HALF-LIFE MEASUREMENTS OF EXCITED STATES IN $^{132}\mathrm{Te},\,^{134}\mathrm{Xe}^*$

O.J. ROBERTS^a, A.M. BRUCE^a, F. BROWNE^a, N. MĂRGINEAN^b
T. ALEXANDER^c, T. ALHARBI^{c,h}, D. BUCURESCU^b, D. DELEANU^b
D. DELION^b, D. FILIPESCU^b, L. FRAILE^e, I. GHEORGHE^b, D. GHIŢĂ^b
T. GLODARIU^b, D. IVANOVA^d, S. KISYOV^d, R. MĂRGINEAN^b
P.J.R. MASON^c, C. MIHAI^b, K. MULHOLLAND^f, A. NEGRET^b
C. NIŢĂ^b, B. OLAIZOLA^e, S. PASCU^b, P-A. SÖDERSTRÖM^g
P.H. REGAN^c, T. SAVA^b, L. STROE^b, S. TOMA^b, C. TOWNSLEY^c

^aUniversity of Brighton, Brighton BN2 4GJ, UK ^bNational Institute of Physics and Nuclear Engineering, Bucharest, Romania ^cUniversity of Surrey, Guildford GU2 7XH, UK ^dUniversity of Sofia, Sofia, Bulgaria ^eUniversidad Complutense de Madrid, Madrid, Spain ^fUniversity of the West of Scotland, Paisley PA1 2BE, UK ^gRIKEN Nishina Center for Accelerator-based Science, Wako, Saitma, Japan

^hDept. of Physics, Almajmaah University, P.O. Box 66, 11952, Saudi Arabia

(Received December 10, 2012)

The ⁷Li+¹³⁰Te reaction was used to populate excited states in ¹³²Te and ¹³⁴Xe. The experiment at the Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania, used an array of high-purity germanium (HPGe) and cerium-doped lanthanum bromide (LaBr₃(Ce)) detectors to measure sub-nanosecond half-lives using fast-timing techniques. The half-lives of the yrast 4⁺ and 6⁺ levels were measured in the N = 80 nuclei ¹³²Te and ¹³⁴Xe, respectively. An upper limit of $T_{1/2} \leq 40$ ps was assigned to the 4⁺ level in ¹³²Te and $T_{1/2} = 1075(155)$ ps was assigned to the 6⁺ level in ¹³⁴Xe. The systematics of the B(E2) strengths around the N = 82 shell closure are discussed.

DOI:10.5506/APhysPolB.44.403 PACS numbers: 21.10.Re, 21.10.Tg, 23.20.Lv, 27.60.+j

^{*} Presented at the Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape", Zakopane, Poland, August 27–September 2, 2012.

1. Introduction

The nuclei near the doubly-magic closed shell nucleus ¹³²Sn are of particular interest due to the interplay of single particle and collective degrees of freedom. The energy level systematics of the low-spin states in the N = 80nuclei exhibit an increase as the Z = 50 shell closure is approached and all have a long-lived $I^{\pi} = 10^+$ isomer based on the $(\nu h_{11/2})^{-2}$ configuration. Prior to this work, the only Te isotopes in which the half-life of the 4⁺ state had been measured were ¹²⁶Te (2.8(1) ps [1]) and ¹³⁴Te (1.4(1) ns [2, 3]). Therefore, ¹³²Te has been measured to complete our understanding of the systematics in this region. Similarly, the half-life of the 6⁺ level in ¹³⁴Xe was also studied in order to understand the trend in the $B(E2; 6^+ \rightarrow 4^+)$ systematics across the N = 80 isotones.

2. Experimental set-up

A 31.5 MeV ⁷Li beam delivered by the 9 MV Tandem van der Graaff accelerator at NIPNE, Bucharest impinged on a 1 mg/cm² ¹³⁰Te target, which was backed with 20 mg/cm² of ²⁰⁸Pb. The energy of the beam (which had an intensity of ~ 3 pnA), was chosen to be close to the Coulomb barrier (~ 27 MeV) in order to suppress fusion–evaporation reaction channels. Excited levels were populated in ¹³²Te via the ¹³⁰Te(⁷Li, αp) incomplete-fusion transfer reaction, and in ¹³⁴Xe via the ¹³⁰Te(⁷Li,p2n) reaction. The γ rays from the de-exciting states were detected by 8 HPGe and 11 LaBr₃(Ce) detectors focused on the target position. Gates on transitions feeding and de-exciting the states of interest in the HPGe detectors, were used to produce an $E_{\gamma}-E_{\gamma}-\Delta t$ cube. This was symmetrised so that the two γ -ray energies detected in the LaBr₃(Ce) detectors; E_{γ_1} and E_{γ_2} , increment the $(E_{\gamma_1}, E_{\gamma_2})$ and $(E_{\gamma_2}, E_{\gamma_1})$ elements and the time difference between the peaks in the forward and backward time spectra is 2τ [4].

