
Vol. 44 (2013) ACTA PHYSICA POLONICA B No 4

ON NON-TRIVIAL SPECTRA
OF TRIVIAL GAUGE THEORIES

Piotr Korcyla,b, Mateusz Koreńb, Jacek Wosiekb

aNIC, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany
bThe Marian Smoluchowski Institute of Physics, Jagiellonian University

Reymonta 4, 30-059 Kraków, Poland

(Received March 4, 2013)

In this paper, we point out that the analytic solution of the two di-
mensional U(1) gauge theory, on a finite lattice, reveals in the continuum
limit the renowned Manton’s spectrum of topological electric fluxes to-
gether with their effective Hamiltonian and wave functions. We extend
this result for the system with strings and external charges providing also a
novel interpretation of the Θ parameter. Some further generalizations are
also outlined.
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1. Introduction

It is usually said that two-dimensional (1+1) gauge theories are trivial.
In the continuum, there are no transverse degrees of freedom to sustain any
dynamics. Likewise, in the lattice formulation, the system factorizes (after
gauge fixing) and a partition function reduces to a simple one-plaquette
integral [1–3].

This picture neglects boundary conditions. It is well known [4] that, e.g.,
Quantum Maxwell Dynamics, QMD2, on a circle with a circumference L is
not entirely trivial. There remains one degree of freedom which cannot be
gauged away. In the Coulomb gauge, this is the famous, constant in space,
mode Ax(t) ≡ A(t). Its dynamics is given by the simple, one degree of
freedom, Hamiltonian

H = − e
2

2L

d2

dA2
. (1)

Remaining gauge freedom allows to bring A to the interval [0, 2π/L), and
to identify points A = 0 and A = 2π/L, hence the field space is also a

(713)
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circle with circumference LA = 2π/L 1. The spectrum and periodic wave
functions of the above system are simply

En = 1
2e

2n2L , n = 0,±1,±2, . . . ,

ψn(A) =
1√
L
einLA , (2)

and describe the quantized states of electric flux which wraps around the
circle. These are the straightforward quantum strings, with energies pro-
portional to their length and the string tension σn = e2n2

2 . These solutions
exist without any external charges, the Gauss’s law being satisfied due to
the non-trivial topology of a circle. Therefore, they are again the simplest
examples of topological strings.

In this note, we shall show that this spectrum, and the Hamiltonian
can be obtained also from the continuum limit of the standard lattice for-
mulation of QMD2. Moreover, we will derive the generalization of Eq. (1)
describing the system of topological strings together with external charges.
This will also provide a straightforward, not surprising, but hopefully novel,
interpretation of the Manton’s parameter Θ (see also [5]).

Generalizations for arbitrary number of charges as well as for the non-
Abelian case will be also outlined.

2. QMD2 on a lattice

Consider an Nt ×Nx lattice with unitary variables: Ul = eiθl associated
with spatial link l and Ul = eiϑl associated with temporal link l. The
partition function of this, pure gauge, theory reads

Z =

∫
d(links)

∏
plaquettes

B(plaquette) ,

B(p) = eβ cosφp , (3)

with plaquette angles, φp = θi+ϑj−θk−ϑl, where {i, j, k, l} are appropriate
indices of links belonging to plaquette ‘p’. This integral is known exactly.
Using the character expansion for U(1), changing variables to plaquette an-
gles, gives2

Z =

∞∑
n=−∞

In(β)
NtNx . (4)

1 Our L differs by a factor of 2π from that of [4].
2 On two-dimensional, periodic lattices there is one linear constraint between all NtNx
plaquettes which has to be taken into account.
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To recover the continuum limit, one tunes lattice coupling β for each value
of lattice constant a according to

β =
1

e2a2
, (5)

and expresses all lattice distances in physical units, i.e. T = aNt, L = aNx.
The natural physical unit which emerges is the dimensionful charge e.

Using asymptotic form of modified Bessel functions gives, up to a con-
stant factor,

Z ∼
∑
n

(
e
−n

2

2β

)NxNt
=
∑
n

e−
e2n2L

2
T (6)

which proves that indeed the partition function of QMD2 is saturated by
topological fluxes Eq. (2).

