group O (or Td) and, in addition,
having good parity. Notice however, that inversion operation does not be-
long, neither to the octahedral group, O, nor to the tetrahedral one, Td,
and that it commutes with all elements of both groups. As a consequence,
the parity can be a good quantum number for the tetrahedrally or octahe-
drally symmetric states. The details of the procedures leading to such states
and the way of constructing the rotational states RΓ3

JM (Ω) are presented in
Refs. [1, 4, 5].

2. Results

The reduced transition probability between the states (1), governed by
the intrinsic transition operator Q̂λµ, can be calculated as
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Eλ, J → J ′

)
=
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µ

〈
ψ′
Γ ′1Γ

′
2

vib

∣∣∣ Q̂λµ ∣∣∣ψΓ1Γ2
vib

〉 〈
R′

J ′;Γ ′3
∣∣∣ ∣∣∣Dλ?

.µ

∣∣∣ ∣∣RJ ;Γ3
〉∣∣∣∣∣

2

, (2)

where J and J ′ are the angular momenta of the initial and final states,
respectively. The symbol .µ as the sub-script of the Wigner function signifies
that the considered reduced matrix element is reduced with respect to the
first index. The meaning of the Γ -type symbols has been explained after
Eq. (1).

Suppose that the initial |i〉 and final |f〉 states of a given collective Hamil-
tonian belong to the representations Γ i and Γ f , respectively, whereas tensor
transition operator Q̂λν transforms according to irreducible representation
ΓQ of the octahedral group. The reduced probability of Eq. (2) can be non-
zero if and only if Γ i ⊗ ΓQ ⊃ Γ f , where symbol ⊗ denotes the Kronecker
product of the irreducible representations.

Among all the five irreducible representations of the group O (or Td)
there exist several pairs of representations corresponding to Γ i and Γ f which
do not fulfil the above condition. The problem of the selection rules for the
octahedral group O has been discussed in details in Ref. [1].

Aware of those facts, our task, at this stage, is to find out to which ir-
reducible representation a given experimental level could possibly belong.
The question becomes even more challenging if one takes into account the
symmetrization problem, usually solved by introducing the so-called sym-
metrization group, (for more details, see e.g. Ref. [1, 6]).

It can be shown that for the collective space discussed here the sym-
metrization group is, in fact, the octahedral group, O. In short, the sym-
metrization or, in other words, the condition assuring that the constructed
intrinsic nuclear states are unique in the laboratory coordinate system, re-
quires that each state (both for the ground-state band and for the negative-
parity band in question) transforms with respect to the scalar irreducible
representation (denoted by A1) of the symmetrization group. Let us empha-
size that, in general, one should clearly distinguish the intrinsic symmetry
group acting on the intrinsic-component functions of Eq. (1) from the sym-
metrization group, incidentally they coincide in the present model. Each of
those two types of groups influences different aspects of a collective model
(more details available e.g. in Ref. [4]). Since the intrinsic state (1) by con-
struction is defined as the product of the three components transforming
according to Γ1, Γ2 and Γ3 representations respectively, the symmetriza-
tion condition requires that Γ1 ⊗ Γ2 ⊗ Γ3 ⊃ A1. Keeping in mind that
the total collective state should be finally symmetrized with respect to the
group O and to avoid ambiguities related to the octahedral and tetrahedral
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group isomorphism, the conclusions in the following will refer to the octahe-
drally symmetric states. As demonstrated in details in Ref. [1], one of the
consequences of existing a non-trivial symmetrization group is that a sym-
metrized intrinsic state of given (even or odd) spin J can be usually obtained
through more than one scheme of coupling of Γ1, Γ2 and Γ3 irreducible rep-
resentations of the group O. For the assumed symmetrized, positive- and
negative-parity functions, used in this work to approximately reproduce the
ground-state and octupole bands, twenty two different coupling schemes are
potentially possible, (see, Ref. [1]).

