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Hosotani mechanism in higher-dimensional Lee–Wick theory is investi-
gated. The symmetry breaking mechanism proposed by Hosotani is studied
at one-loop level through a toy model in this theory. We find that the phase
diagram of symmetry and masses of fields are modified from the original
ones if masses of Lee–Wick particles are in the same order of the inverse of
the compactification scale.
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1. Introduction

Lee–Wick theory has been proposed as a candidate of finite theory for
QED [1]. In the theory, a massive ghost field is introduced and is expected to
work as in the manner of Pauli–Villars regularization scheme. Although the
existence of such a ghost field seems to be problematic for some authors [2],
possible interpretations have been suggested, for example, instability of the
massive particle [1, 3].

In spite of the suspicion on its consistency, Lee–Wick theory has been
applied to not only the standard model and unification [3, 4] but also to
cosmology of the bouncing universe [5]. In these days, various physical con-
sequences have been studied eagerly, even in still higher derivative models [6],
while some open questions in their basic concept is left unresolved.

In particle physics, it is interesting to apply Lee–Wick theory to solve the
hierarchy problem. If the mass of the ghost particles are larger than TeV
scale, some quadratic divergences and other relic effects become invisible.
Such a model does not need supersymmetry, and we are ready to study the
scenario à la Lee–Wick in the analysis of high-energy experiments.

(721)
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In the Lee–Wick unified models, however, the origin of the Higgs boson
and/or the structure of symmetry breaking sector are still unexplained. In
this reason, we come to consider so-called gauge-Higgs unification, or the
higher-dimensional origin of the Higgs field [7–9] in the context of Lee–Wick
theory. In the present paper, a simple toy model with an SU(2) gauge sym-
metry is examined. In the model, we take a circle as an extra dimension.
For a phenomenologically viable models, we should use orbifolds for extra
dimensions to obtain chiral fermions and consider selected boundary con-
ditions on gauge and fermionic fields [9]. Nevertheless, we will show some
remarkable features about symmetry breaking, which may be worth applying
to the phenomenological study in future work.

Another reason to examine the gauge-Higgs unified scheme is in the
interest on the quantum effect. The tree-level mass of the scalar degree
of freedom, which comes from an extra component of the gauge field, is
protected from quantum corrections because of the gauge symmetry in the
higher-dimensional theory. Then, the quantum effective potential governs
the symmetry breakdown. Whereas in Lee–Wick theory, the one-loop con-
tribution of the ghost fields modifies the effective potential in the theory as
well as its divergent behavior. We expect new varieties of symmetry breaking
patterns in Lee–Wick gauge-Higgs unified models.

In this paper, we consider the higher dimensional model of Lee–Wick
theory and the one-loop effect on the symmetry breaking mechanism pro-
posed by Hosotani. In Sec. 2, we review the Lee–Wick gauge theory and
its extension to higher dimensional theory. Then, we incorporate Hosotani
mechanism into the five dimensional Lee–Wick theory and investigate mass
levels of the particles obtained by compactification on R4×S1. In Sec. 3, we
calculate the one-loop effective potential and study the symmetry breaking
in our model. We discuss the mass of the vector and scalar bosons in our
model in Sec. 4. Finally, Sec. 5 is devoted to discussion.

2. The higher derivative gauge theory in five dimensions

The Lagrangian density for the Lee–Wick non-Abelian gauge theory is
given by [3]

L = −1
2tr F̂µνF̂µν +

1

M2
A

tr D̂µF̂
µνD̂λF̂λν , (1)

where F̂µν ≡ ∂µÂν − ∂νÂµ − ig[Âµ, Âν ] and g is the gauge coupling. By
using auxiliary field Ãν , the Lagrangian (1) is rewritten as

L = −1
2tr F̂µνF̂µν − 2tr ÃνD̂µF̂

µν −M2
A tr ÃνÃν . (2)

In this Lagrangian, the kinetic term of the fields does not take a diagonal
form. If we define a linear combination of the fields Aµ ≡ Âµ − Ãµ, we
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obtain the diagonalized Lagrangian [3]

