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The study of transfer reactions in inverse kinematics is a major focus
of existing and future radioactive-ion-beam facilities. One of the obstacles
in such measurements is poor Q-value resolution, often several hundred
keV, which can prevent the extraction of useful information. At Argonne
National Laboratory, it has recently been demonstrated that good Q-value
resolution can be achieved by transporting the outgoing ions through a
high-field solenoid, measuring their position as a function of energy. This
provides several advantages over conventional Si arrays, such as large ac-
ceptance, good particle identification, and most importantly a Q-value res-
olution of better than 100 keV in most cases, including reactions with mod-
erately heavy beams. In this paper, the concept of the solenoidal spec-
trometer, called HELIOS, will be discussed along with highlights of recent
results.
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1. Introduction

Direct reactions such as single-nucleon transfer, pair transfer, and in-
elastic scattering, are powerful probes of nuclear structure. Key nuclear-
structure information can be extracted from reaction cross sections, the an-
gular distribution of the outgoing ions, and their energy. This includes
single-particle energies, spectroscopic factors (reduced cross sections), pair-
ing properties, and information on collective degrees of freedom. There has
been a great deal learnt in exploiting these types of reactions with precision
accelerators and high-resolution magnetic spectrometers over the last 50
years or so. Data from these studies has contributed significantly to our un-
derstanding of nuclear structure for stable and near-stable nuclei; however,
these techniques are typically limited to stable beams and stable targets.
There are a few examples where long-lived isotopes can be used as either
the beam or target (for example triton beams used to be common, and 14C
beams or targets are possible).

As we move to the radioactive-ion-beam domain, these reactions have
to be carried out in inverse kinematics, where the heavier radioactive beam
impinges on a light stable target. In this regime, there are several obstacles
to overcome, as discussed below, and measurements suffer from poor resolu-
tion, often several hundreds of keV. Though challenging, the study of transfer
reactions, pair transfer, and elastic scattering in inverse kinematics is well
understood. As early as 1991, the first transfer reaction in inverse kine-
matics, d(136Xe,p)137Xe at 5.868 MeV/u, was measured by Kraus et al. [1]
at GSI. Outgoing protons were detected with an array of PIN-photodiodes
at a fixed laboratory angle. This was, among others, followed by pioneer-
ing studies with radioactive beams such as Rehm et al. [2] measuring the
d(56Ni,p)57Ni reaction, and Jones et al. [3] with the d(132Sn,p)133Sn both re-
quiring major beam development studies and novel Si arrays. Many other,
equally impressive, studies have been performed with radioactive beams at
various facilities around the world.

Today, the most common approach for identifying and measuring the en-
ergy and angle of outgoing ions is the use of highly segmented Si detectors
typically arranged in a barrel-like configuration around the target. These
can be coupled with complementary, and often necessary, gamma-ray detec-
tion. Such examples are TIARA at GANIL [4], SHARC at TRIUMF [5],
ORRUBA at Oak Ridge National Laboratory [6], TREX at ISOLDE [7],
and MUST(2) at GANIL [8]([9]). Though not always, measurements with
these composite devices rely on the use of thick targets (> 500 µg/cm2,
often ∼ 1 mg/cm2) to compensate for the efficiency loss when using large
Ge detector arrays. With targets this thick, the charged-particle resolution
is very poor and necessitates coincident gamma-ray gating to isolate a level.
There are notable cases where this technique does not work such as decay
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from isomeric states, 0+ → 0+ transitions, transfer to the ground state, etc.
There are also additional uncertainties in the extracted cross sections due
to feeding that may not be observed, and absolute calibration of the Ge effi-
ciency, though the latter is typically small compared to the others. A way of
sidestepping some of these issues has been realised in the development of a
solenoidal spectrometer called HELIOS [10] at Argonne National Laboratory
(ANL). In this paper, the challenges of transfer in inverse kinematics is dis-
cussed along with a description of the HELIOS spectrometer and highlights
of recent results.

2. Transfer reactions in inverse kinematics

The key aims in studying transfer reactions in inverse kinematics are to
achieve a sufficiently good Q-value resolution to extract the necessary infor-
mation and carry out the experiment in a reasonable timeframe. The latter
demands a large acceptance device with excellent efficiency as radioactive
beams are often many orders of magnitude less intense than stable beams
— the lower limit being around 104 ions per second. This explains the Si
barrel arrangements often covering a significant fraction of the total solid
angle.

