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The supersymmetric standard model undergoes parity violation in
QCD through chiral quark–squark–gluino interactions with non-degenerate
masses between left-handed and right-handed squarks. A bound for the
mass degeneracy between left-handed and right-handed squarks should ex-
ist, since experiments have not shown any parity violation in QCD yet. In
this paper, we establish methods of analysis to estimate this bound for each
squark. Firstly, we investigate a non-degeneracy bound between mc̃L and
mc̃R from experimental data of charmonium decay. Secondly, we evalu-
ate the non-degeneracy bounds for ũ and d̃ from nucleon–meson scattering
data, and comment on other squarks. Unfortunately, our results are be-
low current experimental data, and cannot obtain the left–right degeneracy
bounds for squark masses. However, we hope that our method is useful for
obtaining bounds from future experimental data and research of an origin
of parity violation.
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1. Introduction

The supersymmetric (SUSY) Standard Model (SM) is one of the most
promising candidates beyond the SM due to gauge coupling unification, the
possible existence of Dark Matter, and so on. It is worth noting that the
SUSY SM has chiral gauge interactions in fermion–sfermion–gaugino ver-
texes, for example, left-handed fermions only couple to left-handed sfermions
with gauginos. The left–right index in sfermions is just a label and has noth-
ing to do with spin, however, fermion–sfermion–gaugino interactions are ex-
actly chiral. Moreover, the mass of the left-handed sfermion is not the same
as that of the right-handed sfermion in general, and this non-degeneracy is
also induced from radiative corrections picking up weak interactions. There-
fore, due to this non-degeneracy, SUSY gauge interactions cause parity vio-
lation even in QCD! This is a remarkable feature of the SUSY SM, and this
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effect is negligible in a lot of other candidates beyond the SM [1]. We take a
setup of R-parity conservation, where sparticles propagate only inside loop
diagrams due to their heavy masses. Since any parity violation has not been
discovered in QCD, non-degeneracy bounds should be obtained between the
left- and right-handed squark masses.

Does the experimental fact of conservation of parity in QCD suggest a
degeneracy between left- and right-handed squarks? We must investigate
this degeneracy, and try to obtain non-degeneracy bounds from current ex-
perimental data. As for the degeneracy of t̃L and t̃R, there has been some
research on the process of tt̄ pair production in collider experiments [1, 2].
The references showed helicity dependent amplitudes of tt̄ pair production,
and non-degeneracy between t̃L and t̃R causes the asymmetry measurement
of the cross section. The case of O(100) GeV (O(1) TeV) masses of sparticles
was investigated in Ref. [2] (Ref. [1]).

Here, we should comment on sparticle masses which are consistent with
collider experiments. One case is that all sparticles are heavy of O(1) TeV
as well as gluino mass > 1000 GeV [3], where all sparticles are too heavy to
be detected at detectors in current experiments. Another case is that light
sparticles exist which are degenerate to 30 GeV compared to other heavy
sparticles. It is because there are experimental cuts for pTs multi-jets with
missing transverse momentum in the SUSY search at the LHC (Tevatron),
where an event selection for jets is pT > 40 GeV [3] (pT > 30 GeV [4]),
and pT of jets are roughly estimated as the mass difference of gluino and
squarks. Thus, the degeneracy of sparticles within 30 GeV is consistent with
collider experiments. We will consider both cases in the following numerical
analyses.

In this paper, we establish methods of analysis to estimate this bound
for left–right degeneracy of squark masses other than the stop. At first, we
investigate a non-degeneracy bound between mc̃L and mc̃R from experimen-
tal data of charmonium decay. Secondly, we evaluate the non-degeneracy
bounds for ũ and d̃ from nucleon–meson scattering data, and comment on
other squarks. In new method of the analyzing non-degeneracy bound be-
tweenmc̃L andmc̃R , we use non-relativistic QCD (NRQCD) [5]. Formulation
of heavy quark qq̄ bound state in NRQCD is researched (Section 2), and we
establish a formula for the decay width by using an effective action tech-
nique (Sections 3 and 4). We utilize dimension six operators to evaluate
a non-degeneracy bound (Appendix B), and estimate bounds for left–right
non-degeneracy of c̃. Unfortunately, we will find that our results are be-
low current experimental data, and cannot obtain the left–right degeneracy
bounds for squark masses. However, we hope that our method is useful for
obtaining bounds from future experimental data and research of an origin
of parity violation.
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2. Quarkonium in NRQCD

Let us consider a quarkonium of qq bound state in the NRQCD frame-
work by introducing a bilocal field. It is applicable for heavy quarks, and a
related work has been shown in, for example, Refs. [6–12].

A two-body effective action in NRQCD is given by

Seff =

∫
X

∫
~r

φµ†X (~r )

[
i∂0
X −

∇2
X

4m
+H(r)

]
φµX(~r ) , (2.1)

where H(r) is defined as H(r) ≡ −∇2
r/m − V (r). A detail derivation of

Eq. (2.1) is given in Appendix A. Now, we estimate the spectra of bound
states φµX(~r ). φµX(~r ) can be expanded by a complete set of ψn(~r ) as

φµX(~r ) =
∑
n

aµn(X)ψn(~r ) =
∑
n

∫
d3P

(2π)3
aµn

(
~P
)
ψn(~r )e−iP ·X , (2.2)

where aµn(X) is a plane wave, and ψn(~r ) is a possible bound state which this
system can take. An eigenstate of H(~r ), which satisfies

Ĥ
(
~̂r
)
ψn(~r ) = Enψn(~r ) , (2.3)

is a quarkonium, and En denotes its binding energy. Orthogonality and
completeness suggest∫

d3rψ†n(~r )ψm(~r ) = δnm ,
∑
n

ψn(~r )ψ†n(~s ) = δ(~r − ~s ) . (2.4)

A hadron wave function is factorized by aµn(X), which only depends on
center-of-mass coordinate. Here µ represents spin singlet (triplet) state of
meson when µ = 0 (µ = i). Note that a hadron labeled by n is created by
aµ†n (X) as aµ†n (X)|0〉 = |n〉.