L = −1
2tr FµνFµν + 1

2tr
(
DµÃν−DνÃµ

)(
DµÃν−DνÃµ

)
−M2

A tr ÃνÃν

−ig tr
([
Ãµ, Ãµ

]
Fµν

)
+ · · · , (3)

where Fµν ≡ ∂µAν − ∂νAµ − ig[Aµ, Aν ] and DµÃν ≡ ∂µÃν − ig[Aµ, Ãν ].
Here, we omitted the irrelevant interaction terms for our purpose. The
Lagrangian shows that the theory describes usual massless gauge bosons
and vector ‘ghost’ bosons with mass MA.

The Lee–Wick gauge theory in higher dimensions can be defined by the
same Lagrangian density. Let us assume the five dimensional theory. Sup-
pose that the spacetime topology is R4×S1, where R4 is a four dimensional
spacetime and S1 is a circle whose circumference is L. The five dimensional
coordinates are represented by (xi, y) = (x0, x1, x2, x3, y), where 0 ≤ y < L.
Now, the fifth component of the gauge field A5 becomes scalar degrees of
freedom in four dimensions.

Let us consider SU(2) gauge theory in this spacetime, as a simple case.
Then, the matrix-valued gauge field can be expressed by three component
fields as Aµ = Aaµ

τa

2 , where τa is the 2 × 2 Pauli matrix and a = 1, 2, 3.
Boundary conditions on Aµ is chosen definitely as follows

Aµ(x, y + L) = Aµ(x, y) . (4)

A constant vacuum gauge field is allowed on the multiply-connected
space; the vacuum expectation value of the gauge field configuration plays
the role of an ‘order parameter’. Hosotani and Toms [7, 8] have considered
a simple model to show that one-loop vacuum effect determines the order
parameter.

On the circle S1 as an extra dimension, non-zero vacuum gauge config-
uration is permitted. We explore the possibility of that the SU(2) gauge
symmetry is spontaneously broken to U(1) by radiative effects. The most
general U(1) symmetric vacuum is of the form

gLA5 =
1

2

[
φ 0
0 −φ

]
=
φ

2
τ3 , (5)

where the vacuum gauge field has been diagonalized by using the freedom of
gauge transformations. Therefore, roughly speaking, the extra-dimensional
component of the gauge field behaves as the Higgs field in the adjoint rep-
resentation. We should notice that gLA5 is equivalent to gLA5 + 2π`τ3

(`: integer) under non-singular gauge transformations. Thus, we can only
restrict 0 ≤ φ < 4π by gauge transformations.
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In the five dimensional Lee–Wick gauge theory, in view of the four di-
mensional flat space, we find that the propagator has ladders of poles at

p2 =
1

L2
(2π`+ φ)2 ≡ m2

1(`) ≡ m2
2(`) (`: integer) (6)

which are for the four-dimensional descendant fields of A1
i and A2

i , where
i = 0, 1, 2, 3,

p2 =
1

L2
(2π`)2 ≡ m2

3(`) (`: integer) (7)

which are for the descendant fields of A3
i . Here, p2 denotes the four di-

mensional momentum squared, of course. Note that the fields A1
5 and A2

5
are absorbed by A1

i and A
2
i and become the longitudinal components of the

massive vector fields in general.
On the other hand, the Lee–Wick ghost field has poles at

p2 =
1

L2
(2π`+ φ)2 +M2

A ≡ m̃2
1(`) ≡ m̃2

2(`) (`: integer) (8)

which are for the four-dimensional descendant fields of Ã1
µ and Ã2

µ,

p2 =
1

L2
(2π`)2 +M2

A ≡ m̃2
3(`) (`: integer) (9)

which are for the descendant fields of Ã3
µ. Note that m̃2

a = m2
a + M2

A. In
the view of four dimensional spacetime, Ãµ is decomposed to massive vector
and scalar fields.

In general, non-zero φ shifts the mass level; this effect reduces the number
of the massless fields in four dimensions within the Kaluza–Klein point of
view. We will see how the value of φ is determined by the one-loop quantum
effect in the next section.