The Q-value resolution is largely a consequence of the kinematics, if
target thickness effects and intrinsic resolution are assumed fixed. First, the
outgoing ions are typically low in energy due to the strong kinematic shift.
This can be seen in Fig. 1 for the (d,p) reaction on 136Xe at forward centre-
of-mass (c.m.) angles. This can present problems for particle identification
through standard ∆E–E techniques. The strong kinematic dependence of
energy on angle requires good angular resolution, typically < 0.5◦ in the lab.
frame, which necessitates high-granularity Si arrays. Kinematic compression
is another major contribution to the Q-value resolution. This is worst at
forward c.m. angles, where the cross sections peak and most measurements
are made. This effect is also illustrated in Fig. 1 and shows that the measured
excitation-energy spectrum is compressed by a factor of ∼3 in the laboratory
frame. This is a measure of the degree to which the resolving power is
lost, and effectively results in the Q-value resolution a factor ∼ 3 worse.
For most reactions, the kinematic compression varies between a factor of
2–4. The combination of these effects with those of the target thickness,
beam properties, and intrinsic Si-detector resolution, typically results in a
Q-value resolution of ∼ 300–400 keV e.g. Ref. [3], though in some cases,
much better has been achieved e.g. Ref. [11]. A more detailed description
of these effects is given in Ref. [12] and a general description of reaction
kinematics in Ref. [13].
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Fig. 1. Kinematic lines for low-lying states in 137Xe following the (d,p) reaction
on 136Xe in inverse kinematics at 10 MeV/u. A significant kinematic compression
occurs at forward c.m. angles (a) and the resulting spectrum using conventional ap-
proaches will be compressed by being a factor of ∼ 3 (c). In HELIOS, no kinematic
compression occurs (b) and the resultant Q-value spectrum is not compressed for
a projection at a given ∆z, the distance between the target and the point at which
the proton hits the detector (d).

The HELIOS spectrometer [10, 14] exploits a different approach which
overcomes some of the complications discussed above. The outgoing ions
are transported in the homogeneous magnetic field of a superconducting
solenoid. After leaving the target, the outgoing ions execute helical trajec-
tories, returning to the magnetic axis (coincident with the beam axis), after
one cyclotron period. Surrounding the axis is an array of position-sensitive
Si detectors, which record the ions position, energy, and time with respect to
the radio-frequency structure of the beam. These three properties are suf-
ficient to provide all the information needed to fully describe the reaction.
A schematic of the device is shown in Fig. 2.

In this approach, there is no kinematic compression. The excitation en-
ergy in the laboratory frame is related to the c.m. frame by only an additive
constant [10]. The kinematic shift in energy versus position (∆z) is linear
and small. For a typical (d,p) measurement at 2T, this slope is< 15 keV/mm
— a position resolution of ∼1 mm, the resolution of the present Si array, is
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Fig. 2. Schematic of the HELIOS spectrometer modified from that in Ref. [14]. The
beam enters from the left. An example proton trajectory is shown and a recoiling
ion.

sufficient for the Q-value resolution not be dominated by position resolution.
Another advantage is that the cyclotron period of outgoing ions, which is
independent of their energy, is used as particle identification through the
separation in time of ions with different A/q, and as such ions with energies
as low as a few hundred keV can be readily identified.

Though both the conventional approach and this solenoidal spectrome-
ter approach are limited by the target thickness and the intrinsic Si-detector
resolution, the conventional approach would still suffer a poorer Q-value
resolution as a consequence of kinematic compression. This is essentially
a measure of the resolving power. The HELIOS spectrometer was com-
missioned in 2008 with a stable beam through the d(28Si,p) reaction [14].
A Q-value resolution of ∼100 keV was achieved.

3. Highlights from the HELIOS program

3.1. In-flight beams and the neutron-rich sd shell

Radioactive beams produced via the in-flight technique [15] at ATLAS
has allowed for access to neutron-rich sd-shell nuclei combined with the good
Q-value resolution of the HELIOS spectrometer. The first in-flight beam
tuned to HELIOS was 12B to study excited states in 13B via 12B(d,p) [16].
The focus was to determine spin-parity of the 3.48 and 3.68 MeV states
which were assumed to the be low-lying s and d states, but their order and
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relative strengths were not known. A previous experiment, also performed
at ANL with an in-flight produced beam, but with a more conventional ap-
proach of using annular Si detectors, had failed to resolve these two states
due to a Q-value resolution of ∼250 keV [17]. A 150 µg/cm2 CD2 target
was used. The HELIOS measurement was carried out at 6.24 Mev/u and
1.05 T [16]. Here a thin, 73 µg/cm2, CD2 target was used and a resolution
of ∼ 100 keV FWHM achieved. The two states were resolved and showed
that the s and d orbitals are inverted at 13B, which is not readily described
by shell-model calculations [16]. Such a measurement would be challeng-
ing using conventional approaches. This has recently been followed up by
a measurement of the d(13B,p) reaction, with the beam produced in-flight
via the 9Be(14C,13B)10B reaction, yielding 15.7-MeV/u 13B ions. Results
of the measurement are forthcoming. Now common practise in experiments
with light radioactive beams is to monitor the beam and target via scattered
deuterons in an annular Si detector downstream of the target as shown in
Fig. 3. At the back of HELIOS is a recoil detector, providing unambigu-
ous gating on the (d,p) events of interest, and a zero-degree telescope for
determining the beam intensity.

