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We address aspects of jet physics at the Large Hadron Collider, focusing
on features of recent jet measurements which challenge the theory. We dis-
cuss examples illustrating the role of QCD parton showers, nonperturbative
corrections, soft multi-gluon emission.
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1. Introduction

The first three years of running of the LHC have probed jet physics
in new ways, investigating previously unexplored kinematic regions. While
next-to-leading-order (NLO) QCD calculations, supplemented with nonper-
turbative corrections and parton showers, are able to describe well inclusive
jet spectra over a wide range of transverse momenta extending from 20 GeV
to 2 TeV, several features of LHC jet data challenge the theory. This applies,
in particular, to the behavior of cross sections with increasing rapidity; to
correlations of multiple jets in rapidity, azimuthal angle, transverse energy;
to non-inclusive observables probing the structure of high multiplicity final
states.

This article focuses on aspects of jet production which, despite the pres-
ence of a high transverse momentum scale, are sensitive to soft gluon pro-
cesses and QCD infrared physics. We start with inclusive cross sections in
Sec. 2 and discuss the role of parton showering and nonperturbative effects
in the context of matched NLO-shower event generators. In Sec. 3, we con-
sider forward jets and examples of multi-jet correlations. Section 4 examines
b-flavor jets. Section 5 takes a further look at jet correlations from the view-
point of multiple parton interactions, emphasizing the role of energy flow
variables. Section 6 addresses motivation and prospects for extending jet
measurements to lower transverse momenta than is presently done.
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2. Inclusive jet production

Measurements of inclusive jet production are carried out at the LHC [1, 2]
over a kinematic range in transverse momentum and rapidity much larger
than in any previous collider experiment [3]. Baseline comparisons with
Standard Model theoretical predictions are based either on next-to-leading-
order (NLO) QCD calculations, supplemented with nonperturbative (NP)
corrections [1, 2] estimated from Monte Carlo event generators, or on NLO-
matched parton shower event generators [4, 5]. The upper panels in Fig. 1 [1]
report the first kind of comparison, showing that the NLO calculation agrees
with data at central rapidities, while increasing deviations are seen with in-

Fig. 1. Inclusive jet spectra [1] compared with (top) NLO+NP results and (bottom)
NLO-matched shower results.
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creasing rapidity at large transverse momentum pT [1]. The question arises
of whether such behavior is associated with higher-order perturbative con-
tributions or with nonperturbative components of the cross section.

The lower panels in Fig. 1 [1] show the second kind of comparison based
on Powheg calculations [6], in which NLO matrix elements are matched
with parton showers [7, 8]. This improves the description of data, indicat-
ing that higher-order radiative contributions taken into account via parton
showers are numerically important. At the same time, the results show large
differences between Powheg calculations interfaced with different shower
generators, Herwig [7] and Pythia [8], in the forward rapidity region. This
region is sensitive to the details of parton showering corrections.

It thus becomes apparent that the treatment of nonperturbative and
showering contributions is essential for the understanding of LHC jet data.
We discuss these in more detail next.

2.1. Nonperturbative and showering corrections

Using leading-order Monte Carlo (LO-MC) generators [7, 8], the nonper-
turbative correction factors are schematically obtained in [1, 2] as

KNP
0 = N

(ps+mpi+had)
LO−MC /N

(ps)
LO−MC , (1)

where (ps+mpi+had) and (ps) mean respectively a simulation including par-
ton showers, multiparton interactions and hadronization, and a simulation
including only parton showers in addition to the LO hard process.

While this is a natural way to estimate NP corrections from LO+PS
event generators, it is noted in [9] that when these corrections are combined
with NLO parton-level results a potential inconsistency arises because the
radiative correction from the first gluon emission is treated at different lev-
els of accuracy in the two parts of the calculation. To avoid this, Ref. [9]
proposes a method to use NLO Monte Carlo (NLO-MC) generators to de-
termine the correction. In this case, one can consistently assign correction
factors to be applied to NLO calculations. Moreover, this method allows
one to study separately correction factors to the fixed-order calculation due
to parton showering effects. To this end, Ref. [9] introduces the correction
factors KNP and KPS as

KNP = N
(ps+mpi+had)
NLO−MC

/
N

(ps)
NLO−MC , (2)