2.1. Lattice transfer matrix and Feynman kernel

It is even more instructive to derive the above equivalence from the
transfer matrix formulation. To this end, we employ the Coulomb gauge on
the lattice. In fact, the Coulomb condition on the 2-dimensional lattice can
be satisfied exactly. Consider a row of horizontal (space-like) link angles
θ1, θ2, ..., θNx . By local gauge rotation αi, they transform to

gθi → θi + βi , βi = αi − αi+1 , Σiβi = 0 . (7)

Choosing

βi =
1

Nx

Nx∑
j=1

θj − θi , (8)

brings all angles to the same value θ = Σjθj/Nx, thereby satisfying the
Coulomb condition. This procedure fixes all links in one row to the same
value, however that value is not fixed since the conditions Eq. (8) leave one
rotation angle αi free.

The transfer matrix in this gauge, in the angular representation, is given
by the Nx-fold integral over vertical (time-like) links

〈
θ|T |θ′

〉
=

∫ Nx∏
j=1

dϑj
∏
p

B(p) , (9)

of the product of Nx Boltzmann factors corresponding to all Nx plaquettes
between two nearest neighbor rows of horizontal links. Due to our gauge
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choice, all plaquettes depend on the same angles θ and θ′, similarly, the
states depend only on one angle. Notice also, that since we are not using the
temporal gauge, the integrations over the vertical links have to be explicitly
included.

Now, we use again the character expansion for Boltzmann factor and
integrate over vertical links to obtain〈

θ|T |θ′
〉
=
∑
n

In(β)
NxeinNx(θ−θ

′) (10)

which in the continuum limit becomes〈
θ|T |θ′

〉
=
∑
n

e−
e2

2
n2LaeinL(A−A

′) = K(A,A′, ε) . (11)

This is nothing but a propagator of a 1 DOF quantum mechanical system
Eq. (1), (2) over a time ε = a.

3. Topological fluxes with external charges

3.1. Eigenenergies

To place on a circle two external, static charges separated by a distanceR,
consider the correlation function of two Polyakov loops,〈P (0)†P (nx)〉, sepa-
rated by nx lattice units. Standard, lattice textbook calculation gives then

Z
〈
P (0)†P (nx)

〉
=
∑
n

In(β)
Nt(Nx−nx)In+1(β)

Ntnx , (12)

which in the continuum limit reads, R = anx,

Z
〈
P (0)†P (nx)

〉
=
∑
n

e−E
PP
n T , (13)

with

EPPn =
e2

2

(
n2(L−R) + (n+ 1)2R

)
=
e2(n+ ρ)2

2
L+

e2

2
Lρ(1− ρ) (14)

and
ρ =

R

L
.

This result has a simple and appealing interpretation. Time-like Polyakov
loops modify Gauss’s law at spatial points x = 0, and x = R — they
introduce unit charges at these positions. Such charges cause additional
unit of flux extending over a distance R. Hence the two contributions to the
eigenenergies: an “old” flux over a distance L–R and the “new” one, bigger
by one unit (fluxes are additive), over a distance R.
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Interesting special cases:

1. at large T , lowest state n = 0 dominates and we have just a standard
string of length R,

2. withR = 0, the nth energy level is given by topological flux of charge n,

3. with R = L, i.e. when two charges meet at the “end points” of a
circle, they annihilate (e+δperiodic(x) + e−δperiodic(x − L)) = 0) and
leave behind a topological string with length L and charge bigger by
one unit. In other words, the energy levels are shifted n→ n+ 1.

Hence, varying the distance R allows us to interpolate between integer
valued topological fluxes. This is the meaning of the second representation
in Eq. (14). However, the first term is not the whole story (apart from
ρ = 0, 1). There is also the second, constant in n, but R and L dependent,
contribution which guarantees the linear dependence of eigenenergies on
distances involved.