Here, let us apply this formalism to a charmonium, for example. We
denote n = ηc, hc, J/ψ, χc, · · · , then a spin singlet state φ0

X(~r ) and a spin
triplet state φiX(~r ) are represented by

φ0
X(~r ) = a0

ηc(X)ψηc(~r ) + a0
hc(X)ψhc(~r ) + · · · , (2.5)

φiX(~r) = aiJ/ψ(X)ψJ/ψ(~r) + aiχcJ (X)ψχcJ (~r) + · · · , (2.6)

respectively. We now obtain the effective action of charmonium in the SM
QCD, where parity is conserved.
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3. Direct parity violation

In the SUSY SM, parity can be violated in quarkonium through the non-
degeneracy of left–right squark masses. As we have shown in Appendix B,
there are three parity-violating operators, O(1)

4F , O(8)
4F , and OqqG. At a direct

decay vertex of quarkonium, O(1)
4F gives the leading order of parity violation,

and we call this process “direct parity violation”. The explicit form of the
direct parity violating operator is given by

Op.v
4F = (Auc +Bcu)δ4(x− y) [u (x)γµu(y)]

[
c (x)γµγ5c(y)

]
, (3.1)

where Auc and Bcu are

Auc ≡
12g4

s

192π2

1

4

(
−C(ũ,c̃)

LL + C
(ũ,c̃)
RR + C

(ũ,c̃)
LR − C(ũ,c̃)

RL

)
, (3.2)

Bcu ≡
12g4

s

192π2

1

4

(
−C(c̃,ũ)

LL + C
(c̃,ũ)
RR − C(c̃,ũ)

LR + C
(c̃,ũ)
RL

)
, (3.3)

respectively. We estimate u-quark contribution at first, and later include
d-quark contribution. Note that squark flavor is labeled by C(q̃,q̃′)

ij (i, j =

L,R), and has squark mass dependence through f1(mq̃,mq̃′) and f2(mq̃,mq̃′).
For example, C(ũ,c̃)

LL is denoted as

C
(ũ,c̃)
LL = 2

9 [f1(mũL ,mc̃L) + f2(mũL ,mc̃L)] , (3.4)

and other C-factors are similarly obtained by using Eqs. (B.3)–(B.6).
As for OqqG and O(8)

4F , they do not induce the leading order contributions,
because they must emit a gluon in the decay vertex. We can neglect gluon
exchange between in-going and out-going states at the decay instant in the
NRQCD, since non-relativistic bound states are hadronized by space-like
gluon exchanges. Therefore, we can neglect the contributions from OqqG and
O(8)

4F , and factorize this decay process by a vacuum insertion as in Fig. 1.
We focus on a charmonium, ηc, which is 0−+ under JPC, and has mass

of 2980 MeV. Notice that Op.v
4F is a contact interaction, where the decay

constant is a value of wave function at an origin due to δ-function and a
decay through the contact interaction is only possible with the S-state (an-
gular momentum L = 0). Thus, reminding π is 0−+, ηc cannot decay to
ππ until it pick up parity violation, since π(p), π(−p) system1 of S-state
is 0++. Note that there exits weak interaction, however, it also breaks C.
Anyhow, as in Fig. 1, the direct parity violation through the SUSY ef-
fects, i.e., a two-body decay process, ηc → ππ, should be factorized as

1 It has P = (−1)L and C = (−1)S+L.
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−→ time

Fig. 1. Factorization by a vacuum insertion in a direct parity violation process.
A box stands for Op.v

4F in Eq. (3.1).

〈ππ|Op.v
4F |ηc〉 ∼ 〈ππ|qγµq|0〉〈0|qγµγ5q|ηc〉. Here 〈ππ|qγµq|0〉 is a pion form

factor, and we can estimate 〈0|qγµγ5q|ηc〉 by use of NRQCD. Actually, by
regarding qγ0γ5q ∼ −1

2χ
†ϕ+ h.c. in a non-relativistic picture, the S-matrix

element of ηc → ππ is given by

〈ππ|Op.v
4F |ηc〉 ∼ −1

2(Auc +Bcu)δ4(x− y)〈ππ|u†(x)u(y)|0〉〈0|χ†(x)ϕ(y)|ηc〉 .
(3.5)

Here 〈ππ|u†(x)u(y)|0〉 ∼ F s(k) is a scalar form factor of pion, which has
non-trivial energy dependence.

In general, when a bound state |n〉(≡ aν†n (P )|0〉) decays through a bilocal
operator Oνλ···X (~r ) = φµX(~r )φλX(~r ) · · · , its matrix element is given by

〈0|T
[
Oνλ···X (~r )

]
|n〉 = i

∫
d4Y

∫
d3sFnP (Y ; s)

(
i∂Y 0 − ∇

2
Y

4m
− Ĥ(s)

)
×〈0|

[
Oνλ···X (~r )φµ†Y (s)

]
|0〉 ,

where FnP (Y ; s) ≡ ψn(~s )e−iP ·Y , and it satisfies
∫
d3Xd3rφµ†X (r)FnP (X; r) =

a†n(~P ) from orthogonality and completeness. Thus, the transition amplitude
in Eq. (3.6) is given by ψn(~r )e−iPX with Oνλ···X (~r ) = φνX(~r ).

Let us go back to a charmonium, and take q as c-quark in Eq. (A.3).
Since a heavy quark is non-relativistically expanded as shown in Eq. (A.3),
the 4-Fermi operator can be also expanded similarly. In the leading order,
components of χ†ϕ and ϕ†χ in the bilocal field, are only creating and anni-
hilating operators of charmonium. Thus, φnX(~r ) corresponds to χ†(x)ϕ(y),
and we name a label n = 0 ηc for the charmonium, which suggests

〈0|φ0
X(~r )|ηc〉 = ψηc(~r )e−iP ·X . (3.6)

Let us remind that Op.v
4F is a contact interaction, and we can use mηc for an

energy of the pion form factor due to a momentum conservation. Then, we
obtain

〈ππ|Op.v
4F |ηc〉 ∼ −1

2(Auc +Bcu)F s(mηc)ψηc(0) . (3.7)
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There is a d-quark contribution as well as u-quark one, so that the effective
4-Fermi operator Op.v

4F becomes a linear combination of u and d. Therefore,
Γ (ηc → ππ) is estimated as

Γ (ηc → ππ) ∼ | Auc +Adc +Bcu +Bcd |2
|F s(mηc)|2|ψηc(0)|2

16m2
ηc

. (3.8)

Since ηc is an S-state, the decay width depends only on the wave function
at the origin. This is a characteristic feature in the direct parity violating
process in the SUSY SM.

4. Indirect parity violation

The QCD dimension six operators from the SUSY SM can have the
parity violating effects, and actually, they can also contribute organization
of quarkoniums themselves. We call this effect “indirect parity violation”,
and we investigate it in this section. For this indirect parity violation, all
OqqG,O(1)

4F , and O
(8)
4F contribute as in Fig. 2.

Fig. 2. Diagrams which contribute indirect parity violation through dimension six
operators (which are shown a box at a vertex). Left: a contribution from OqqG.
Right: a contribution from O(1)

4F or O(8)
4F .

