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1. Introduction

The idea to use noncommutative coordinates is quite old — it goes back
to Heisenberg and was firstly formalized by Snyder in [1]. Recently, how-
ever, there were found new formal arguments based mainly on Quantum
Gravity [2, 3] and String Theory models [4, 5], indicating that space-time at
Planck scale should be noncommutative, i.e. it should have a quantum na-
ture. On the other side, the main reason for such considerations follows from
many phenomenological considerations, which state that relativistic space-
time symmetries should be modified (deformed) at Planck scale, while the
classical Poincare invariance still remains valid at larger distances [6, 7].

It is well-known that a proper modification of the Poincare and Galilei
Hopf algebras can be realized in the framework of Quantum Groups [8, 9].
Hence, in accordance with the Hopf-algebraic classification of all deforma-
tions of relativistic and nonrelativistic symmetries (see [10, 11]), one can
distinguish three types of quantum spaces [10, 11] (for details see also [12]):

(1) Canonical (θµν-deformed) type of quantum space [13–15]

[ xµ, xν ] = iθµν , (1)

(699)
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(2) Lie-algebraic modification of classical space-time [16–20]

[ xµ, xν ] = iθρµνxρ , (2)

and

(3) Quadratic deformation of Minkowski and Galilei spaces [16, 17, 20–22]

[ xµ, xν ] = iθρτµνxρxτ , (3)

with coefficients θµν , θ
ρ
µν and θρτµν being constants.

Besides, it has been demonstrated in [12], that in the case of so-called
N -enlarged Newton–Hooke Hopf algebras U (N)

0 (NH±) the twist defor-
mation provides the new space-time noncommutativity of the form1,2

(4)

[ t, xi ] = 0 , [ xi, xj ] = if±

(
t

τ

)
θij(x) , (4)

with time-dependent functions

f+

(
t

τ

)
= f

(
sinh

(
t

τ

)
, cosh

(
t

τ

))
,

f−

(
t

τ

)
= f

(
sin

(
t

τ

)
, cos

(
t

τ

))
,

θij(x) ∼ θij = const or θij(x) ∼ θkijxk and τ denoting the time scale
parameter — the cosmological constant. It should be also noted that
different relations between all mentioned above quantum spaces (1),
(2), (3) and (4) have been summarized in paper [12].

Recently, there appeared a lot of papers dealing with classical [23–29] and
quantum [30–34] mechanics, Doubly Special Relativity frameworks [35, 36],
statistical physics [37, 38] and field theoretical models (see e.g. [39]), defined
on quantum space-times (1), (2)3. Particulary, there was investigated the
impact of the mentioned above deformations on dynamics of basic classi-
cal and quantum systems. Consequently, in papers [25, 26], the authors
considered classical particle moving in central gravitational field defined on
canonically deformed space-time (1). They demonstrated, that in such a

1 x0 = ct.
2 The discussed space-times have been defined as the quantum representation spaces,
so-called Hopf modules (see e.g. [13, 14]), for quantum N -enlarged Newton–Hooke
Hopf algebras.

3 For earlier studies see [40] and [41].
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case there is generated Coriolis force acting additionally on the moving par-
ticle. Besides, in articles [25, 33] and [34], there was analyzed classical and
quantum oscillator model formulated on canonically and Lie-algebraically
deformed space-time respectively. Particulary, there has been found its de-
formed energy spectrum as well as the corresponding equation of motion.
Interesting results have been also obtained in two papers [30] and [31] con-
cerning the hydrogen atom model defined on quantum space (1). Besides,
it should be noted that there appeared article [28], which provides the link
between Pioneer anomaly phenomena [42] and classical mechanics defined
on κ-Galilei quantum space. Precisely, there has been demonstrated that
additional force term acting on moving satellite can be identified with the
force generated by space-time noncommutativity. The value of deformation
parameter κ has been fixed by comparison of obtained theoretical results
with observational data.

Unfortunately, in all mentioned above articles there were analyzed only
the one-particle classical and quantum dynamics in the field of forces. Here,
we extend such a kind of investigations to the quantum mechanics of many
particles, which move in the modified twist-deformed N -enlarged Newton–
Hooke space-time

[ t, xiA ] = 0 , [xiA, xjB ] = if(t) = if±

(
t

τ

)
θij ; i, j = 1, 2, 3 , (5)

with indices A,B = 1, 2, . . . ,M labeling the particle. Further, we indicate
that, as in the case of one-particle quantum system, there appeared ad-
ditional dynamical terms generated by space-time noncommutativity. Of
course, in the case of Coulomb potential for M = 1 and f(t) = θij our
results become the same as the ones obtained in [30] and [31] respectively.