3. Results

3.1. Half-life of the 4^+ level in 132 Te

Excited states up to the $I^{\pi} = 8^+$ state in ¹³²Te were populated, and are shown in Fig. 1. The other two low-lying isomeric states at 2723 ($I^{\pi} = 10^+$) and 1925 keV ($I^{\pi} = 7^-$), were not populated. The $2^+ \rightarrow 0^+$ (974 keV) transition was used as a gate in the HPGe detectors and gates were applied on the $5^- \rightarrow 4^+$ (383 keV) and $4^+ \rightarrow 2^+$ (697 keV) transitions in the LaBr₃(Ce) detectors, to produce the time spectrum in Fig. 1. The 383 keV transition was used as it was more clearly detected than the highly converted [5], yrast 103 keV transition from the 6^+ isomer. Due to the low statistics in the resulting time spectrum, an upper limit of $T_{1/2} \leq 40$ ps could only be assigned.

Fig. 1. Left: A partial level scheme for 132 Te up to $I^{\pi} = 8^+$. Right: The forward and backward time spectra for the 383 and 697 keV transitions which show a Gaussian distribution, indicating $T_{1/2} \leq 40$ ps for the 4⁺ level in 132 Te.

The results from this study were interpreted using shell model calculations, which used a ¹³²Sn core and a $(\pi g_{7/2})^2$ and $(\nu h_{11/2})^{-2}$ configuration in the model space. Theoretical and experimental B(E2) values are shown in Fig. 2 for some of the even-A Te isotopes. For the 4⁺ level in ${}^{132}_{52}$ Te₈₀, these calculations estimate a $B(E2; 4^+ \rightarrow 2^+)$ of 8.16 W.u., which would infer a $T_{1/2}$ of ~ 10 ps. This is in agreement with the measured value of $T_{1/2} \leq 40$ ps.

Fig. 2. Left: A comparison of the experimental and theoretical B(E2) values from the 2_1^+ , 4_1^+ and 6_1^+ yrast states in some of the even-even Z = 52 (Te) isotopes. Right: $B(E2; 6^+ \rightarrow 4^+)$ systematics across the N = 80 isotones, including the value for the 6^+ in ¹³⁴Xe measured in this study. The $B(E2; 6^+ \rightarrow 4^+)$ value in ¹³⁸Ce was taken from recent work by Alharbi *et al.* [6].

3.2. Half-life of the 6^+ level in ^{134}Xe

Excited levels up to the tentatively assigned 8⁺ were populated in ¹³⁴Xe as shown in Fig. 3. Gates were made on the 4⁺ \rightarrow 2⁺ and 2⁺ \rightarrow 0⁺

O.J. ROBERTS ET AL.

transitions (884 and 847 keV, respectively) in the HPGe, and on the $8^+ \rightarrow 6^+$ (861 keV) and $6^+ \rightarrow 4^+$ (405 keV) transitions in the LaBr₃(Ce) detectors. The relative times between these transitions were then projected to give the time spectrum in Fig. 3. Despite the low statistics due to the weak reaction channel, a half-life of 1075(155) ps was obtained by fitting a slope to the exponential tail of the distribution as shown in Fig. 3. This corresponds to a $B(E2; 6^+ \rightarrow 4^+)$ of 1.2 ± 0.2 W.u., in good agreement with the downward trend of the $B(E2; 6^+ \rightarrow 4^+)$ systematics across the N = 80 isotones as shown in Fig. 2.

Fig. 3. Left: A partial level scheme for 134 Xe. Right: The forward time spectrum of the 6^+ in 134 Xe, showing the fit to the exponential tail. It was created using the 861 and 405 keV transitions in the LaBr₃(Ce) detectors.

4. Summary and conclusion

A combination of LaBr₃(Ce) and HPGe detectors was used to measure the half-life of the 4⁺ level in ¹³²Te ($T_{1/2} \leq 40 \text{ ps}$) and the 6⁺ level in ¹³⁴Xe ($T_{1/2} = 1075(155) \text{ ps}$). The latter value corresponds to a value of 1.2 ± 0.2 W.u. for the $B(E2; 6^+ \rightarrow 4^+)$, which is in good agreement with the trend of these systematics across the N = 80 isotonic region.

REFERENCES

- [1] J. Genevey et al., Nucl. Phys. A99, 507 (1967).
- [2] J.P. Omtvedt, *Phys. Rev. Lett.* **75**, 3090 (1995).
- [3] K. Kawade et al., Z. Phys. A298, 187 (1980).
- [4] N. Marginean et al., Eur. Phys. J. A46, 329 (2010).
- [5] T. Kibedi et al., Nucl. Instrum. Methods A589, 202 (2008).
- [6] T. Alharbi et al., J. Phys.: Conf. Ser. 381, 012057 (2012).