KPS = N
(ps)
NLO−MC

/
N

(0)
NLO−MC , (3)

where the denominator in Eq. (3) is defined by switching off all components
beyond NLO in the Monte Carlo simulation.
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The factor KNP in Eq. (2) differs from KNP
0 because of the different

definition of the hard process. In particular, the multi-parton interaction
pT cut-off scale is different in the LO and NLO cases. Numerical results are
shown in Fig. 2. The factor KPS in Eq. (3), on the other hand, is new. It
singles out contributions due to parton showering and has not been consid-
ered in previous analyses. Unlike the NP correction, it gives finite effects
also at large pT. Results are given in Fig. 3, showing that this correction
is not just a rescaling factor, but it is y and pT dependent, especially when
rapidity is non-central.
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Fig. 2. The NP correction factors to jet transverse momentum distributions ob-
tained from Eq. (1) and Eq. (2), using Pythia and Powheg respectively, for
|y| < 0.5 and 2 < |y| < 2.5. Left: R = 0.5; right: R = 0.7 [9].

The correction factor in Fig. 3 comes from initial-state and final-state
showers, and as noted in [9] these are so interrelated that the combined
effect is nontrivial and cannot be obtained by simply adding the two. In
general, the effect from parton shower is largest at large |y|, where the ini-
tial state parton shower is mainly contributing at low pT, while the final
state parton shower is contributing significantly over the whole pT range.
It is observed in [9] that the main initial state showering effect comes from
kinematical shifts in longitudinal momentum distributions [10], due to com-
bining collinearity approximations with the Monte Carlo implementation
of energy-momentum conservation constraints. The effect of the kinematic
shifts is illustrated in Fig. 4 [9], showing the distribution in the parton lon-
gitudinal momentum fraction x before parton showering and after parton
showering. We see that the longitudinal shift is negligible for central rapidi-
ties but becomes significant for y > 1.5.
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Fig. 3. The parton shower correction factor to jet transverse momentum distribu-
tions, obtained from Eq. (3) using Powheg for |y| < 0.5 and 2 < |y| < 2.5. Left:
R = 0.5; right: R = 0.7 [9].
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Fig. 4. Distributions in the parton longitudinal momentum fraction x before
(Powheg) and after parton showering (Powheg+PS), for inclusive jet produc-
tion at different rapidities for jets with pT > 18 GeV obtained by the anti-kt jet
algorithm [11] with R = 0.5. Shown is the effect of intrinsic kt, initial (IPS) and
initial+final state (IFPS) parton shower [9].
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In summary, the nonperturbative correction factor KNP introduced from
NLO-MC in Eq. (2) gives non-negligible differences at low to intermediate
jet pT, while the showering correction factor KPS of Eq. (3) gives signifi-
cant effects over the whole pT range and is largest at large jet rapidities y.
Because of this y and pT dependence, taking properly into account NP and
showering correction factors changes the shape of jet distributions, and may
thus influence the comparison of theory predictions with experimental data.
We anticipate, in particular, that taking account of the showering correction
factor will be relevant in fits for parton distribution functions using inclusive
jet data.

3. Forward jets

Physics in the forward region at hadron colliders is traditionally domi-
nated by soft particle production. At the LHC, forward physics turns into a
largely new field [12–14] because, due to the phase space opening up at large
center-of-mass energies, both soft and hard production processes become rel-
evant and, thanks to the unprecedented reach in rapidity of the experimental
instrumentation, it becomes possible, for the first time at hadron–hadron col-
liders, to carry out a program of jet physics in the forward region. Forward
jets enter the LHC physics program in an essential way both for new parti-
cle discovery processes (e.g., Higgs searches in vector boson fusion channels,
jet studies in decays of highly boosted heavy states) and new aspects of
standard model physics (e.g., QCD at small x and its interplay with cosmic
ray physics, searches for new states of strongly interacting matter at high
density).

We have discussed in the previous section that nonperturbative and
showering corrections become especially pronounced for high rapidity, and
so do kinematic effects due to longitudinal momentum shifts. In addition to
these effects, when jets are observed at large separations in rapidity, dynam-
ical contributions arise from QCD multi-parton radiation [15–17], calling for
perturbative resummations of large-rapidity logarithms to all orders in αs.
Moreover, with increasing rapidities the nonperturbative parton distribu-
tions are probed in highly asymmetric parton kinematics. In particular,
jet production becomes sensitive to small-x dynamics in the pdfs. This,
in turn, implies that effects from multiple parton collisions [18, 19] become
more important [20–22] due to the increase in the parton densities.