The motivations for present studies are manyfold. First of all, we ex-
tend in natural way the results for quantum one-particle model to the much
more complicated many-particle system. Secondly, such investigations per-
mit to analyze the deformations of wide class of physical models such as,
for example, the noncommutative many-electron atoms or noncommutative
many-atomic molecules [43, 44]. Finally, it gives a starting point for the
construction of Dirac quantum mechanics for many particles defined on the
relativistic counterpart of modified space-time (5).

The paper is organized as follows. In Sect. 2, we recall basic facts con-
cerning the twisted N -enlarged Newton–Hooke space-times provided in ar-
ticle [12]. The third section is devoted to the short review of quantum
mechanics of many particles moving in commutative (classical) space. In
Sect. 4, we construct the quantum many-particle model defined on modified
N -enlarged Newton–Hooke space-time (5). The final remarks are presented
in the last section.
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2. Twisted N -enlarged Newton–Hooke space-times

In this section, we turn to the twisted N -enlarged Newton–Hooke space-
times equipped with two spatial directions commuting to classical time, i.e.
we consider spaces of the form [12]

[ t, x̂i ] = [ x̂1, x̂3 ] = [ x̂2, x̂3 ] = 0 , [ x̂1, x̂2 ] = if(t) ; i = 1, 2, 3 .
(6)

As it was already mentioned in Introduction, such a kind of quantum spaces
provides the most general deformation of nonrelativistic systems. It should
be noted, however, that this type of noncommutativity has been constructed
explicitly only in the case of 6-enlarged Newton–Hooke Hopf algebra, with

f(t) = fκ1(t) = f±,κ1

(
t

τ

)
= κ1C

2
±

(
t

τ

)
,

f(t) = fκ2(t) = f±,κ2

(
t

τ

)
= κ2τ C±

(
t

τ

)
S±

(
t

τ

)
,

·
·
·

f(t) = fκ35

(
t

τ

)
=86400κ35 τ

11

(
±C±

(
t

τ

)
∓ 1

24

(
t

τ

)4

− 1

2

(
t

τ

)2

∓ 1

)

×

(
S±

(
t

τ

)
∓ 1

6

(
t

τ

)3

− t

τ

)
,

f(t) = fκ36

(
t

τ

)
=518400κ36 τ

12

(
±C±

(
t

τ

)
∓ 1

24

(
t

τ

)4

− 1

2

(
t

τ

)2

∓ 1

)2

,

and

C+/−

(
t

τ

)
= cosh / cos

(
t

τ

)
and S+/−

(
t

τ

)
= sinh / sin

(
t

τ

)
. (7)

Besides, one can easily check that in τ approaching infinity limit the above
quantum spaces reproduce the canonical (1), Lie-algebraic (2) and quadratic
(3) type of space-time noncommutativity, i.e. for τ →∞, we get
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fκ1(t) = κ1 ,

fκ2(t) = κ2 t ,

·
·
·

fκ35(t) = κ35 t
11 ,

fκ36(t) = κ36 t
12 . (8)

Of course, for all parameters κa (a = 1, . . . , 36) running to zero the above
deformations disappear.

Finally, let us notice that the spaces (6) can be extended to the case of
multiparticle systems as follows

[ t, x̂iA ] = [ x̂1A, x̂3B ] = [ x̂2A, x̂3B ] = 0 ,

[ x̂1A, x̂2B ] = if(t)δAB ; i = 1, 2, 3 , (9)

with A,B = 1, 2, . . . ,M . It should be also observed that such an ex-
tension (blind in A, B indecies) is compatible with canonical deforma-
tion (1). Precisely, in τ approaching infinity limit the space (9) with func-
tion f(t) = f±,κ1

(
t
τ

)
= κ1C

2
±
(
t
τ

)
passes into the well-known multiparticle

canonical space-time proposed in [45]4 (see also [46])

[ t, x̂iA ] = [ x̂1A, x̂3B ] = [ x̂2A, x̂3B ] = 0 , [ x̂1A, x̂2B ] = iκ1δAB . (10)

3. Quantum mechanics of many particles moving in commutative
space-time — short review

In this section, we recall basic facts concerning the many-particle quan-
tum mechanics defined on commutative space. First of all, we start with the