Contrarily to the early simplistic considerations of the high-rank sym-
metries in atomic nuclei, based mainly on the tetrahedrally deformed mean-
field, a realistic collective approach pretending to properly treat the problem
of tetrahedral symmetry should comprise, apart from the simplest tetrahe-
dral mode commonly recognized as the one which has zero quadrupole mo-
ment and represented in the lowest order by the Y32(θ, ϕ) spherical harmonic
alone, a possibility of incorporating the equivalent tetrahedral “combined
modes” given by the characteristic superpositions of other than the Y32 oc-
tupole modes, as done in Ref. [7]. It turns out that such a mode, coupled
of the quadrupole, octupole and rotational motions, (see, Ref. [1]) can have
arbitrarily large quadrupole moment, able to produce a substantial B(E2)′s.

However, aiming at a construction of octahedrally symmetrized states,
corresponding to the experimental rotational octupole band whose states,
modelled by the combinations of the functions (1), are connected by strong
B(E2)′s and, in addition, decaying to the ground-state band by relatively
strong B(E1)′s, we dispose with significantly reduced number of possible
coupling schemes, compared to the all twenty two possible scenarios. The
further limitations to select the most suitable coupling scheme can be pro-
vided by characteristic experimental branching ratios of the E1 transitions.
Precisely, the branching ratios of the probabilities of the dipole transitions
starting from the odd-spin states to the corresponding probabilities starting
from the even-spin states varies, considering the uncertainty of the mea-
surement, from about one to thirty. The latter comes from the analysis of
the negative-parity spectrum in 156Gd, measured in the ILL laboratory in a
series of experiments using the Bragg spectrometry methods, (see, Ref. [2]).

Having rejected the coupling schemes which do not fulfil the above
conditions, the octahedrally symmetrized, quadrupole-deformed ground-state
band can be built out of only the two sets of irreducible representations
{Γ1, Γ2, Γ3}, namely: {Γ1 = A1, Γ2 = A1, Γ3 = A1} for J = 0, 4 and
{Γ1 = E,Γ2 = A1, Γ3 = E} for J = 2, 4. As seen, the J = 0+ state
can be uniquely obtained with Γ1 = Γ2 = Γ3 = A1. We are using the
standard labelling of irreducible representations [8], where A1, A2 are the
one-dimensional, E denotes two-dimensional and T1, T2 three-dimensional
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irreducible representations. In order to reproduce the experimental B(E2)′s
in 156Gd within the ground-state band with the best accessible in this model
accuracy, both the states with J = 2+ and J = 4+ should be generated ac-
cording to the second scheme.

In turn, the octupole negative-parity band of interest can be composed of
the following sets of irreducible representations: {Γ1 = A1, Γ2 = Γ3 = A2}
for J = 3, {Γ1 = A1, Γ2 = T1, Γ3 = T1} for J = 1, 3, 4, 5 and {Γ1 = A1, Γ2 =
T2, Γ3 = T2} for J = 2, 3, 4, 5. However, the most reasonable reproduction
of experimental B(E1) as well as B(E2, 5− → 3−) probabilities can be
obtained if the octupole J = 3− and J = 5− states are constructed according
to the second of the above written schemes.

After a number of trials we have found out that for the ground-state
band, explicit shapes of the functions ψΓ1

vib,2(α20, α22) of Eq. (1) are, in
general, complicated linear combinations of two-dimensional zero- and one-
phonon oscillator solutions proportional to

u0

(
η2, α20−

◦
α20

)
u0

(√
2η2, α22−

◦
α22

)
,

u0

(
η2, α20−
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α20
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u1

(√
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(
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)
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(√
2η2, α22−

◦
α22

)
.