The indirect parity violation induces a mixing between an even-parity
state and an odd-parity state as well as a S-state and a P-state in a quarko-
nium. As the parity violating term is written by δV µν(r) in the potential,
the effective action in Eq. (A.21) includes indirect parity violation by rewrit-
ing V (r)gµν → V (r)gµν + δV µν(r). Here δV µν(r) is a matrix in a basis of S-
and P-states, which has off-diagonal elements of hadron state labeled by n
(and µ). Now let us calculate the mixing between asymptotic states in the
SUSY SM by using the basis of the SM QCD. Since the potential only de-
pends on relative coordinate, the wave function can be expanded by Ψn(~r )
in the SUSY SM as

φµX(~r ) =
∑
n

Aµn(X)Ψn(~r ) , (4.1)
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where Ψn(~r ) satisfies eigenvalue equations,[
HQCD(~r ) + δV (~r )

]
Ψn(~r ) = Efull

n Ψn(~r ) , (4.2)

for Efull
n 6= En. Note that n is the label of the hadron, which contains an

information of spin (µ = 0: singlet, µ = i: triplet). This Ψn(~r ) must be
Ψn(~r )→ ψn(~r ) as δV → 0, so that it is given by

Ψn(~r ) = ψn(~r ) +
∑
k 6=n

Vnk
En − Ek

ψk(~r ) , (4.3)

up to the first order of perturbation. Note that Ψn(~r ) must satisfy∫
d3r Ψ †n(~r )Ψm(~r ) = δmn (4.4)

for the zeroth order of perturbation. Vnk is defined by

Vnk ≡
∫
d3sψ†k(~s )[δV (~s )]ψn(~s ) . (4.5)

The classical complete set Ψn(~r ) should be written by the QCD complete set
ψn(~r ), while a hadron creation operator is given by Aµ†n (X), so that Aµn(X)
corresponds to aµn(X). Ψn(~r ) and ψn(~r ) are different complete bases as

φµX(~r ) =
∑
n

aµn(X)ψn(~r ) =
∑
n

Aµn(X)Ψn(~r ) . (4.6)

Thus, by use of orthogonalization of Ψn(~r ), we obtain

Aµ†n (X) = aµ†n (X) +
∑
k 6=n

(
Vnka

†
k(X)

)µ
En − Ek

. (4.7)

Let us consider a charmonium system. Equation (4.7) means the ob-
served ηc is almost represented by a mixing state of ηc and χc0 as

|ηc〉obs. = |ηc〉+
Vηc,χc0

Eηc − Eχc0
|χc0〉 . (4.8)

χc0 is 0++ with mass of 3415 MeV, and a decay of χc0 to ππ is possible (see,
Eq. (5.2)) when the π–π system has the angular momentum, L = 1. We
estimate parity violating potential induced from the SUSY SM. As for O(1)

4F
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in Fig. 2, its coefficient only depends on mc̃L and mc̃R , since the bound state
is charmonium. The parity violating terms in O(1)

4F are given by

O(1)
4F ⊃

12g4
s

192π2

1

2

(
−C(c̃,c̃)

LL + C
(c̃,c̃)
RR

)
δ4(x− y)[c(x)γµc(x)]

[
c(y)γµγ

5c(y)
]
,

(4.9)

where we use spin relation, δαβδγλ = 1
2δαλδγβ + 1

2σ
a
αλσ

a
γβ , and σ

aσb = δab +

iεabcσc. A color factor is rewritten as 1
2δijδkl = 1

2NC
δilδkj + TAil T

A
kj for an

exchange of spin. We must be careful of exchanges of spin and coordinate
where only spin–singlet changes its sign (Table I).

TABLE I

Exchanges of spin or coordinate.

Exchange of spin (ϕ↔ χ) Exchange of coordinate (x↔ y)

Spin singlet φ0(x, y) asym. sym.
Spin triplet φi(x, y) sym. asym.

After careful calculations, O(1)
4F is given by

O(1)
4F →

12g4
s

192π2

1

2

(
−C(c̃,c̃)

LL + C
(c̃,c̃)
RR

)( i

4mcNC

)
×
(
φ0

φi

)†
x,y

(
0 4V(r)∂jr

4←∂ i
rV(r) 4iεijk←∂ k

rV(r)

)(
φ0

φj

)
x,y

, (4.10)

where V ≡ δ4(x − y) and φi←∂ i
r ≡ −∂irφi. As for O(8)

4F , we can use the
calculation result of O(1)

4F , since spin structure is the same. The different
point is just color factor, and by using TAij T

A
kl = CF

2NC
δilδkj − 1

NC
TAil T

A
kj , we

show color octet part is CF (= (N2
C − 1)/(2NC)) times larger than O(1)

4F .
Then, non-relativistic potential from O(1)

4F and O(8)
4F with parity violation is

totally given by

δV 4F
µν (r) =

12g4
s

192π2

i

8mcNC

[(
−C(c̃,c̃)

LL + C
(c̃,c̃)
RR

)
+ CF

(
−D(c̃,c̃)

LL +D
(c̃,c̃)
RR

)]
×
(

0 4V(r)∂jr

4←∂ i
rV(r) 4iεijk←∂ k

rV(r)

)
. (4.11)
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For a non-relativistic potential from OqqG in Eq. (B.13), we estimate the
leading part. Since OqqG is not the contact interaction as O(1)

4F , its parity
violation effects should be added to the gluon potential. The bilocal operator
after integrating out gluon is given by

L ∼ g2
s

96π2CF

[
q(x)TAE0

L,RPL,Rq(x)
]
V (r)

[
q(y)TAγ0q(y)

]
, (4.12)

where E0
L,R has eight terms in total, which are categorized as

(i) ±e1 (mq̃)
g2
s

96π2CF

[ (
qxT

Aγµ∂
µ∂0qx

)
+
(
∂µ∂0qxT

Aγµqx
) ]

×V (r)
[
q(y)TAγ0q(y)

]
, (4.13)

(ii) ±e2 (mq̃)
g2
s

96π2CF

[ (
∂µqxT

Aγµ∂
0qx
)

+
(
∂0qxT

Aγµ∂
µqx
) ]

×V (r)
[
q(y)TAγ0q(y)

]
, (4.14)

(iii) ± g2
s

96π2CF

[
e3(mq̃)

{(
qxT

Aγ0∂2qx
)

+
(
∂2qxT

Aγ0qx
)}

+e4 (mq̃)
(
∂µqxT

Aγ0∂µqx
) ]
V (r)

[
q(y)TAγ0q(y)