4 It should be noted that modification of the relation (10) (blind in A, B indieces
as well) is in accordance with the formal arguments proposed in [45]. Precisely,
the relations (10) are constructed with the adopted so-called braided tensor algebra
procedure, dictated by a structure of quantum R-matrix for canonical deformation
[8, 9]. We would like to mention, however, that in [45] an erroneous conclusion has
been stated that based on such a twisted symmetry the noncommutative quantum
field theory (QFT) on the quantum space satisfying the relation in (1), and the usual
commutative QFT are identical. This conclusion has been reached by a misuse of the
proper transformation properties of the fields in the corresponding noncommutative
space-time [47].
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following Hamiltonian function for M interacting particles

H(p̄1, . . . , p̄M ; r̄1, . . . , r̄M ) =
M∑
A=1

(
p̄2A

2mA
+ VA(r̄A)

)
+

1

2

∑
A 6=B

VAB(r̄A, r̄B) ,

(11)
where p̄A = [ x1A, p2A, p3A ] and r̄A = [ x1A, x2A, x3A ] denote the positions
and momenta operators such that

[ xiA, xjB ] = 0 = [ piA, pjB ] , [ xiA, pjB ] = i~δijδAB . (12)

Besides, present in the above formula symbol VA(r̄A) denotes the single-
particle stationary potential while VAB(r̄A, r̄B) describes the correlations
of particles. Hence, the corresponding Schroedinger equation in so-called
position representation looks as follows5

i
∂

∂t
ψ(r̄1, . . . , r̄M , t) =

 M∑
A=1

(
1

2mA
∆A + VA(r̄A)

)
+

1

2

∑
A 6=B

VAB(r̄A, r̄B)


×ψ(r̄1, . . . , r̄M , t) , (13)

and, if one neglects the potential functions VAB(r̄A, r̄B) then, it takes the
form

i
∂

∂t
ψ(r̄1, . . . , r̄M , t) =

[
M∑
A=1

(
1

2mA
∆A + VA(r̄A)

) ]
ψ(r̄1, . . . , r̄M , t) . (14)

Moreover, it is easy to see that the solution of equation (14) is given by

ψ(r̄1, . . . , r̄M , t) = ψ1(r̄1, t) · · ·ψM (r̄M , t) , (15)

with wave functions ψA(r̄, t) satisfying the standard (one-particle) differen-
tial equation

i
∂

∂t
ψA(r̄, t) =

(
1

2mA
∆+ VA(r̄)

)
ψA(r̄, t) . (16)

Usually, the potentials VA(r̄A) and VAB(r̄A, r̄B) remain spherically sym-
metric, i.e. they depend on the length of vector r̄ and the relative positions
of particles respectively

VA(r̄A) = VA(|r̄A|) , VAB(r̄A, r̄B) = VAB(|r̄A − r̄B|) . (17)
5 piA = −i~ ∂

∂xiA
.
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Such a situation appears (for example) in the case of M electrons moving
in the Coulomb field of single nucleon with charge Ze and interacting each
other also by means Coulomb potential; then, we have

i
∂

∂t
ψ(r̄1, . . . , r̄M , t) =

 M∑
A=1

(
1

2mA
∆A −

Ze2

|r̄A|

)
+

1

2

∑
A 6=B

e2

|r̄A − r̄B|


×ψ(r̄1, . . . , r̄M , t) . (18)

Finally, it should be noted that the function

ρ(r̄1, . . . , r̄M , t) = |ψ(r̄1, . . . , r̄M , t)| (19)

can be interpreted as the density of probability of finding first particle at
point r̄1, second — at point r̄2, etc. in time-moment t. Besides, the average
value of quantum mechanical observable A is defined as follows

〈A〉 =

∫
d3r1 . . . d

3rM ψ∗(r̄1, . . . , r̄M , t) A ψ(r̄1, . . . , r̄M , t) . (20)

4. Many-body quantum mechanics for twisted N -enlarged
Newton–Hooke space-times

Let us now turn to the main aim of our investigations — to the quantum
mechanical model of many particles defined on quantum space-times (9). In
the first step of our construction, we extend the described in second section
spaces to the whole algebra of momentum and position operators as follows

[ x̂1A, x̂2B ] = ifκa(t)δAB , [ x̂1A, x̂3B ] = [ x̂2A, x̂3B ] = [ p̂iA, p̂jB ] = 0 ,(21)
[ x̂iA, p̂jB ] = i~δijδAB ; i, j = 1, 2, 3 . (22)

One can check that relations (21), (22) satisfy the Jacobi identity and for
deformation parameters κa approaching zero become classical.

Next, by analogy to the commutative case (see formula (11)), we define
the following multi-particle Hamiltonian operator

H
(
¯̂p1, . . . ,

¯̂pM ; ¯̂r1, . . . , ¯̂rM
)

=
M∑
A=1

(
¯̂p
2
A

2mA
+ VA

(
¯̂rA
))

+
1

2

∑
A 6=B

VAB
(
¯̂rA, ¯̂rB

)
,

(23)
with ¯̂pA = [ x̂1A, p̂2A, p̂3A ] and ¯̂rA = [ x̂1A, x̂2A, x̂3A ].