First forward jet measurements have been performed by LHC experi-
ments [23, 24]. While inclusive forward jet spectra are roughly in agreement
with predictions from different Monte Carlo simulations, detailed aspects of
production rates and correlations [23, 24] are not well understood yet.
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An example is given by the di-jet observables proposed in [25] associated
with events containing a forward and a central jet. Experimental measure-
ments and Monte Carlo comparisons are shown in Fig. 5 [23]. This indicates
that none of the Monte Carlo generators describes the data well in all regions,
and that, in particular, NLO-matched calculations from Powheg give large
differences in the forward jet pT distribution when combined with different
parton showers, see Powheg+Herwig versus Powheg+Pythia.
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Fig. 5. Ratio theory/data [23] for di-jet events with a central and a forward jet as
a function of the forward jet transverse momentum.

In [25, 26], this behavior is investigated by studying the ∆R jet distribu-
tion, in azimuth and rapidity space, which quantifies to what extent jets are
dominated by hard partons in the matrix element or originate from show-
ering. Large contributions to jets from showering are found [25] in the case
of asymmetric parton kinematics, i.e. when one of the initial-state showers
goes down to small x. Reference [26] furthers this study by considering the
central jet transverse energy spectrum, in di-jet events with a central and
a forward jet, using the NLO event generator Powheg matched with par-
ton showers Pythia and Herwig. Figure 6 [26] shows results for the two
cases, normalized to the result obtained by switching off parton showering.
The marked differences between the two cases are consistent with the find-
ings in [23], and with the large contribution to jets from showering found
in [25]. In particular, in the forward–central events considered high-rapidity
correlations appear to affect the behavior of jet distributions in the central
region.

A classic test of QCD high-energy resummation for jets at large rapid-
ity separations [15] is given by the azimuthal decorrelation between jets.
Figure 7 (from [25]) shows the cross section as a function of the azimuthal
distance ∆φ between central and forward jets reconstructed with the Siscone
algorithm [27] (R = 0.4), for different rapidity separations. It shows results



768 F. Hautmann

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180 200

LHC sqrt(s)=7000 GeV
jet  ET>10 GeV
central jets

 ET (GeV)

 r
at

io POWHEG-pythia
POWHEG-herwig

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140 160 180 200

LHC sqrt(s)=7000
jet  ET>30 GeV
central jets

 ET (GeV)

 r
at

io POWHEG-pythia
POWHEG-herwig

Fig. 6. Ratio of NLO+shower to no-shower results for di-jet events with a central
and a forward jet as a function of the central jet transverse momentum [26]. ET >

10 GeV (left); ET > 30 GeV (right).
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Fig. 7. Cross section versus azimuthal distance ∆φ between central and forward jet,
at different rapidity separations ∆η, for jets with transverse energy ET > 10 GeV
(left) and ET > 30 GeV (right) [25].

computed by Pythia Monte Carlo [28], with and without multi-parton in-
teractions, and by Cascade Monte Carlo [29], which includes small-x gluon
coherence effects [30] in the initial-state shower. The main point is that the
decorrelation as a function of ∆η increases in Cascade as well as in Pythia,
respectively as a result of finite-angle gluon radiation in single-chain parton
shower or as a result of multiple-chain collinear showers; but while in the
low ET region (Fig. 7 (left)) this is similar between Cascade and Pythia
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with multiparton interactions for ∆η < 4, in the higher ET region (Fig. 7
(right)) the influence of multiparton interactions in Pythia is small and
Cascade predicts everywhere a larger decorrelation. We will come back to
further discussion of correlations in Sec. 5 from the point of view of energy
flow observables.

While the specific results shown in this section refer to forward–central
jet correlations, it is interesting to consider extensions to the forward–
backward kinematics. This will allow one to address the large-∆y di-jet data
sets [24], currently rather poorly understood; to search for Mueller–Navelet
effects [15]; to analyze backgrounds in Higgs boson studies [31] from vector
boson fusion channels. In particular, one may be able to extract information
on Higgs properties and couplings from jet kinematics [32]. In this case, too
finite-angle radiative contributions to single-chain showers, extending across
the whole rapidity range, affect the underlying jet activity accompanying the
Higgs [33] and may give competing effects to multiple-parton interactions.

4. b-flavor jets

Some of the features observed for inclusive jets in Sec. 2 are also present in
b-flavor jets [34, 35]. Figure 8 [34] shows a comparison of the measured b-jet
transverse momentum spectra with matched NLO-shower calculations using
MC@NLO [36]. The description of the data is generally good at central
rapidities, while at large rapidity and large pT the Monte Carlo is above the
data. Similar behavior is shown by comparisons with Powheg [37] in [35].

Fig. 8. Inclusive b-jet spectra [34].

