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We investigate the Watts—Strogatz network with the clustering coeffi-
cient C dependent on the rewiring probability. The network is an area of
two opposite contact processes, where nodes can be in two states, S or D.
One of the processes is governed by the Sznajd dynamics: if there are two
connected nodes in D-state all their neighbors become D with probabil-
ity p. For the opposite process, it is sufficient to have only one neighbor
in state S; this transition occurs with probability 1. The concentration of
S-nodes changes abruptly at given value of the probability p. The result is
that for small p, in clusterized networks the activation of S nodes prevails.
This result is explained by a comparison of two limit cases: the Watts—
Strogatz network without rewiring, where C' = 0.5, and the Bethe lattice,
where C' = 0.
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1. Introduction

Our aim here is to study the results of competition of two types of contact
processes (CP) [1] in the Watts—Strogatz network. The idea is as follows.
The network nodes are assumed to be in one of two states, say S and D.
One of CP is the voter dynamics [2], where a randomly selected S node
changes the state of one of his neighbor from D to S. The other CP is the
unifying step of the Sznajd dynamics [3, 4], where a randomly selected pair
of neighboring nodes, once both D, change the state of all their neighbors
from S to D.
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In a recent text [5], a similar competition has been investigated on the
Watts—Strogatz (WS) and the Erdés—Rényi (ER) networks. Also there, one
process of activating nodes has been ruled by the voter dynamics, and the
other was triggered by a pair of mutually connected nodes. The difference
between that approach and the present work is that in paper [5], a node
was activated by a pair of D nodes only if it was a nearest neighbor of both
nodes of the pair. On the contrary, in the Sznajd dynamics used here all
neighbors of each member of the D pair are activated [3]. We note that the
third model of this family is the bootstrap percolation, where nodes of the
activating pair are not necessary neighbors of each other [6, 7]; the latter
model is not investigated here.

Our motivation is as follows. In [5], the clustering coefficient C' was used
as a control parameter. In WS, C' was controlled by rewiring, while in ER,
it was controlled by adding new links, along the method proposed by Holme
and Kim [8, 9]. The results of [5] indicate that in WS, tuning of C' can lead
to switching the D process off and on. Namely, the D process is blocked if the
clustering coefficient is below some critical value. This effect is a consequence
of the model assumption, that both nodes of the activating pair must be
neighbors of the activated node. The density of triangles is controlled by C.
If the triangles in the network are rare, the D process is stopped. To check
this conclusion, we are going to investigate the same process with the Sznajd
dynamics, where triangles are not necessary. Consequently, the clustering
coefficient C' should be less important.

It is worth to add that the competing CP’s enables a more precise mea-
surement of intensity of the investigated process by its comparison with the
voter dynamics. In a finite network, in particular a small-world network,
the process can reach the whole lattice in a few steps. To switch another
process on allows to find their mutual intensity when both processes balance
each other. In [5], the voter process was more intense and, therefore, it was
applied with probability p, while the D process was applied with probabil-
ity 1. Here, the situation is opposite; the Sznajd dynamics is applied with
the probability p, and the voter dynamics with the probability 1. We look
for the values of p. where the stationary percentage of both kinds of nodes
is 50-50.

2. Algorithm

Fifty WS networks of N = 1000 nodes and degree k = 4 are prepared by
gradual rewiring of randomly selected links, and they are stored when their
clustering coefficient C' is in the range (C,Cy + 0.01). The demanded Cj
are from 0.5 down to 0.1. Next, we select randomly a given percentage of
nodes and assign them to be in the state S; other nodes are in the state D.



Competing of Sznajd and Voter Dynamics in the Watts—Strogatz Network 1009

The simulation is performed as follows. A node is selected randomly;
if it is in the state S, we check all its neighbors. If there is a node D, it
is converted to be S. If the randomly selected node is in the state D, we
continue with the probability p: namely, we check all his neighbors. If there
is a node D, all its neighbors and all the neighbors of the initially selected
node (which appeared to be D) are converted to be D. Having done this, we
select another node and continue. The change is done immediately.

In each time step, IV nodes are selected. There is 2500 time steps. The
results are averaged over 50 networks, except in the case of C' = 0.5, when
there is only one network and the simulation is run 50 times.

3. Results

The influence of the clustering coefficient C' on the population of S nodes
is most apparent in the range of small initial population of these nodes,
then the results to be shown here are obtained in this range. Also, their
dependence on the initial state is visible there.