3. One-loop quantum effect and symmetry breaking

To calculate the one-loop effective potential, we use integration of the Eu-
clidean momenta. The choice of calculation is subtle in the higher-derivative
theory. According to Ref. [10], the Euclidean approach naturally leads to
the cancellation of the leading divergence in the loop effect, as is suitable
for the motivation of Lee–Wick theory.

The one-loop vacuum energy density from the SU(2) gauge and Lee–
Wick fields discussed in the previous section is given by

VA =

3∑
a=1

∞∑
`=−∞

∫
d4kE

(2π)4

{
3

2
ln
[
k2

E +m2
a(`)

]
− 2 ln

[
k2

E + m̃2
a(`)

]}
. (10)
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This formula is explained as follows. First, we observe that the one-loop
vacuum amplitude is represented as V ∼ 1

2 ln detH for one scalar degree of
freedom, say, Φ, where H is the Hessian by which the free field equation is
expressed as HΦ = 0. At the same time, the propagator S of Φ is expressed
as ∼ H−1. Thus, we can see V ∼ 1

2tr lnS−1. Next, we consider the degree
of freedom for fields. The massive gauge field has three degrees of freedom
(which can be considered by introducing the Faddeev–Popov ghost), while
the Lee–Wick fields consist of three for massive vectors and one for massive
scalar. Incidentally, the relative sign appearing in this expression agrees
with the result for thermal free energy considered in Ref. [11], provided that
we use the Matsubara formalism.

Here, we shall briefly show the calculation of the potential treated in
the text. Note that the expression (10) is UV divergent. We introduce the
cut-off scale Λ by using the Schwinger proper-time integral [12]. The idea
can be briefly sketched as follows. The main observation is the identity∫∞

0 dt exp(−Ht) = H−1. A ‘formal’ integration by H leads to
∫∞

0 dt t−1

exp(−Ht) = − lnH(+ const.). Though a divergence appears after the mode
sum actually, the divergent contribution can be regarded as the divergent
behavior at small t in the integrand. We, therefore, identify the lower end
of the integral over t with the inverse-square of Λ, the cut-off scale.

We thus find that, in the space Rd × S1, the effective potential is ex-
pressed as

VA = − 1

2(4π)2

∞∫
Λ−2

dt

t3
K(t)

(
3− 4e−M

2
At
)
, (11)

where the kernel function is defined as

K(t) =
∑
a

∑
`

exp
[
−m2

a(`)t
]
, (12)

and Λ is the UV cut-off scale.
To evaluate the kernel function K(t), we can use the inversion relation

∞∑
`=−∞

exp

[
−
(

2π

L

)2

(`− χ)2 t

]
=

L√
4π t

∞∑
`=−∞

exp

(
−L

2`2

4t

)
cos(2π`χ) .

(13)
Using this formula, we can see that the UV divergent part comes from the
contribution of ` = 0 in the sum on the right-hand side of the expression and
it is independent of φ. Thus, we obtain a finite one-loop effective potential
for Λ→∞ by discarding the divergent constant. Then, the integration over
the proper-time can be carried out by the help of an integral representation
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of the modified Bessel function of the second kind [13]

∞∫
0

dt

tν+1
exp

(
−L

2`2

4t
−M2t

)
= 2

(
2M

L`

)ν
Kν(ML`) . (14)

Further, an explicit form of K5/2(z)

K5/2(z) =

√
π

2z

(
1 +

3

z
+

3

z2

)
e−z (15)

leads to the following expression

VA = − 9

4π2L4

∞∑
`=1

wA(MAL`)

`5
[2 cos(`φ) + 1] , (16)

where the weight factor wA(x) is defined as

wA(x) = 1− 4
3e
−x (1 + x+ 1

3x
2
)
. (17)

We can see that wA(x) becomes negative for x < 1.41. Thus, the shape
of the effective potential can become ‘reversed’ if MAL takes a small value,
and then the symmetry breaking such that 〈φ〉 6= 0 occurs. Unfortunately,
because the study on a Lee–Wick model in four dimensions [3] suggests
MA > 1 TeV, the mass of the vector bosons should be very large in this
case.