The linear combination coefficients are determined through the projecting
onto the required representation, described in Ref. [4]. Above, u0 and u1 are
the one-dimensional, zero- and one-phonon oscillator eigenfunctions, respec-
tively, where ηλ =

√
Bλωλ

~ , λ = {2, 3} with the mass (inertia) parameter Bλ
and ωλ corresponding to the angular oscillator frequency. It can be shown
that the resulting (projected) quadrupole functions Ψvib;2 of positive parity
belong to the three irreducible representations A1, A2, E of the group O.

In the case of the zero-phonon functions, the static deformation param-
eters

◦
α20 and

◦
α22 describe, on average, the position of the wave function

peaks. These peaks, clearly, should fit the quadrupole potential energy well
at the {α20, α22} surface.

The octupole ψΓ2
vib,3(α3ν) component of the ground-state members is as-

sumed to be the zero-phonon seven-dimensional oscillator solution trans-
forming with respect to the Γ2 = A1 representation of the group O:

ψA1
vib,3(α3) = un1 (η3, α

r
30)un2
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2η3, α

r
31
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where the super-scripts ‘r’ and ‘i’ denote the real and imaginary parts of
α3ν , (ν = 0,±1,±2,±3) deformation parameter, respectively with the condi-
tion αλµ=(−1)µα?λ−µ. In this case, the fact that nk = 0 for k = {3, 4, . . . , 7}
implies that all the seven one-dimensional oscillator states are of zero-phonon
type. Observe that the factor of

√
2 by η2 and η3 in Eq. (3) as well as in

the previously defined two-dimensional quadrupole oscillator functions ap-
pears due to the rewriting the oscillator eigenfunctions, depending initially
on the deformation parameters {α20, α2−2, α22, α3ν , ν = 0,±1,±2,±3}, in
terms of pure real parameters {α20, α22, α

r
3µ, α

i
3µ, µ = 0, 1, 2, 3}. Apply-

ing the similar projecting procedure as in the case of the quadrupole func-
tion ψΓ1

vib,2(α20, α22), the octupole (after projection) one-phonon compo-
nent ψΓ2

vib,3(α3ν), transforming with respect to desired irreducible represen-
tation Γ2 = T1 is the triplet of linear combinations of the zero- and one-
phonon, seven-dimensional oscillator solutions of the form (3) with the fol-

lowing substitutions: αi
32 → αi

32+
◦ i
α 32, nk = {0, 1}, k = {3, 4, . . . , 7} and∑7

k=3 nk = 1. In the above, the quantity
◦ i
α 32, similarly as in the quadrupole

case, is the static deformation parameter describing the position of the oc-
tupole peaks of the wave function (1). Finally, as the quadrupole part of the
octupole, negative- or positive-parity states, we put the ψΓ1

vib,2(α20, α22) ≡
u0(η2, α20)u0(

√
2η2, α22) zero-phonon function transforming according to the

scalar representation A1. As shown in Ref. [3], the values of the Q0 moments
of the ground state and the octupole bands are comparable. Therefore, in

the following the quadrupole axial deformations of both these bands,
◦
α
(gs)

20

and
◦
α
(oct)

20 are assumed to be identical whereas their non-axial deformations
◦
α22 as equal to zero. With the above assumptions leading to the reduction of
the number of adjustable parameters, we have determined through the least-

square method the parameters η2, η3,
◦
α
(gs)

20 ,
◦
α
(oct)

20 and
◦ i
α 32 of the constructed

0+, 2+, 4+, 3−, 5− states. This has been achieved by minimizing the differ-
ence between the theoretical and experimental of Ref. [3] values of the six
selected B(E1) and B(E2) probabilities in 156Gd nucleus. The experimen-
tal energies of those states, taken from Ref. [3] are: 0.0 keV, 88.970(1) keV,
288.187(1) keV, 1276.138(2) keV, 1408.133(5) keV, respectively. Such an ad-
justment has been done in order to verify whereas a reasonable reproduction
of the experimental reduced probabilities in this nucleus is, in general, possi-
ble in presence of the octahedral symmetry of the above states. In the table
below, we write down the set of electric transitions Eλ of Ref. [3] between
the states of spins Ji and Jf (1st column) and the corresponding, estimated
within this work reduced probabilities Bth(Eλ) (2nd column). The 3rd col-
umn represents its experimental values Bexp(Eλ) for which the adjustment
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in question has been carried out:

Transition Eλ, Ji → Jf Bth(Eλ) [W.u.] Bexp(Eλ) [W.u.]