]
, (4.15)

(iv) ± (−e5(mq̃))
g2
s

96π2CF
iεαβ0ν

[
∂βqxT

Aγν∂αqx

]
×V (r)

[
q(y)TAγ0q(y)

]
. (4.16)

Here, sign +(−) means that quark chirality is R(L). In the non-relativistic
limit, (i) and (ii) vanish, since components of µ = 0 and µ = i are canceled
with each other. For this calculation, we have used a NRQCD result, ∂0q ∼
O((m2

cv)3/2) (v: c-quark velocity, mc: c-quark mass). Actually, (iii) induces
the leading effects for the potential. By taking leading order of v, a power
counting shows

δV qqG
µν (r) = [(e4(mq̃R)− e4(mq̃L))− 2(e3(mq̃R)− e3(mq̃L))]

× g2
s

96π2

(−imq

8NC

)(
0 V (r)∂jr + ←∂ j

rV (r)

V (r)∂ir + ←∂ i
rV (r) iεijk

[
V (r)∂kr + ←∂ k

rV (r)
] ) ,

(4.17)

where we use color factor (CF/(2NC)) from Fierz transformation. As for
(iv), α, β must be space-index, so that the second derivative of space-index
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appears, which corresponds to D-state (or higher angular momentum states),
so that it does not contribute the mixing between S- and P-states. The
(iv) does not contribute the mixing between S- and P-states, too. Thus,
the leading order of parity violating potential, which triggers the mixing
between S- and P-states, is given by

δV SUSY
µν (r) = δV 4F

µν (r) + δV qqG
µν (r) . (4.18)

Then, we can calculate Vηc,χc0 in a charmonium, and a formula of decay
width is given by

Γ (ηc → ππ) ∼
∣∣∣∣ Vηc,χc0
Eηc − Eχc0

∣∣∣∣2 Γ (χc0 → ππ) . (4.19)

A wave function of charmonium is given by ψ(~r ) = Rn(r)Ylm(θ, φ), where
Rn(r) satisfies the Schrödinger equation (2.3) with Coulomb plus linear po-
tential (Cornell potential),

V (r) = −κ
r

+
r

a2
. (4.20)

We take κ = 0.52 and a = 2.34 GeV−1 for charmonium system [13]. Through
the Schrödinger equation with this potential, we can obtain charmonium
wave function numerically.

5. Bounds for left–right non-degeneracy of squark masses

We are in a stage to investigate bounds for left–right non-degeneracy of
squark masses. At first, we investigate bounds for c̃ by use of calculation
tools in this paper. Next, we estimate bounds for ũ and d̃ by use of a
similar technique in Ref. [14]. And finally, we comment on bounds for other
sfermions.

5.1. Bound for c̃

Let us investigate the left–right non-degeneracy bound for the masses of
c̃L and c̃R by use of the calculation method shown above. For a charmonium,
we focus on ηc, whose decay has upper bounds of P and CP violations as [15]

Br
(
ηc → π+π−

)
< 1.1× 10−4 , Br

(
ηc → π0π0

)
< 3.5× 10−5 . (5.1)

Note again that ηc cannot decay to ππ until it picks up parity violation. On
the other hand, a branching ratio of χc0 → ππ is

Br (χc0 → ππ) = (8.4± 0.4)× 10−3 . (5.2)
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A branching ratio of ηc → ππ in a direct parity violation from Eq. (4.19)
is given by

Br(ηc → ππ)dir. =| Auc +Adc +Bcu +Bcd |2
|F s(mηc)|2|ψηc(0)|2

16m2
ηcΓηc

, (5.3)

where Γηc is the total decay width of ηc. Here, we take a scalar form factor
of pion F s by an input parameter as F s(m2

ηc) = 1, 0.1, 0.001, since its the-
oretical estimation is difficult above 1 GeV. On the other hand, the indirect
parity violation in ηc → ππ suggests

Br(ηc → ππ)indir. ∼
∣∣∣∣∣V SUSY

ηc,χc0 + V EW
ηc,χc0

Eηc − Eχc0

∣∣∣∣∣
2

Br(χc0 → ππ) , (5.4)

where V EW
ηc,χc0 is the SM background induced from a Z-boson exchange. It

gives an additional effect V(r) ≡ (α/r) exp(−mZr)) in Eq. (4.11), which is
shown as

δV EW
µν (r) =

g2

cos2 θW

(
1
2 − 2

3 sin2 θW
)2 iCF

8mcN

(
0 4V(r)∂jr

4←∂ i
rV(r) 4iεijk←∂ k

rV(r)

)
(5.5)

in a basis of (S-state, P-state) with N = 2 and CF = 3/2. Then, we can
evaluate V EW

ηc,χc0 with Eq. (4.5), and the branching ratio is given by

Br(ηc → ππ)SM ∼
∣∣∣∣∣ V EW

ηc,χc0

Eηc − Eχc0

∣∣∣∣∣
2

Br(χc0 → ππ) ' 7.0× 10−22 .

In Figs. 3 and 4, the branching ratios of ηc → ππ from direct and indirect
parity violation effects are plotted, respectively, where horizontal axis is a
magnitude of (m2

c̃L
−m2

c̃R
)/m2

g̃. Note that the branching ratio from indirect
parity violation is larger than that from direct parity violation. Unfortu-
nately, we can show that the SUSY parity violating effect is smaller than
the experimental bound of Eq. (5.1) in the parameter region, and it is diffi-
cult to obtain the non-degeneracy bound between mc̃L and mc̃R . Figures 5
and 6 show a case when g̃ and c̃R are degenerate around 850 GeV in mass.
The magnitude of the horizontal axis is varied from (m2

c̃L
−m2

c̃R
)/m2

g̃ = 4.5,
which is taken to be consistent with LHC data. Notice that the branching
ratio becomes larger than that in Figs. 3 and 4, however, the experimental
bound is also much higher, and we cannot obtain the bounds.
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Fig. 3. Branching ratios of η → ππ from direct parity violation with mg̃ =

1400 GeV,mũR
= 2000 GeV,mũL

= 2500 GeV,md̃R
= 2100 GeV,md̃L

= 2600 GeV,
and mc̃R = 2200 GeV.
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Fig. 4. Branching ratios of η → ππ from indirect parity violation with mg̃ =

1400 GeV, and mc̃R = 2200 GeV.



QCD Parity Violation in a Quarkonium via SUSY 745

6 8 10 12 14 16 18 20

10
!23

10
!21

10
!19

10
!17

10
!15

Br(ηc → ππ)dir.

4.