Figure 9 [9] studies kinematic corrections to b-jet production due to lon-
gitudinal momentum shifts in the initial state parton shower, similar to
those discussed for inclusive jets in Fig. 4. For b-jets in different rapidity
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regions [34], the gluon x distribution is plotted from Powheg before par-
ton showering and after including various components of the parton shower
generator. The Pythia parton shower is used (tune Z2 [38], here including
hadronization to identify the b-jet). Figure 9 shows similar shifts in lon-
gitudinal momentum with increasing rapidity as in the inclusive jet case.
A better understanding of b production in this region is also important for
studies of the Higgs to bb̄ decay channel, e.g. in the associated production
with vector bosons.
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Fig. 9. Production of b-jets: distribution in the parton longitudinal momentum
fraction x, before and after parton showering, for different rapidity regions. Shown
is the effect of intrinsic kt, initial (IPS) and initial+final state (IFPS) parton
shower [9].

Although for explicit calculations in Fig. 9 a particular NLO-shower
matching scheme (Powheg) is used, the effect is common to any calcu-
lation matching NLO with collinear showers. As discussed in [9, 10], the
kinematic shifts due to the momentum reshuffling can affect predictions of
matched NLO-shower calculations both through the perturbative weight for
each event and through the evaluation of the parton distribution functions.
In calculations using integrated parton density functions this implies that
correction factors as discussed in Sec. 2 have to be applied after the evalua-
tion of the cross section. On the other hand, we note that this is avoided in
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approaches using transverse momentum dependent PDFs [39–41] from the
beginning (TMDs or uPDFs). It will be of interest to study this quantita-
tively in Monte Carlo generators which implement these PDFs [42, 43].

5. Multi-parton interactions and energy flow variables

Besides jet cross sections, event shape variables are studied at the LHC
[44, 45] and used to characterize the detailed structure of final states and the
events’ energy flow. First measurements of LHC hadronic event shapes [44]
indicate that parton showering effects dominate over contributions from hard
matrix elements evaluated at high multiplicity. Jet shape variables describ-
ing the jet’s internal structure and the energy flow within a jet are also
studied [46], and are sensitive, besides jet substructure, to soft dynamics in-
cluding underlying events [12], pile-up, and multiple parton interactions [20].

Energy flow measurements [47] in minimum bias and di-jet events, de-
signed to investigate properties of the soft underlying event, emphasize the
difficulty [48] in achieving a unified underlying event description from central
to forward rapidities, based on Pythia [28] Monte Carlo tuning. Forward–
backward correlations [49] in minimum bias may help analyze the event
structure. Complementary to the above measurements are transverse energy
flow observables associated with the production of jets widely separated in
rapidity [50], sensitive to harder color radiation, and useful for studies of
showering and of multi-parton interactions [51]. The transverse energy flow
may be defined by summing the energies over all particles in the final states
above a minimum ET, or alternatively [50] by first clustering particles into
jets by means of a jet algorithm, and then constructing the associated en-
ergy flow from jets with transverse energy above a given lower bound q0. In
the latter case, one measures a (mini)jet energy flow, and infrared safety is
ensured by the use of the clustering algorithm.

Figures 10 and 11 report results for the particle and minijet energy flow
associated with production of central and forward jets [50] from three Monte
Carlo event generators: the k⊥-shower Cascade generator [29], to evalu-
ate contributions of high-energy logarithmic corrections; the NLO matched
Powheg generator [6], to evaluate the effects of NLO corrections to matrix
elements; Pythia Monte Carlo [28], used in two different modes: with the
LHC tune Z1 [38] (Pythia-mpi) to evaluate contributions of multi-parton
interactions, and without any multi-parton interactions (Pythia-nompi).

Figure 10 shows the pseudorapidity dependence of the transverse energy
flow in the region between the central and forward jets. The particle energy
flow plot on the left in Fig. 10 shows the jet profile picture, and indicates
enhancements of the energy flow in the inter-jet region with respect to the
Pythia-nompi result from higher order emissions in Cascade and from
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Fig. 11. Azimuthal dependence of the mini-jet energy flow [50] for different rapidity
ranges: (left) central-jet; (middle) intermediate; (right) forward-jet.

multiple parton collisions in Pythia-mpi. On the other hand, there is little
effect from the next-to-leading hard correction in Powheg with respect
to Pythia-nompi. The energy flow is dominated by multiple-radiation,
parton-shower effects. The mini-jet energy flow plot on the right in Fig. 10
indicates similar effects, with reduced sensitivity to infrared radiation. As
the mini-jet flow definition suppresses the contribution of soft radiation,
the Cascade and Pythia-mpi results become more similar in the inter-
jet region. Distinctive effects are also found in [50] by computations in the
region away from the jets.

