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Masses of the heaviest deformed even–even nuclides with the atomic
number Z = 98–114 have been calculated by applying a macroscopic–
microscopic method. Approximate formulas for calculating masses of odd
and odd–odd nuclides from the calculated masses of the neighboring even–
even nuclides and the average pairing energies of unpaired nucleons are
used. For the 56 heaviest deformed nuclides, for which masses are experi-
mentally known, the standard deviation of 0.30 MeV has been obtained.
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1. Introduction

Since the mid 1970-ties, when the reactions based on 208Pb and 209Bi
targets have been proposed to produce the heaviest atomic nuclei [1], great
progress has been made in discovering deformed superheavy nuclei. Ele-
ments with atomic numbers Z = 107–112 have been synthesized and their
alpha-decay descendants have been produced [2]. The confirmation exper-
iments have been performed [3, 4]. Moreover, a number of odd element
isotopes has been produced in a combination with 208Pb targets and odd
element projectiles [5, 6]. The synthesis of element 113 has also been re-
ported [7]. However, so far only masses of 56 nuclides with the atomic
number Z = 98–110 are experimentally known [8].

The objective of the present paper is to present the macroscopic–micro-
scopic calculation of masses of the deformed even–even nuclides with Z =
98–114. The region of nuclides chosen for the calculation is limited by ex-
tremely small formation cross sections and the neighboring region of spher-
ical superheavy nuclides. Moreover, we use straightforward formulas for
calculating masses of odd and odd–odd nuclides from the calculated masses
of the neighboring even–even nuclides and the average pairing energies of un-
paired nucleons. Earlier, we applied the same model for calculating masses of
the hypothetical at that time spherical superheavy nuclides [9]. Recently, the

(779)



780 R. Smolańczuk

synthesis of spherical superheavy nuclei with atomic numbers up to Z = 118
in reactions with actinide targets and 48Ca projectile and the production of
their alpha-decay descendants has been reported [10]. A number of these
nuclides has been obtained in later independent experiments [11–16]. Mass
of none spherical superheavy nuclide is experimentally known.

It is worth mentioning that, with the use of the same model as the model
applied in the present paper, the equilibrium deformation of the heaviest
deformed even–even nuclei has been calculated in Ref. [17]. For the vast
majority of the considered nuclei the main quadrupole component of defor-
mation β2 = 0.20–0.25 has been obtained. That prediction is consistent
with the later measurement of quadrupole deformation of 254No [18].

The contribution of an unpaired nucleon to the mass of a nucleus may
be treated in one of three ways. The most complicated and usually disre-
garded for heaviest nuclides way consists in blocking for pairing interaction
a single-particle nuclear state for which the nuclear energy is minimal. In
this method, one chooses a blocked state among the several ones above and
the several ones below the Fermi level. This action is repeated in each step
of the minimization of nuclear energy with respect to deformation. The sec-
ond method consists in adding a lowest quasiparticle energy of an unpaired
nucleon to the ground-state mass of a nucleus. In the third method, which
is the simplest and with the accuracy not smaller than the previous two
methods, one adds the average pairing energy of a nucleon to the ground-
state mass of a nucleus. The latter we obtained as the arithmetic average of
masses of the neighboring even–even nuclei. In the present study, the third
method is used.