Monitor shield
Monitor detector

Si array

Target position

Ta attenuator

Recoil detector

Zero degree detector
Fig. 3. Schematic of the generic experimental set up inside the solenoid for mea-
surements with in-flight produced beams. Figure slightly modified from Ref. [22].

The d(15C,p) reaction [18] sought to address the questions raised about
the electromagnetic transition rates for the 2+1 → 0+. There were results
showing anomalously small B(E2) [19, 20] values suggesting ‘exotic’ be-
haviour in 16C, with a more recent, conflicting result consistent with a
shell-model description of 16C [21]. The d(15C,p) reaction was studied at
8.2 MeV/u and 2.85 T with the beam impinging a 110-µg/cm2 thick CD2

target yielding a Q-value resolution of 140 keV [18]. The measured spectro-
scopic factors corroborate findings from Ref. [21] that 16C is a good shell-
model nucleus.
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Other studies with in-flight beams include the d(19O,p) reaction which
was a significant expansion on knowledge of states in 20O [22] and that
of the d(17N,p) reaction, which is still under analysis. These measure-
ments have demonstrated that HELIOS can be used for detailed studies
of light sd-shell nuclei. More recent measurements have started to exploit
the proton-removing (d,3He) reaction, where the outgoing ions go forward
in HELIOS. This built upon a test with a stable beam 28Si [12].

3.2. Heavier stable beams in anticipation of CARIBU

In the near future, the CAlifornium Radioactive Isotope Breeder Upgrade
(CARIBU) [23] at the ATLAS facility will allow the re-acceleration of 252Cf
fission fragments. In anticipation of this, we carried out the d(86Kr,p) [24]
and d(136Xe,p) [25] reactions at 10 MeV/u. The former is close to the lightest
beam that will be available from CARIBU, while the latter is close to the
132Sn region, where there is major interest in transfer studies — as such
this was an ideal test case for the HELIOS spectrometer. In both cases
the evolution of the high-j single-neutron states was the focus: at N = 51,
the evolution of the g7/2 and h11/2 orbitals; for N = 83, the h9/2 and i13/2
orbitals. The latter had previously been studied for 56 ≤ Z ≤ 62 [26], and
found to behave in a manner consistent with the action of the tensor force.

Both reactions had been studied before, using gas-cell targets, and for
136Xe inverse kinematics as mentioned earlier [1] though little detailed in-
formation is known about 137Xe. The experiments were both carried out
with a 2-T field. Figure 4 shows the outgoing proton spectra from these
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Fig. 4. Outgoing proton spectra following the (d,p) reaction on 86Kr (left) and
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356 B.P. Kay et al.

reactions. For the (d,p) reaction on 86Kr, a Q-value resolution of ∼ 70 keV
was achieved with targets of thickness 70–100 µg/cm2. For 137Xe the res-
olution was ∼ 100 keV. Several new states were observed along with the
confirmation of the energy and ` values of the lowest-lying 9/2− and 13/2+
states.

Of particular interest will be (d,p)-reaction studies with beams in the
vicinity of 132Sn, with a possible first measurement being with a 134Te beam
— one of the most intense from CARIBU. There have been several single-
neutron-adding reactions using 9Be and 13C targets and a 134Te beam carried
out at Oak Ridge [27, 28]. The (d,p) reaction has also been measured at
4.8 MeV/u by Pain et al. [29] utilising the ORRUBA array at ORNL to
focus on low-` transfer and extract spectroscopic factors. At present, only
limited information is available and a higher energy (d,p) measurement is
desired. Knowledge of the energies, spins and spectroscopic factors of states
in 135Te are important as the evolution of single-particle energies across the
N = 83 isotones approaches 133Sn.

4. Summary and outlook

HELIOS represents a solution to the challenge of studying transfer re-
actions in inverse kinematics, complementing other approaches such as Si
barrel arrays in conjunction with gamma-ray detectors. At ANL, the device
has demonstrated excellent Q-value resolution in studies with light neutron-
rich beams and promising results with medium-mass stable beams compa-
rable to those expected from the CARIBU upgrade at ATLAS. Studies of
neutron-rich nuclei in the 132Sn region are eagerly anticipated.

Many new improvements are expected over the coming year, with the
development of a gas-cell target for astrophysical studies and a fast ionisa-
tion chamber for recoil detection. The Si array is also due for an update,
increasing the acceptance by a factor of about two.

In Europe, there is interest in the development of a solenoidal spectrom-
eter in anticipation of HIE-ISOLDE and SPIRAL2. Possible use of such a
device coupled with the cooled beams of a storage ring have been discussed
as part of the TSR project [30].

This work was supported by the U.S. Department of Energy, Office of Nu-
clear Physics, under Contract No. DE-AC02-06CH11357 (ANL) and Grant
No. DE-FG02-04ER41320 (WMU), NSF Grant No. PHY-08022648 (JINA),
and the UK Science and Technology Facilities Council.
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