E2, 2+ → 0+ 159 187(5)
E2, 4+ → 2+ 279 263(5)
E2, 5− → 3− 293 293+61

−134

E1, 3− → 2+ 1.10× 10−3 0.98(21)× 10−3

E1, 3− → 4+ 0.63× 10−3 0.77(16)× 10−3

E1, 5− → 4+ 0.75× 10−3 0.85+19
−38 × 10−3

Using the obtained in this way parameters, (η2 = 12.67, η3 = 11.60,
◦
α22= 0.0,

◦
α
(gs)

20 =
◦
α
(oct)

20 = 0.34) we have estimated the B(E1, 2− → 2+) and
B(E1, 4− → 4+) probabilities in 156Gd nucleus, measured in the GAMAS
experiments, whose results are collected in Ref. [2]. Both the 2− and 4−

octupole, even-spin states are constructed according to the {Γ1 = E,Γ2 =
Γ3 = T2} coupling scheme. The estimated B(E1) probability values are
written in the 2nd column of the below table whereas the measured values
are placed in the 3rd column.

Transition Eλ, Ji → Jf Bth(E1) [W.u.] Bexp(E1) [W.u.]

E1, 2− → 2+ 5.2× 10−4 1.1+6
−0.7 × 10−4

E1, 4− → 4+ 1.5× 10−4 2.0+7
−0.8 × 10−4

As seen, the above theoretical estimates of the dipole transition probabil-
ities within the octahedrally symmetrized harmonic-like collective solutions
differ by a factor of one to five, relative to the corresponding experimen-
tally measured with the uncertainty of about 50% probabilities. Hence, the
advocated here hypothesis predicting the existence of the octahedrally sym-
metrized octupole bands in 156Gd, whose states are described by above stud-
ied vibrational–rotational functions is not in contradiction with the empirical
facts. The latter indicates a need for further, more involved investigations
for the presence of the high-rank symmetries in nuclear systems.
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340 A. Dobrowolski, A. Szulerecka, A. Góźdź

REFERENCES

[1] A. Dobrowolski, A. Szulerecka, A. Góźdź, to be published in Phys. Scr.
(2013).

[2] M. Jentschel, L. Sengele, private communication.
[3] M. Jentschel et al., Phys. Rev. Lett. 104, 222502 (2010).
[4] A. Góźdź, A. Szulerecka, A. Dobrowolski, J. Dudek, Int. J. Mod. Phys. E20,

199 (2011).
[5] A. Góźdź, A. Szulerecka, A. Dobrowolski, Int. J. Mod. Phys. E20, 565

(2011).
[6] A. Góźdź, A. Szulerecka, A. Pedrak, A. Dobrowolski, Proc. of the Workshop

on Nuclear Theory, Vol. 31, 2012.
[7] A. Góźdź, A. Dobrowolski, J. Dudek, K. Mazurek, Int. J. Mod. Phys. E19,

621 (2010).
[8] J.F. Cornwell, Group Theory in Physics, Vol. 1, Academic Press, London

1994.

http://dx.doi.org/10.1103/PhysRevLett.104.222502
http://dx.doi.org/10.1142/S0218301311017521
http://dx.doi.org/10.1142/S0218301311017521
http://dx.doi.org/10.1142/S0218301311018010
http://dx.doi.org/10.1142/S0218301311018010
http://dx.doi.org/10.1142/S0218301310015035
http://dx.doi.org/10.1142/S0218301310015035

	1 Introduction
	2 Results