F s = 1

F s = 0.1

F s = 0.01

m2
c̃L

−m2
c̃R

m2
g̃

Fig. 5. Branching ratios of η → ππ from indirect parity violation with mg̃ =
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Fig. 6. Branching ratios of η → ππ from indirect parity violation with mg̃ =

850 GeV, and mc̃R = 880 GeV.
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5.2. Bounds for ũ and d̃

The left–right non-degeneracy bounds for ũ and d̃ was studied by use of
nuclear parity violation in Ref. [14]. Where they compared coefficients of
(quark level) meson–nucleon couplings in the SM with those in the SUSY.
However, the studied parameter region was m2

q̃ � m2
g̃ < O(G−1

F ), which
is already experimentally excluded, so we investigate the left–right non-
degeneracy bound in a wider parameter region, besides, without approxima-
tions used in Ref. [14].

We use π, ω, ρ and nucleon couplings for the meson–nucleon coupling.
The notation of our dimension six operators corresponds to

G2(mq̃,mq̃′)

3m2
g̃

= f1(mq̃,mq̃′) ,
G1(mq̃,mq̃′)

3m2
g̃

= f2(mq̃,mq̃′) , (5.6)

in Ref. [14], where we neglect flavor mixings and squark left–right mixings
(A-terms). On the other hand, coefficient of q–q–G vertex is written by

C(m2
q̃/m

2
g̃)

m2
q̃

=
43m6

g̃ − 144m4
g̃m

2
q̃ + 153m2

g̃m
4
q̃ − 6

(
2m6

g̃ − 9m2
g̃m

4
q̃ + 6m6

q̃

)
log
(

m2
g̃

m2
q̃

)
− 52m6

q̃

54
(
m2

g̃ −m2
q̃

)4
(5.7)

in a massless approximation of u- and d-quarks. By using above equations,
we calculate bounds from the SM as

(i) |Cp(π) + Cb
−(π)| < |CSEW(π)| ,

(ii) |Cp(ω) + Cb
+(ω)| < |CSEW(ω)| ,

(iii) |Cp(ρ ) + Cb
+(ρ )| < |CSEW(ρ)| ,

which are shown in Figs. 7, 8, and 9. C(π), C(ω), and C(ρ) are parity vio-
lating effects (coupling) from π-, ω-, and ρ-nucleon interactions, respectively.
Indcies ‘p’ and ‘b’ stand for penguin and box diagram contributions, respec-
tively. Index SEW means an effect from the SM electroweak interactions [14]
as |CSEW(π)| = 8.5 × 10−7, |CSEW(ω)| = 4.5 × 10−6, and |CSEW(ρ)| =
6.2 × 10−7. The factor c(mq̃) is defined by c(mq̃) ≡ C(m2

q̃/m
2
g̃)/m

2
q̃ , and
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then

Cp(π) =
4

3

α2
s

12
ρ
[
c (mũR)− c (mũL)− c

(
md̃R

)
+ c

(
md̃L

)]
, (5.8)

Cp(ω) =
1

3

α2
s

24
ρ
[
c (mũR)− c (mũL) + c

(
md̃R

)
− c

(
md̃L

)]
, (5.9)

Cp(ρ) =
2

3

α2
s

24
ρ
[
c (mũR)− c (mũL) + c

(
md̃R

)
− c

(
md̃L

)]
, (5.10)

Cb
−(π) = −α

2
s

27
ρ
[
f1

(
mũL ,md̃R

)
− f1

(
mũR ,md̃L

)
− f2

(
mũL ,md̃R

)
+f2

(
mũR ,md̃L

) ]
, (5.11)

Cb
+(ω) = −3α2

s

48

(
2

9
+

8

27

)
ρ
[
2f1

(
mũL ,md̃L

)
− 2f1

(
mũR ,md̃R

)
−f2

(
mũL ,md̃L

)
+ 2f2

(
mũR ,md̃R

)
− f1

(
md̃L

,md̃L

)
−f1

(
md̃R

,md̃R

)
− f1

(
mũL ,mũL

)
− f1

(
mũR ,mũR

)
+f2

(
md̃L

,md̃L

)
+ f2

(
md̃R

,md̃R

)
+ f2

(
mũL ,mũL

)
+f2

(
mũR ,mũR

)]
, (5.12)

Cb
+(ρ) = −α

2
s

48

32

27
ρ
[
2f1

(
mũL ,md̃L

)
− 2f1

(
mũR ,md̃R

)
− f2

(
mũL ,md̃L

)
+2f2

(
mũR ,md̃R

)
− f1

(
md̃L

,md̃L

)
− f1

(
md̃R

,md̃R

)
−f1

(
mũL ,mũL

)
− f1

(
mũR ,mũR

)
+ f2

(
md̃L

,md̃L

)
+f2

(
md̃R

,md̃R

)
+ f2

(
mũL ,mũL

)
+ f2

(
mũR ,mũR

)]
, (5.13)

where we take ρ ∼
√

10.
In Figs. 7, 8, and 9, we take sample points which are not excluded by

experiment [3]. Under mg̃ = 1400 GeV, mũR = 2000 GeV, mũL = 2500 GeV,
andmd̃R

= 2100 GeV, we change a value of (m2
d̃L
−m2

d̃R
)/m2

g̃ from 1.2 for the
consistency with the experimental data. Unfortunately, in this parameter
space, ũ and d̃ are too heavy to obtain bounds for degeneracies between mũL
andmũR , ormd̃L

andmd̃R
. Figures 10, 11, and 12 show π-, ω-, and ρ-nucleon

couplings, respectively, when gluino and squarks degenerate within 30 GeV.
The magnitude of (m2

d̃L
− m2

d̃R
)/m2

g̃ is varied from 7.1 for the consistency

with the LHC data. In this parameter space, ũ and d̃ are again too heavy
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to obtain the bounds. The branching ratio is small because SUSY effects
always have a loop factor, and it is the reason why there are the asymptotic
values in Figs. 7–12.
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Fig. 7. π–N coupling (|Cp(π)+Cb
−(π)| < |CSEW(π)|) with mg̃ = 1400 GeV, mũR

=

2000 GeV, md̃R
= 2100 GeV, and mũL

= 2500 GeV. The magnitude closes in

4.0× 10−9 as
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g̃ →∞.
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Fig. 8. ω–N coupling (|Cp(ω) + Cb
+(ω)| < |CSEW(ω)|) with mg̃ = 1400 GeV,

mũR = 2000 GeV, md̃R
= 2100 GeV, and mũL = 2500 GeV. The magnitude closes

in 1.1× 10−9 as
(
m2

d̃L
−m2

d̃R

)
/m2

g̃ →∞.
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Fig. 9. ρ–N coupling (|Cp(ρ) +Cb
+(ρ)| < |CSEW(ρ)|) with mg̃ = 1400 GeV, mũR