In order to naturally realize the symmetry breaking vacuum, we can
add fermionic fields into the theory. Now, the Lee–Wick Dirac fermion is
introduced, which is governed by the Lagrangian

Lψ = −iψ̄aD/

(
1 +

D/D/

M2
ψ

)
ψa , (18)

where D/ = γµDµ [3, 14]. If the spacetime is flat with an infinite extension
and gauge fields vanish, the pole of the propagator of the Dirac field is
located at p2 = 0 and p2 = M2

ψ, and the latter is a ghost pole.
As for the case of the Kaluza–Klein background spacetime, i.e., where an

extra dimension is compactified on S1 with the radius L/(2π), we obtain the
ladder of poles for four dimensional fields. We consider the SU(2) adjoint
fermion ψa (a = 1, 2, 3). Further, we assume a periodic boundary condition
in the extra dimension as

ψa(x, y + L) = ψa(x, y) (19)
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for simplicity. Then, the same degrees of freedom with the same poles as
the Yang–Mills field can be found in the fermionic field, except for the re-
placement MA → Mψ. The computation of the one-loop effective potential
is performed in the similar manner to the previous bosonic case; the mass
spectrum and degree of freedom should be replaced and the overall sign
due to the fermionic nature should be added. Thus, we can find that the
contribution of the one-loop quantum effects of fermionic fields becomes

Vψ = Nψ
3

π2L4

∞∑
`=1

wψ(MψL`)

`5
[2 cos(`φ) + 1] , (20)

where Nψ is the number of the fermion fields which belong to the adjoint
representation of SU(2). The weight factor wψ(x) is defined as

wψ(x) = 1− e−x
(
1 + x+ 1

3x
2
)
. (21)

Note that wψ(x)→ 1 for x→∞ and wψ(x)→ 1
6x

2 +O(x4) for x→ 0.
Therefore, the total effective potential for the system under consideration

is given by

Veff(φ) = − 3

4π2L4

∞∑
`=1

3wA(MAL`)− 4Nψwψ(MψL`)

`5
[2 cos(`φ) + 1] . (22)

The emergence of symmetry breaking is indicated by instability of the
symmetric vacuum, or

V ′′eff(0) =
3

2π2L4

∞∑
`=1

3wA(MAL`)− 4Nψwψ(MψL`)

`3
< 0 . (23)

The symmetry broken phase is indicated in Fig. 1 in the parameter space
spanned by MAL and MψL. In the region above the line, the gauge symme-

-1 -0.5 0 0.5 1 1.5 2

log10MAL

-0.5

0

0.5

1

1.5

2

log10MΨL

UH1L

SUH2L

Fig. 1. Phase structure of the model. The solid line indicates the boundary of the
two phases for Nψ = 1, the broken line indicates that for Nψ = 2, and the dotted
line indicates that for Nψ = 3.
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try is broken. For a sufficiently large MψL, the SU(2) symmetry is broken
for any value for MAL. Conversely speaking, for a sufficiently large MAL,
there is a lower bound value ofMψL for symmetry breaking, which is nearly
constant. For Nψ = 1, the symmetry breaking occurs if MψL ≥ 3.4.

4. Mass of the vector and scalar bosons

The phase diagrams are very similar for the different numbers of the
fermions, Nψ(≥ 1). Thus, from here, we consider only the case of Nψ = 1
in our model.

In our toy model, the order parameter takes the ‘topological’ value 〈φ〉 =
π or 〈φ〉 = 0 in the almost whole region of the parameter space. We find,
however, the order parameter 〈φ〉 takes the value 0 < 〈φ〉 < π for the narrow
region of the parameter space. This region is shown in Fig. 2 as the narrow
region between two lines. Because the boundaries are almost parallel to the
MAL axis for a large MAL, we consider the case with MAL→∞ hereafter.