Figure 11 illustrates the azimuthal dependence of the mini-jet transverse
energy flow. Here ∆φ is measured with respect to the central jet. The ∆φ
distribution is shown for three different rapidity ranges, corresponding to
the central-jet, forward-jet, and intermediate rapidities. As we go toward
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forward rapidity, the Cascade and Pythia-mpi calculations give a more
pronounced flattening of the ∆φ distribution compared to Powheg and
Pythia-nompi, corresponding to increased decorrelation between the jets.

The above numerical results indicate that soft multi-gluon emission over
large rapidity intervals gives sizeable contribution to the inter-jet energy
flow. As a result, the rates for multi-parton interactions [20] may be in-
fluenced significantly by non-collinear corrections to single-chain showering.
This also underlines the relevance of approaches which aim at a more ac-
curate and complete description of initial state dynamics by generalizing
the notion of parton distributions [39], both for quark-dominated [52] and
gluon-dominated [53] processes.

6. Towards low pT

It has been observed in [54] that if jet measurements at the LHC are
extended down to transverse momenta of the order of a few GeV one can
define a visible leading jet cross section sensitive to the unitarity bound set by
the inelastic proton–proton rate which has recently been measured [55–57].
This can be done within the range of acceptance of the measurement without
using any extrapolation [54]. Because of the low transverse momenta, this
will rely primarily on jets constructed from charged tracks. Given the decay
in particle tracking capabilities with increasing rapidity, one may focus on
the central pseudorapidity range.

The main interest of these measurements is the possibility to investi-
gate the leading jet cross section near the pT region, pT = O (a few GeV),
where the inelastic pp production rate is saturated [54]. Even though at
weak coupling, dynamical effects slowing down the rise of the cross section
in this region involve strong fields and nonperturbative physics. To this end,
Ref. [54] introduces an event cross section, defined as an integral over the
differential leading jet cross section, which does not depend on the jet mul-
tiplicity. Figure 12 shows the visible jet cross section using Pythia [8] with
jets reconstructed by the anti-kT algorithm [11] for R = 0.5 down to low
transverse momenta.

In Fig. 12 (left), the perturbative result reaches the inelastic bound [55]
for minimum pT ' 4 GeV. In the region just above this value, pT =
O(10) GeV, effects responsible for the taming of the cross section set in.
Figure 12 (right) shows the cross section based on the model [19, 58], in
which the rise of the cross section is tamed at small values of pT by intro-
ducing a pT0 cut-off parameter obtained from fits to describe measurements
of the underlying event.

Figure 13 [54] shows a comparison of the jet cross section for pT0 = 0,
including parton shower and hadronisation, with the cross section obtained
from Pythia including the pT0 model. In Fig. 13 (right), we show the effect
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Fig. 13. The cross section as a function of pTmin as predicted by Pythia in the
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cluding parton shower and hadronisation, while the dashed (red) line shows the
prediction with pT0 6= 0; (left) is without multi-parton interactions, (right) includ-
ing multi-parton interactions with tune Z2* [38].

of multi-parton interactions. Especially in the region of pT < 10 GeV, a
clear deviation from the pT0 = 0 prediction is visible. Measuring the jet
cross section in this range would provide insight into the transition from the
large-pT perturbative behavior to the small-pT region where weak-coupling
but nonperturbative effects are needed to avoid unitarity violation. The
measurement [59] illustrates the feasibility of measuring jets at low pT but
it does not examine event cross sections and unitarity effects, while Monte
Carlo models are effectively normalized to the lowest pT bin [59].
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Besides pp collisions, it is interesting to extend the low pT jet measure-
ments to collisions of nuclei. If the inelastic cross section is measured in AA
and pA, they may be useful to characterise properties of final states in terms
of jets or flows, and investigate the role of transverse momentum dependent
effects and multi-parton interactions [60] in ion collisions.

Many thanks to Wojciech Broniowski, Wojciech Florkowski, Michal
Praszalowicz for the kind invitation and warm hospitality at the Interna-
tional Symposium on Multiparticle Dynamics. The material presented in
this article originated from discussion and collaboration with many peo-
ple, in particular, S. Dooling, D. d’Enterria, A. Grebenjuk, P. Gunnellini,
M. Deak H. Jung, Z. Nagy, P. Katsas, A. Knutsson, K. Kutak, K. Rabbertz.
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