=

2000 GeV, md̃R
= 2100 GeV, and mũL = 2500 GeV. The magnitude closes in

2.3× 10−9 as
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Fig. 10. π–N coupling (|Cp(π)+Cb
−(π)| < |CSEW(π)|) with mg̃ = 850 GeV, mũR

=

860 GeV,md̃R
= 870 GeV, andmũL

= 2500 GeV. The magnitude closes in 7.4×10−9

as
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)
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g̃ →∞.
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Fig. 11. ω–N coupling (|Cp(ω) + Cb
+(ω)| < |CSEW(ω)|) with mg̃ = 850 GeV,

mũR
= 860 GeV, md̃R

= 870 GeV, and mũL
= 2500 GeV. The magnitude closes in

2.9× 10−9 as
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)
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Fig. 12. ρ–N coupling (|Cp(ρ) +Cb
+(ρ)| < |CSEW(ρ)|) with mg̃ = 850 GeV, mũR

=

860 GeV,md̃R
= 870 GeV, andmũL

= 2500 GeV. The magnitude closes in 2.3×10−9

as
(
m2

d̃L
−m2

d̃R

)
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g̃ →∞.
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5.3. Bounds for other sfermions

Let us comment on the bounds for left–right non-degeneracies of other
sfermions. As for b̃, a total decay width of each bound state of bb̄-meson has
not experimentally measured yet. If we can know the width, the bb̄-meson
system can be analyzed, and a bound for a non-degeneracy between mb̃L
and mb̃R

can be calculated just as the bound between mc̃L and mc̃R was
calculated from the charmonium. We will calculate the bounds by just
replacing ηc → ηb (ηb: 0−+) and χc0 → χb0 (χb0: 0++). We hope our method
is useful to give a bound between mb̃L

and mb̃R
from a future experiments

of B-physics.
As for s̃, it is difficult to estimate the bound from the same method in

section 6.1. The reason is as follows. If we include a mixing between d- and
s-quarks through the Cabbibo angle, this effect is too small to induce the
bound between ms̃L and ms̃R because Figs. 7, 8, and 9 cannot give bounds
for ũ, d̃, too. On the other hand, if we take s-quark as a heavy quark and
calculate a quarkonium in NRQCD as c-quark, we might have bounds of s̃
for left–right non-degeneracy from parity violating decay mode of η(548).
Here, η(548) is 0−+ which might have a mixing with f0(600) (0++), if parity
violation exists. The decay mode of f0(600) is dominated by 2π. Thus,
the parity violation induces η(548) → ππ, whose experimental bounds are
given by

Br
(
η → π+π−

)
< 1.3× 10−5 , Br

(
η → 2π0

)
< 3.5× 10−4 . (5.14)

However, these states are not composed only by s-quarks but also u-, d-
quarks, so a valid estimation is difficult. We should also remind that mass
of s-quark is about ten times smaller than that of c-quark which is too light
to be treated in the NRQCD.

Finally, we comment on sleptons. Lepton flavor violation (LFV) exper-
iments require stringent bounds of non-degeneracy among slepton flavors
(generations). However, the LFV is suppressed when slepton masses are
heavy enough even if their left- and right-handed slepton masses are not
degenerate. That is, the left–right degeneracy is not required when sleptons
are heavy enough. This situation is the same for squark sector as above (and
also shown in K0–K̄0 system, where left–right degeneracy is not required
with enough heavy squarks).

6. Summary

The SUSY SM undergoes parity violation in QCD through chiral quark–
squark–gluino interactions with non-degenerate masses between left-handed
and right-handed squarks. Since experiments have not shown any parity
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violation in QCD yet, a bound for the mass degeneracy between left-handed
and right-handed squarks should exist. We have established the methods of
analysis to estimate this bound for each squark. First of all, we investigated
the non-degeneracy bound between mc̃L and mc̃R from experimental data
of charmonium decay by use of NRQCD. Second, we evaluated the non-
degeneracy bounds for ũ and d̃ from nucleon–meson scattering data, and
commented on other squarks. Unfortunately, our results are below current
experimental data, and cannot obtain the left–right degeneracy bounds for
squark masses. However, we hope our method is useful for obtaining bounds
from future experimental data and research of an origin of parity violation.

We thank K. Hanagaki, K. Hikasa, T. Sato, M. Wakamatsu, K. Hagiwara,
C.S. Lim, Y. Kuno, T. Yamanaka, and S. Kishimoto, for useful and helpful
discussions. We are also grateful to W. Naylor and C. Kevin for careful
reading of the manuscript. This work is partially supported by the Scientific
Grant by the Ministry of Education and Science, Nos. 20540272, 22011005,
20244028, and 21244036.

Appendix A

Two-body state effective action

Here we derive the effective action of heavy qq̄-system in NRQCD,
Eq. (2.1). At leading order in perturbation theory, we can write an effective
QCD Lagrangian as

S =

∫
x

[q(i/∂ −m)q] + (−i)
∫
x

∫
y

j†µ(x)Dµν(x− y)jν(y) , (A.1)

where Dµν(x − y) is gluon propagator. In non-relativistic limit, the gluon
propagator induces a (gluon) potential as

Dµν(x− y) =

∫
d4p

(2π)4

−ig2
sg
µν

p2
0 − |~p |2

e−ip·(x−y)

' δ
(
x0 − y0

) ig2
sg

00

4π|~x− ~y | ≡ iδ
(
x0 − y0

) V (r)

CF
, (A.2)

where r = |~x− ~y | and V (r) ≡ CFg
2
s/(4πr). This is the “Coulomb” potential

when energy level of qq̄-system is low (for example, S-state in cc̄-system, ηc).
For high energy levels (for example, P-state in cc̄-system, χc), the potential
of the heavy qq̄-system V (r) should be well approximated by phenomenolog-
ical potentia such a “Coulomb” plus linear as Eq. (4.20). This is because, at
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longer distance, higher-order perturbation such as gluon self interaction gets
more important. In fact, Refs. [16–18] show that the perturbatively calcu-
lated QCD potential agrees with lattice calculations or phenomenologically
suggested potential. When q is a heavy quark, it is expanded by its mass as

q(x) =

(
ϕe−imt + i

~∇·~σ
2m χe

imt

χeimt − i ~∇·~σ2m ϕe
−imt

)
. (A.3)