In order to analyze the above system, we represent the noncommutative
operators (x̂iA, p̂iA) by classical ones (xiA, piA) as (see e.g. [33, 41])

x̂1A = x1A −
1

2~
fκa(t)p2A , x̂2A = x2A +

1

2~
fκa(t)p1A , (24)

x̂3A = x3A , p̂iA = piA . (25)
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Then, the Hamiltonian (23) takes the form
H(p̄1, . . . , p̄M ; r̄1, . . . , r̄M , t)

=

M∑
A=1

[
p̄2A

2mA
+VA

(
¯̂rA =

(
x1A−

1

2~
fκa(t)p2A, x2A +

1

2~
fκa(t)p1A, x3A

))
+

1

2

∑
A 6=B

VAB

(
¯̂rA =

(
x1A −

1

2~
fκa(t)p2A, x2A +

1

2~
fκa(t)p1A, x3A

)
, (26)

¯̂rB =

(
x1B −

1

2~
fκa(t)p2B, x2B +

1

2~
fκa(t)p1B, x3B

)) ]
,

and, consequently, the corresponding Schroedinger equation in the position
representation looks as follows

i
∂

∂t
ψ(r̄1, . . . , r̄M , t)

=

{
M∑
A=1

[
1

2mA
∆A+VA

(
¯̂rA =

(
x1A+

i

2
fκa(t)∂2A, x2A−

i

2
fκa(t)∂1A, x3A

))
+

1

2

∑
A 6=B

VAB

(
¯̂rA =

(
x1A +

i

2
fκa(t)∂2A, x2A −

i

2
fκa(t)∂1A, x3A

)
, (27)

¯̂rB =

(
x1B +

i

2
fκa(t)∂2B, x2B −

i

2
fκa(t)∂1B, x3B

))]}
ψ(r̄1, . . . , r̄M , t) .

Further, we expand the Hamiltonian function (27) in Taylor series up to the
terms linear in deformation parameter κa, i.e. to the terms linear in function
fκa(t); then, we have6

H(p̄1, . . . , p̄M ; r̄1, . . . , r̄M , t)

=

M∑
A=1

(
p̄2A

2mA
+ VA(r̄A)

)
+

1

2

∑
A 6=B

VAB(r̄A, r̄B)

+

[
M∑
A=1

(
−
∂VA

(
¯̂rA
)

∂x̂1A

1

2~
p2A +

∂VA
(
¯̂rA
)

∂x̂2A

1

2~
p1A

)

+
1

2

∑
A 6=B

(
−
∂VAB

(
¯̂rA, ¯̂rB

)
∂x̂1A

1

2~
p2A +

∂VAB
(
¯̂rA, ¯̂rB

)
∂x̂2A

1

2~
p1A

−
∂VAB

(
¯̂rA, ¯̂rB

)
∂x̂1B

1

2~
p2B +

∂VAB
(
¯̂rA, ¯̂rB

)
∂x̂2B

1

2~
p1B

)]∣∣∣∣∣
fκa (t)=0

fκa(t)

+O(κa) , (28)
6 We denote by O(κa) the higher order terms in deformation parameter κa.
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with the corresponding wave equation given by

i
∂

∂t
ψ(r̄1, . . . , r̄M , t)

=


M∑
A=1

(
1

2mA
∆A + VA(r̄A)

)
+

1

2

∑
A 6=B

VAB(r̄A, r̄B)

+

[
M∑
A=1

(
∂VA

(
¯̂rA
)

∂x̂1A

i

2
∂2A −

∂VA
(
¯̂rA
)

∂x̂2A

i

2
∂1A

)

+
1

2

∑
A 6=B

(
∂VAB

(
¯̂rA, ¯̂rB

)
∂x̂1A

i

2
∂2A −

∂VAB
(
¯̂rA, ¯̂rB

)
∂x̂2A

i

2
∂1A

+
∂VAB

(
¯̂rA, ¯̂rB

)
∂x̂1B

i

2
∂2B −

∂VAB
(
¯̂rA, ¯̂rB

)
∂x̂2B

i

2
∂1B

) ]∣∣∣∣∣
fκa (t)=0

fκa(t)

+ O(κa) }ψ(r̄1, . . . , r̄M , t) . (29)

Consequently, we see that the space-time noncommutativity (6) gener-
ates in the Hamiltonian (23) two types of additional dynamical terms. First
of them arises from the single-particle potential VA(¯̂rA) while the second
one corresponds to the correlations VAB(¯̂rA, ¯̂rB). Of course, for deformation
parameters κa approaching zero all additional “potential” terms disappear.