3.2. The Hamiltonian

The transfer matrix corresponding to Eq. (12) is similar to Eq. (9)

〈
θ|TPP |θ′

〉
=

∫ Nx∏
j=1

dϑj
∏
p

B(p)e−iϑ1eiϑnx+1 , (15)

except for two additional link variables coming from Polyakov lines P (1) and
P (nx + 1). Again, we have chosen the Coulomb gauge, hence the matrix
element depends only on two angles θ (θ′) which specify a state of an upper
(lower) row. As before, upon expanding in characters and integrating over
vertical links, one obtains〈

θ|TPP |θ′
〉
=
∑
n

In(β)
Nx−nxIn+1(β)

nxeinNx(θ−θ
′)einx(θ−θ

′) (16)

which in the continuum limit reads〈
θ|TPP |θ′

〉
=
∑
n

e−
e2La

2 ((n+iρ)2+ρ(1−ρ))ei(n+ρ)L(A−A
′) = K̃PP (A,A

′, a) ,

ρ =
R

L
. (17)

This is again a simple Feynman kernel propagating a one DOF system by a
time lapse a.
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An explicit form of the corresponding Hamiltonian depends on the basis
of eigenfunctions we choose. One possibility is

H̃PP =
e2L

2

(
− d2

dχ2
+ ρ(1− ρ)

)
, (18)

ψn(χ) = ei(n+ρ)χ , χ = LA .

In this case, wave functions are not periodic. The other choice is

HPP =
e2L

2

(
−
(
d

dχ
+ iρ

)2

+ ρ(1− ρ)

)
, (19)

ψn(χ) = einχ

with periodic eigenfunctions. The two are related by the transformation
ψ → eiρχψ, which, in general, is not periodic.

This freedom corresponds exactly to the ambiguity discussed in [4] and
[6], with Manton’s parameter Θ acquiring now a straightforward interpreta-
tion

Θ =
R

L
. (20)

Namely, as always said, e2

2 Θ represents the external electric field in this
context. In the original theory, in the finite volume L, the field extends over
a fraction R/L of a whole volume. However, in our 1 DOF system the notion
of the spatial distance is lost. Therefore, (20) represents an effective field in
the reduced model, i.e. the field in the extended QMD2, but averaged over
the whole volume L. In fact, the equivalence discussed above is the simplest
example of the dimensional reduction so successful in many studies [7–14].

4. Generalizations and summary

Two extensions immediately suggest themselves.
One, is to add many different, static charges (with total charge be-

ing zero) in various positions. Corresponding lattice correlation functions
of many time-like Polyakov loops can be readily calculated analogously to
Eq. (12). For example, four charges with different magnitudes will be de-
scribed by

Z
〈
P (i)†P (j)2†P 2(j + n2)P (i+ n1)

〉
=
∑
n

In(β)
Nt(Nx−n1−n2)In+1(β)

Nt(n1−n2)In+3(β)
Ntn2 ,
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with doubly charged sources located inside the single charged ones, i.e. R2 ≤
R1 ≤ L. Repeating above calculations leads to the following eigenenergies
in the continuum limit

EPPn =
e2

2

(
n2(L−R1 −R2) + (n+ 1)2(R1 −R2) + (n+ 3)2R2

)
etc. Corresponding 1 DOF quantum mechanical systems can be also readily
constructed. This time Θ = (R1 + 2R2)/L, i.e. it is again equal to the
external field averaged over the whole volume.

Second generalization is for the non-Abelian pure gauge theory, QYMD2,
with arbitrary number of colors. The lattice solutions Eq. (4) and Eq. (12)
are basically the same with Bessel functions replaced by the coefficients of
the character expansions of Boltzmann factors for an SU(N) gauge group.
Corresponding continuum energies follow from the large β behavior of these
coefficients.

To summarize, the spectrum of topological fluxes, predicted by Manton
quite some time ago, can be also obtained from the continuum limit of seem-
ingly trivial two-dimensional, Abelian lattice gauge theory. The Hamiltonian
of the corresponding reduced system also follows from the lattice formula-
tion in Coulomb gauge. Addition of external charges on a lattice leads again
to a simple 1 DOF quantum system. Resulting Hamiltonian is, up to a new
constant term, the same as Manton’s one with non-zero Θ parameter, which
acquires a straightforward interpretation Θ = R/L. To our knowledge, such
formula has never been derived before. Generalizations for many charges
and for non-Abelian theories were also briefly outlined. We plan to discuss
these issues in more detail elsewhere.
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