ϕ and χ denote particle and anti-particle components, respectively, and
this expansion is so-called Foldy–Wouthuysen–Tani transformation [19, 20].
Taking a color singlet part in the second term of Eq. (A.1) (color octet part
is the next leading order [5]), we can obtain a NRQCD action

SNRQCD =

∫
x

[
ϕ†
(
i∂0+

∇2

2m

)
ϕ+χ†

(
i∂0−

∇2

2m

)
χ

]
+

1

2NC

∫
x

∫
y

δ
(
x0−y0

)
×
[
ϕ†(x)χ(y)V (r)χ†(y)ϕ(x) + ϕ†(x)σiχ(y)V (r)χ†(y)σiϕ(x)

]
, (A.4)

where color factor comes from TAij T
A
kl = CF

2NC
δilδkj− 1

NC
TAil T

A
kj through Fierz

transformation. Hereafter, we note NC as a color number, which is, of
course, NC = 3. Next, by inserting the following identities

1 =

∫ ∏
µ,ν

DsµDφν† exp i

∫
x

∫
y

φ†µ(x, y)
(
sµ(x, y)− ϕ†(x)σµχ(y)

)
, (A.5)

1 =

∫ ∏
µ,ν

Dsµ†Dφν exp i

∫
x

∫
y

φµ(x, y)
(
sµ†(x, y)− χ†(x)σµϕ(y)

)
,(A.6)

into Eq. (A.4), the QCD action becomes

SNRQCD =

∫
x

∫
y

[
ϕ†(x)Kϕϕϕ(y) + χ†(x)Kχχχ(y)− φµ†(x, y)ϕ†(x)σµχ(y)

−χ†(x)σµϕ(y)φµ(x, y) +
1

2NC
δ
(
x0 − y0

)
sµ†(x, y)V (r)sµ(x, y)

+φµ†(x, y)sµ(x, y) + s†µ(x, y)φµ(x, y)
]
, (A.7)

where the kinetic terms denote

ϕ†(x)δ4(x− y)

(
i∂0 +

∇2

2m

)
ϕ(y) ≡ ϕ†(x)Kϕϕϕ(y) , (A.8)

χ†(x)δ4(x− y)

(
i∂0 −

∇2

2m

)
χ(y) ≡ χ†(x)Kχχχ(y) . (A.9)
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An effective action of the bilocal auxiliary field φµ(x, y) will be obtained
by integrating out sµ, ϕ, and χ. A potential term is induced by integrating
out sµ as

−
∫
x

∫
y

φµ†(x, y)
[
2NCδ(x

0 − y0)V −1(r)gµν
]
φν(x, y) . (A.10)

On the other hand, ϕ- and χ-integrations will derive a kinetic term of φµ as
shown below. We can rewrite the first four terms in Eq. (A.7) as∫

x

∫
y

(
ϕ(x)

χ(x)

)†(
Kϕϕ Kϕχ

Kχϕ Kχχ

)(
ϕ(y)

χ(y)

)
, (A.11)

where Kϕχ and Kϕχ are denoted as Kϕχ = −φµ†(x, y)σµ and Kχϕ =
−σµφµ(x, y). Then, by integrating out ϕ and χ in Eq. (A.7), we can obtain
the term

iTr log

(
Kϕϕ Kϕχ

Kχϕ Kχχ

)
' iTr log

(
Kϕϕ 0

0 Kχχ

)

+i
∞∑
n=1

(−1)n−1

n
Tr

(
0 K−1

ϕϕKϕχ

K−1
χχKχϕ 0

)n
. (A.12)

The Tr log is expanded in Eq. (A.12), where n = 1 is vanished by a trace,
and the leading term is coming from n = 2. After taking traces of spinor,
color, and coordinate indices, the leading term in Eq. (A.12) becomes

−i
2

Tr

(
K−1
ϕϕKϕχK

−1
χχKχϕ 0

0 K−1
χχKχϕK

−1
ϕϕKϕχ

)

= −iNC

∫
x

∫
y

∫
z

∫
w

TrspinK
−1
ϕϕ(x, y)Kϕχ(y, z)K−1

χχ (z, w)Kχϕ(w, x) , (A.13)

where propagators are given by

K−1
ϕϕ(x, y) =

∫
d4p

(2π)4

1

p0 − ~p 2

2m + iε
e−ip(x−y)δαβ ,

K−1
χχ (x, y) = −

∫
d4q

(2π)4

1

q0 − ~q 2

2m + iε
eiq(x−y)δαβ . (A.14)
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We use a center of mass coordinate Xµ and relative coordinate (0, ~r )µ as
xµ = Xµ+ 1

2(0, ~r )µ and yµ = Xµ− 1
2(0, ~r )µ. The relative coordinate does not

have time-component, since φµ(x, y) is a coincident bilocal field for x and y.
Then, φµ(x, y) is represented by

φµ(x, y) ≡ φµX(~r ) =

∫
k

∫
l

φµk

(
~l
)
e−ikXe−ilµ(0,~r )µ =

∫
k

∫
l0

∫
~l

φµk

(
~l
)
e−ikXei

~l·~r ,

(A.15)
with their momentums as pµ =

(
k0

2 + l0,
~k
2 +~l

)
and qµ =

(
k0

2 − l0,
~k
2 −~l

)
.

In this frame, Eq. (A.13) is written as

1[
k0

2 +l0− (~k/2+~l )
2

2m +iε

] [
k0

2 −l0−
(~k/2v−~l )

2

2m + iε

]φµ†k (~r )φµk(~s )e−i
~l·(~r+~s ) ,

(A.16)

and we obtain

−2iNC

∫
k

∫
~l

∫
~r

∫
~s

1

k0 − ~k2

4m −
~l2

m

φµ†k (~r )φµk(~s )e−i
~l·(~r+~s ) (A.17)

by integrating l0. Then, the effective action of φµ is given by

Seff =

∫
X

∫
~r

φµ†X (~r )

[
1

V (r)
− 1

KX(r)

]
φµX(~r ) , (A.18)

where KX(r) ≡ i∂0
X −

∇2
X

4m −
∇2
r
m . We omit overall factor 2NC by use of

normalization of the field. Note that the Green function 〈φµX(~r )φν†Y (~s )〉 is
given by〈

φµX(~r )φν†Y (~s )
〉
≡
[
V −1 −K−1

]−1

µν
(X, ~r ;Y,~s )

= V (r)gµνδ
4(X − Y )δ3(~r − ~s ) +

[
V (K − V )−1V

]
µν

(X, ~r ;Y,~s ) .