0 0.5 1 1.5 2

log10MAL

0.2

0.4

0.6

0.8

1

log10MΨL

XΦ\=Π

XΦ\=0

Fig. 2. The value of the order parameter 〈φ〉. In the narrow parameter region
between two solid lines, 〈φ〉 takes 0 < 〈φ〉 < π.

We define the normalized potential v(φ) as Veff(φ) = 3
2π2L4 v(φ)+(inde-

pendent of φ). Namely, the normalized potential is written by

v(φ) = −
∞∑
`=1

3wA(MAL`)− 4wψ(MψL`)

`5
cos `φ . (24)

The shape of the potential v(φ) (shown in the region 0 ≤ φ ≤ 2π) is sensitive
against the variation ofMψL in the range from 3.2 to 3.8, as seen from Fig. 3.

As seen from the graph of the potential, the infinite sum in the expression
of the potential can be well approximated by taking the first two terms in
this parameter region. Thus, the approximate potential is

vapp(φ) =

{
1− 4e−MψL

[
1 +MψL+

(MψL)2

3

]}
cosφ
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Π 2Π
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MΨL=

Fig. 3. The profiles of the normalized potential v(φ) for MAL → ∞ and various
values of MψL, as indicated in the legend.

+
1

25

{
1− 4e−2MψL

[
1 + 2MψL+

4(MψL)2

3

]}
cos 2φ . (25)

Using this approximation, we find the value of the order parameter 〈φ〉 and
exhibited in Fig. 4. We remember that two vector bosons acquire mass of
m = 〈φ〉/L and one of the gauge bosons remains massless, as lowest masses
of the Kaluza–Klein spectra. The lowest masses of the adjoint fermions are
similar to the vector bosons.

3.4 3.5 3.6 3.7 3.8 3.9
MΨL

Π�2

Π
XΦ\

Fig. 4. The vacuum expectation value of φ against MψL.

One light scalar degree of freedom is left in any phases. This is a scalar
field which comes from the extra component of the gauge field, that is,√
LAa=3

5 . The scalar is classically massless, however, as seen so far, the
one-loop quantum effect causes its mass. The mass of this boson is obtained
from the second derivative of the effective potential and we find

m2
S =

3g2

2π2L3
v′′(〈φ〉) . (26)
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Note that the dimensionless four dimensional gauge coupling is g/
√
L in our

model.
The mass of the scalar boson plotted againstMψL is shown in Fig. 5. We

find that the mass of the scalar boson is always smaller than the mass of the
vector bosons in the symmetry-broken phase, as long as the four dimensional
gauge coupling takes a moderate value (g/

√
L < 1).

3.4 3.5 3.6 3.7 3.8 3.9
MΨL

0.2

0.4

0.6

0.8

mSL�Hg�
�!!!
LL

Fig. 5. Mass of the scalar boson.

5. Discussion

In this paper, we have calculated the one-loop effective potential for
the simple model of five dimensional Lee–Wick gauge theory with adjoint
fermions and have investigated its phase space of the symmetry. It turns out
that the mass of the Lee–Wick particle has much influence on the symmetry
breaking through the effective potential. We have also found that the smaller
mass scales than the compactification scale 1/L can appear if the Lee–Wick
fermion mass scale is in a certain narrow parameter region.

To study a realistic gauge-Higgs unification scenario, we should incor-
porate non-trivial geometry such as orbifolds and Randall–Sundrum type
warped space. Our toy model, however, has shown the effect of masses of
Lee–Wick particles qualitatively.

In future work, we should examine more elaborated models mentioned
above, their finite temperature behavior (which is interesting as four di-
mensional models in Ref. [11]), and higher-loop quantum effect and non-
perturbative effect1 on the models. We also wish to study the flux in the
extra space in the Lee–Wick model. In the related thoughts, the possible
modification of Nielsen–Olesen instability [16] in the Lee–Wick Yang–Mills
theory will also be studied with much interest.

1 A non-perturbative aspect of the Hosotani model has been studied by authors of
Ref. [15].
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