Let us now turn to the mentioned in pervious section the system of M
particles moving “in” and interacting “by” the Coulomb potential. Then,
in accordance with formulas (28) and (29) the corresponding Hamiltonian
function as well as the corresponding Schroedinger equation take the form

H(p̄1, . . . , p̄M ; r̄1, . . . , r̄M , t) =

M∑
A=1

(
p̄2A

2mA
− Ze2

|r̄A|

)
+

1

2

∑
A 6=B

e2

|r̄A − r̄B|

−
M∑
A=1

Ze2fκa(t)

2~|r̄A|3
L3A +

1

2

∑
A 6=B

e2fκa(t)

2~|r̄A − r̄B|3
(L3B + L3A)

−1

2

∑
A 6=B

e2fκa(t)

2~|r̄A − r̄B|3
(GAB +GBA) +O(κa) , (30)
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and

i
∂

∂t
ψ(r̄1, . . . , r̄M , t) =

 M∑
A=1

(
1

2mA
∆A −

Ze2

|r̄A|

)
+

1

2

∑
A 6=B

e2

|r̄A − r̄B|

−
M∑
A=1

Ze2fκa(t)

2~|r̄A|3
L3A +

1

2

∑
A 6=B

e2fκa(t)

2~|r̄A − r̄B|3
(L3B + L3A)

− 1

2

∑
A 6=B

e2fκa(t)

2~|r̄A − r̄B|3
(GAB +GBA) +O(κa)

× ψ(r̄1, . . . , r̄M , t) , (31)

respectively, with L3A = x1Ap2A−x2Ap1A andGAB = x1Bp2A−x2Bp1A. Par-
ticulary, in the case of single particle for canonical deformation fκa(t) = κa,
we reproduce the noncommutative model of hydrogen atom proposed in [30]
and [31]

H(p̄, x̄) =
p̄2

2m
− Ze2

|r̄|
− Ze2κa

2~|r̄|3
L3 +O(κa) , (32)

while for more complicated (time-dependent) functions fκa(t), we get the
one-particle system described by

H(p̄, x̄, t) =
p̄2

2m
− Ze2

|r̄|
− Ze2fκa(t)

2~|r̄|3
L3 +O(κa) . (33)

It is well-known, that the solution of the corresponding (associated with
(33)) Schroedinger equation can be found with the use of time-dependent
perturbation theory [43]. It looks as follows

ψ(r̄, t) =

∞∑
n=0

n−1∑
l=0

l∑
m=−l

cnlm(t)eiEn(t−t0)ψnlm(x̄) , (34)

where symbols En and ψnlm denote eigenvalues and eigenfunctions for hy-
drogen atom, while coefficients cnlm(t) are defined as the solutions of the
following differential equations

dcnlm(t)

dt
= − 1

i~

∞∑
n′=0

n−1∑
l′=0

l∑
m′=−l

(
ψnlm(r̄),

Ze2fκa(t)

2~|r̄|3
L3ψn′l′m′(r̄)

)
cn′l′m′(t0)

×eiωnn′ (t−t0) , ωnn′ =
1

~
(En − En′) . (35)
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Hence, in accordance with prescription (15), the solution of multiparticle
wave equation (31) with neglected correlation potential VAB(|r̄A − r̄B|) and
vanishing O(κa)-terms takes the form

ψ(r̄1, . . . , r̄M , t) = ψ1(r̄1, t) · · ·ψM (r̄M , t) , (36)

with one-particle functions ψA(r̄A, t) given by (34).
Finally, it should be noted that the average values of energy operators

(27), (28) and (30) can be found with use of formula (20).

5. Final remarks

In this article, we construct the quantum model of M nonrelativistic
particles moving in noncommutative space-time (9). The corresponding
Schroedinger equation for arbitrary stationary potential is provided and,
in particular, there is analyzed the distinguished example of such system —
the set of M particles moving “in” and interacting “by” the Coulomb po-
tential. It should be noted, however, that by analogy to the investigations
performed in article [30], one can ask about more physical features (such
as for example the energy spectrum or the Lamb shift) of the model de-
fined by Hamiltonian (30). Besides, it should be added, that the presented
considerations give a starting point for the construction of Dirac quantum
mechanics for many particles defined on the relativistic counterpart of mod-
ified space-time (5). The studies in these directions already started and are
in progress.
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