(A.19)

In asymptotic states, X 6= Y , the first term vanishes. The second term is
what we want, and V is rotated out by field redefinition, then Eq. (A.19)
becomes 〈

φµX(~r )φν†Y (~s )
〉

=
[
(K − V )−1

]
µν

(X, ~r ;Y,~s ) . (A.20)
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This means that the effective action in Eq. (A.18) can be rewritten as

Seff =

∫
X

∫
~r

φµ†X (~r ) [KX(r)− V (r)]φµX(~r ) . (A.21)

This is the effective action of Eq. (2.1). We should notice that this form is
correct when asymptotic states exist [21] and φµX(~r ) is an on-shell state.

Appendix B

Dimension six operators from SUSY

We calculate dimension six operators by integrating out sparticles in the
framework of R-parity conservation. By integrating out SUSY particles, we
can obtain higher order gauge invariant operators in terms of the SM fields.
We calculate them up to O(α2

s) and neglect O(αsαy), where αs (αy) is
g2
s/4π (y2/4π) with a QCD (Yukawa) coupling, gs (y). It is because Yukawa
couplings, ys, which we deal with, are all small2, and up to this order,
sfermion left–right mixings are negligible. In the NRQCD, there are three
types of dimension six operators, O(1)

4F ,O
(8)
4F , and OqqG, which can contribute

the parity violation in QCD. Here O(1)
4F and O(8)

4F are color singlet and octet
4-Fermi operator, respectively. Other dimension six operators such as q–q–
G–G and q–q–G–G–G vertexes are next to leading order in the NRQCD, so
we neglect them in the following discussions.

For O(1)
4F and O(8)

4F , they are given by [22]

O(1)
4F =

12g4
s

192π2

flavor∑
q,q′

[
CLL (q̄γµPLq)

(
q̄ ′γµPLq

′)+ CRR (q̄γµPRq)
(
q̄ ′γµPRq

′)
+CLR (q̄γµPLq)

(
q̄ ′γµPRq

′)+ CRL (q̄γµPRq)
(
q̄ ′γµPLq

′) ] , (B.1)

O(8)
4F =

12g4
s

192π2

flavor∑
q,q′

[
DLL (q̄ T aγµPLq)

(
q̄ ′T aγµPLq

′)+DRR (q̄ T aγµPRq)

×
(
q̄ ′T aγµPRq

′)+DLR (q̄ T aγµPLq)
(
q̄ ′T aγµPRq

′)
+DRL (q̄ T aγµPRq)

(
q̄ ′T aγµPLq

′) ] , (B.2)

2 We do not analyze t̃ in this paper.
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where coefficients are

CLL = 2
9

[
f1

(
mq̃L ,mq̃′L

)
+ f2

(
mq̃L ,mq̃′L

)]
, (B.3)

CRR = 2
9

[
f1

(
mq̃R ,mq̃′R

)
+ f2

(
mq̃R ,mq̃′R

)]
, (B.4)

CLR = −2
9

[
f1

(
mq̃R ,mq̃′L

)
− f2

(
mq̃L ,mq̃′R

)]
, (B.5)

CRL = −2
9

[
f1

(
mq̃L ,mq̃′R

)
+ f2

(
mq̃L ,mq̃′R

)]
, (B.6)

DLL = −1
3f1

(
mq̃L ,mq̃′L

)
− 7

6f2

(
mq̃L ,mq̃′L

)
, (B.7)

DRR = −1
3f1

(
mq̃R ,mq̃′R

)
− 7

6f2

(
mq̃R ,mq̃′R

)
, (B.8)

DLR = −7
6f1

(
mq̃L,mq̃′R

)
− 1

3f2

(
mq̃L ,mq̃′R

)
, (B.9)

DRL = −7
6f2

(
mq̃R ,mq̃′L

)
− 1

3f1

(
mq̃R ,mq̃′L

)
, (B.10)

f1

(
mq̃,mq̃′

)
=

1∫
0

dy

1∫
0

dz
yz2(

m2
g̃ −m2

q̃

)
yz +

(
m2
q̃ −m2

q̃′

)
z +mq̃′

,

(B.11)

f2

(
mq̃,mq̃′

)
=

1∫
0

dy

1∫
0

dz
m2
g̃yz

2[(
m2
g̃ −m2

q̃

)
yz +

(
m2
q̃ −m2

q̃′

)
z +mq̃′

]2 .

(B.12)

On the other hand, OqqG is given by

OqqG =
g3
s

96π2

∫
d4k1

(2π)4

d4k2

(2π)4

d4k3

(2π)4
(2π)4δ4(−k1 + k2 + k3)

×q(k2)T aEµL,RG
a
µ(k3)PL,Rq(k1) , (B.13)

EµL ≡ Eµ (mq̃ = mq̃L)

= {e1(mq̃L)/k1 + e2(mq̃L)/k2} kµ1 + {e1(mq̃L)/k2 + e2(mq̃L)/k1} kµ2
+
{
e3 (mq̃L)

(
k2

1 + k2
2

)
− e4(mq̃L)k1 · k2

}
γµ − e5(mq̃L)iεαβµνγ5γνk1αk2β ,

(B.14)
EµR = Eµ (mq̃R) , (B.15)
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e1(mq̃) =

107m6
g̃−495m4

g̃m
2
q̃+477m2

g̃m
4
q̃−89m6

q̃−6
(
m6
g̃+3m4

g̃m
2
q̃−54m2

g̃m
4
q̃+18m6

q̃

)
log

(
m2
g̃/m

2
q̃

)
18

(
m2
g̃−m

2
q̃

)4
,

(B.16)
e2(mq̃) =

−203m6
g̃+351m4

g̃m
2
q̃−189m2

g̃m
4
q̃+41m6

q̃+6
(
m6
g̃+51m4

g̃m
2
q̃−54m2

g̃m
4
q̃+18m6

q̃

)
log

(
m2
g̃/m

2
q̃

)
18

(
m2
g̃−m

2
q̃

)4
,

(B.17)
e3(mq̃) = e2(mq̃) , (B.18)
e4(mq̃) =

−155m6
g̃+423m4

g̃m
2
q̃−333m2

g̃m
4
q̃+65m6

q̃+6
(
m6
g̃+27m4

g̃m
2
q̃−54m2

g̃m
4
q̃+18m6

q̃

)
log

(
m2
g̃/m

2
q̃

)
9
(
m2
g̃−m

2
q̃

)4
,

(B.19)

e5(mq̃) =
9
(
m4
g̃−m

4
q̃−2m2

g̃m
2
q̃ log

(
m2
g̃/m

2
q̃

))
(
m2
g̃−m

2
q̃

)3
. (B.20)

We use these QCD dimension six operators in order to obtain the non-
degeneracy bounds of left–right squark masses.
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