In the macroscopic–microscopic calculations of masses of deformed nu-
clides described in Refs. [19, 20] the authors added to the mass formula the
zero-point vibration energy in a rough parabolic approximation different for
each nucleus. In Ref. [19], the authors considered even–even nuclei, used the
three-dimensional deformation space and the BCS pairing approach with
introduced a new pairing strength. Their refitted values of the macroscopic
parameters are the following: κV = 1.962 and ca = 0.330 MeV. The authors
of Ref. [20] considered even–even and odd nuclei, used the four-dimensional
deformation space and the Lipkin–Nogami pairing approach with a pairing
strength taken from Ref. [21]. The contribution of an odd nucleon to the
ground state mass of a nucleus they described by adding its lowest quasi-
particle energy. Their refitted values of the macroscopic parameters read
κV = 1.92552 and ca = 0.14505 MeV. In Ref. [22] even–even, odd and odd–
odd nuclei have been considered. The BCS pairing approach has been used
with the pairing strength taken from Ref. [23]. To describe the contribution
of an odd nucleon to the ground state mass of a nucleus its lowest quasiparti-
cle energy was added. The macroscopic energy has been calculated without
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the Wigner term and the charge-asymmetry term ca(N − Z), where N is
the neutron number and Z is the atomic number. The refitted macroscopic
parameters are aV = 16.0643 MeV, κV = 1.9261 and a0 = 17.926 MeV. In
the calculation of nuclear masses, seven dimensional deformation space has
been applied. In Ref. [24], the same model as in Ref. [22] has been used
to calculate the nuclear masses, as well as the fission barriers, for the wider
region of even–even nuclides ranging up to Z = 126, also for neutron de-
ficient nuclides far behind the reach of the present-day experiments. From
both studies [22, 24], one can draw a conclusion that the odd-multipolarity
deformations are equal to zero for deformed superheavy nuclei reducing the
deformation space for these nuclei to four dimensions. In our calculation
described in the present paper, we consider even–even, odd and odd–odd
nuclides. We use the BCS pairing approach with the pairing strength from
Ref. [19]. We describe the contribution of an odd nucleon adding the average
pairing energy to the ground state of a nucleus. We use the four-dimensional
deformation space. Our refitted macroscopic parameters read κV = 1.990,
ca = 0.572 MeV and a0 = 13.8 MeV. In the above discussed calculations,
the Woods–Saxon potential was used to obtain the single-particle energy
spectra necessary to calculate the microscopic energy and a restricted re-
gion of nuclei from 208Pb upward was used to refit some of the macroscopic
parameters. Differences between the models discussed above are collected
in Table I.

Our calculation, mainly due to the use of a smaller region of nuclei to
determine the macroscopic parameters, as well as the use of a larger defor-
mation space, the Woods–Saxon potential and carefully chosen description
of pairing, gives pretty small standard deviation. In other words, the above
mentioned features of our calculation lead to increased predictive power. We
obtained standard deviation of 0.35 MeV, smaller than 0.37 MeV obtained in
Ref. [22] for nuclei heavier than 208Pb, and significantly smaller than about
half MeV obtained in FRLDM and FRDM models [25] for these nuclei. In
the latter two models, besides the fit of macroscopic parameters to nuclei
from 16O upward and the use of the smaller three-dimensional deformation
space, the Yukawa potential was applied to obtain the single-particle spectra
for neutrons and protons used for calculating the microscopic energy.

2. The model and the results

In the calculation of masses of the even–even nuclides, we applied a
macroscopic–microscopic model. We calculated the microscopic part of nu-
clear energy originating from the shell effects using the Strutinski method
[26]. In order to apply it, we calculated the single-particle energy levels
solving the Schrödinger equation separately for neutrons and protons.
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The Woods–Saxon single-particle Hamiltonian [27] with the universal pa-
rameters [27] we diagonalized in the axially deformed harmonic oscillator
basis [27]. We used the basis with 19 harmonic oscillator shells for both
neutrons and protons with 550 lowest laying neutron and 350 lowest ly-
ing proton states. To describe the pairing interaction, we used the BCS
approach. We calculated the pairing correction, which is a part of the mi-
croscopic energy, using the strength of pairing taken from Ref. [19]. It is
worth noting that the pairing correction originating from many quasipar-
ticle states should not be confused with the average pairing energy of an
unpaired nucleon.

We used the Yukawa-plus-exponential formula [28] as the macroscopic en-
ergy. We parametrized nuclear shapes through the spherical harmonics. We
checked out in Ref. [29] that for calculating masses of the heaviest deformed
nuclides the nuclear energy should be minimalized in the four-dimensional
deformation space {β2, β4, β6, β8} describing axially symmetric shapes. This
is because the deformation β8 decreases masses by about half MeV and the
deformation β10 leaves masses practically unchanged. The readjustment of
parameters in the macroscopic part of the mass formula was done to 77 ex-
perimentally known masses [30] of even–even nuclides laying on the nuclear
chart above the proton shell 82 and the neutron shell 126, as well as to those
with Z = 82 and N = 126, to obtain a smaller standard deviation of the
results for the superheavy nuclides. In other words, to obtain better pre-
dictive power of calculated masses of the heaviest nuclides. The parameters
in terms dependent on deformation have not been refitted in order not to
spoil the values of the fission barriers [17] and, consequently, the values of
the spontaneous-fission half-lives [17]. The refitted parameters read [31]: the
volume-asymmetry parameter κV = 1.990, the charge-asymmetry parameter
ca = 0.572 MeV and the constant a0 = 13.8 MeV. The obtained standard
deviation for the even–even nuclei with Z ≥ 82 and N ≥ 126 is equal to
0.26 MeV.

Approximate formulas for masses, in MeV, of the heaviest odd nuclides
may be given adding the average pairing energy of an unpaired nucleon
12 MeV/

√
A [32] to the arithmetic average of the calculated masses of the

neighboring even–even nuclides. A formula for an odd-N nuclide is the
following

M(Z,N) = 1
2 [M(Z,N − 1) +M(Z,N + 1)] +

12 MeV√
A

, (1)

where M(Z,N) is the mass of a nuclide with the atomic number Z, the
neutron number N and the mass number A = Z +N . Similarly, a formula
for an odd-Z nuclide is the following

M(Z,N) = 1
2 [M(Z − 1, N) +M(Z + 1, N)] +

12 MeV√
A

. (2)
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Approximate formula for mass, in MeV, of the heavy odd–odd nuclide may
be given adding the sum of the average pairing energy of an unpaired proton
and an unpaired neutron to the arithmetic average of the calculated masses
of the neighboring even–even nuclides. For an odd-N and odd-Z nuclide a
formula reads

M(Z,N) = 1
4 [M(Z − 1, N − 1) +M(Z + 1, N − 1) +M(Z − 1, N + 1)

+M(Z + 1, N + 1)] +
24 MeV√

A
. (3)

In Table II, there is collected the calculated mass of the deformed even–
even nuclides with Z = 98–114 as the mass excess, i.e., [M(in u) − A], in
MeV, where M is the mass of a nuclide, u is the atomic mass unit and A is
the mass number. The region of nuclides chosen for the calculation is lim-
ited by extremely small formation cross sections and the neighboring region

TABLE II

Calculated mass excess, in MeV, of the heaviest deformed even–even nuclides with
the atomic number Z = 98–114 and the neutron number N given in the first
column.

N Cf Fm No Rf Sg Hs Ds Cn 114

132 61.92
134 60.07 74.48
136 58.81 72.36 87.64
138 58.16 70.80 85.20 101.35
140 58.09 69.79 83.32 98.63 115.58
142 58.63 69.39 82.02 96.48 112.59 130.45
144 59.81 69.59 81.35 94.93 110.18 127.19 146.06
146 61.67 70.46 81.30 93.98 108.33 124.46 142.54 162.26
148 64.21 72.01 81.87 93.57 106.98 122.25 139.54 158.50 178.98
150 67.37 74.14 82.99 93.72 106.18 120.59 137.08 155.28 175.01
152 71.11 76.90 84.73 94.51 106.05 119.58 135.28 152.72 171.70
154 75.78 80.68 87.59 96.36 106.90 119.49 134.39 151.03 169.18
156 81.08 85.11 91.07 98.85 108.39 120.02 134.09 149.88 167.19
158 86.76 89.94 94.96 101.76 110.34 121.01 134.21 149.11 165.56
160 92.80 95.11 99.23 105.08 112.73 122.41 134.68 148.70 164.29
162 99.11 100.60 103.83 108.80 115.55 124.28 135.64 148.77 163.54
164 107.20 109.68 113.90 119.88 127.77 138.10 150.19 163.95
166 116.01 119.50 124.79 131.89 141.23 152.36 165.16
168 125.49 130.04 136.43 144.83 155.01 166.91
170 135.54 141.24 148.70 157.90 168.95
172 145.95 152.52 160.93 171.17
174 156.71 164.29 173.67
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of spherical superheavy nuclides. We obtained standard deviation equal
to 0.30 MeV for 56 heaviest nuclides for which masses are experimentally
known. The differences between the calculated masses in the present paper
and experimentally known masses [8] of the even–even, odd and odd–odd
heaviest deformed nuclides are collected in Table III.

TABLE III

Differences, in MeV, between the calculated masses in the present paper and the
experimentally known masses [8] of even–even, odd and odd–odd heaviest deformed
nuclides with the atomic number Z = 98–110. The neutron number N is given in
the first column.

N Cf Es Fm Md No Lr Rf Db Sg Bh Hs Mt Ds

139 0.97
140
141
142 0.64
143
144 0.42
145
146 0.19 0.27
147 0.32
148 0.12 0.29 0.11
149 0.45 0.31
150 0.13 0.07 0.35 0.11
151 0.27 0.32 0.26
152 −0.06 0.25 0.08 0.01 0.42 0.29
153 0.06 0.33 0.19 0.10 0.55 0.32
154 −0.26 −0.04 −0.22 0.04 −0.23 0.02 0.39 0.36
155 −0.12 0.18 −0.15 −0.17 0.38
156 −0.26 −0.24 −0.38 −0.16 0.02 0.44
157 −0.31 0.07 −0.27 0.35
158 −0.14
159 0.33
160 0
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