In Figs. 1 and 2, we show the time dependence of the population of
S nodes for two values of the clustering coefficient C, 0.1 and 0.5. We
observe that for C' = 0.1 (Fig. 1) the time of simulation is long enough
to get the stationary state. Although we have not obtained this state for
C = 0.5 (Fig. 2), the results clearly show that in the latter case the relatively
large probability p of the D process is not enough to reduce the population
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Fig.1. Time dependence of the S-nodes participation in the WS network (10 per-
cent of all 1000 nodes are initially S nodes) with C' = 0.1. The probability p is
from 0.2 to 0.27 with step 0.01, in ascending order from the top to the bottom of
the graph.
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of S nodes as strongly, as it is found for C = 0.1. Namely, while p = 0.27 is
enough to eliminate S nodes for C' = 0.1, we find that for C' = 0.5 S nodes
still prevail for p = 0.38.
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Fig. 2. Time dependence of the S-nodes participation in the WS network (10 per-
cent of all 1000 nodes are intially S nodes) with C' = 0.5. The probability p is from
0.20 to 0.38 with step 0.02, in ascending order from the top to the bottom of the
graph.
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Fig. 3. The final S-nodes participation vs the probability p for the WS network (10
percent of all 1000 nodes are initially S nodes) for different clustering coefficient
C=0.1,0.2, 0.3, 0.4 and 0.5 (curves from left to right, respectively).
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The results on the population of S nodes after 2500 time steps are shown
in Figs. 3 and 4 for different values of C, and two different values of the
initial population of S nodes, 0.1 and 0.25. The results show how the fall
of the observed population of S nodes with the probability p depend on the
clustering coefficient C. Clearly, the larger C, the stronger is the process S,
as larger values of p are necessary to damp the population of S nodes.
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Fig. 4. The final S-nodes participation vs the probability p for the WS network (25
percent of all 1000 nodes are initially S nodes) for different clustering coefficient
C =0.1,0.2, 0.3, 0.4 and 0.5 (curves from left to right, respectively).
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Fig.5. The critical probability p. against the clustering coefficient C' for the WS
network for different initial S-nodes participations equal to 10 percent (bottom
curve) and 25 percent (top curve).



1012 M. RyBAK, K. KULAKOWSKI

From these results, we can evaluate the probability p. when the calcu-
lated population of S nodes is 0.5 after 2500 time steps. As shown in Fig. 5,
the initial population of S nodes does not change these results qualitatively.
In both cases, the observed probability p. increases with C from about 0.26
to about 0.4 in the investigated range of C'.

4. Discussion

The results indicate, that the S process is relatively more active for WS
networks with large clustering coefficient C'. In particular, for the case when
the initial amount of S nodes is 0.1, the critical value p. is about 0.39 for
C = 0.5, but only 0.24 for C' = 0.1. When the initial amount of nodes is 0.25,
the same numbers for p. are 0.39 and 0.27. This means that in clusterized
networks a larger probability of the D process is necessary to balance the S
process, than for the case when the clustering is small.

This result is opposite to the one obtained in our previous calculations [5],
where the activation of D nodes was possible only if a node was simultane-
ously a nearest neighbor of both nodes of the activating pair of D nodes.
This detail appears to be the cause of the observed different role of the clus-
tering coefficient. While it seems natural that in our case the variation of
C is simply not relevant, the reversed influence of the clustering calls for an
interpretation.

To accomplish this, let us compare two limit cases: the WS network
without rewiring, where the clustering coefficient is maximal, and the Bethe
lattice. For the mean degree (k) = 4, as assumed here, the respective values
of C" are 0.5 and 0.0. Although in our case, the WS network with large
amount of rewiring is not equivalent to the Bethe lattice, it is anyway close
to an Erdos—Rényi network, which could be approximated by a regular tree.
For the purpose of our explanation, it is only important that in both cases
the clustering coefficient is small. Let us consider the simplified case of the
velocity of spread of the D phase from a pair of neighbors, with the S process
switched off and all nodes simultaneously updated. In the WS network, this
velocity is constant: for k = 4, two nodes are switched from S to D at each
step. On the contrary, in the Bethe lattice with the same degree the number
of nodes switched from S to D along one tree branch is multiplied by & — 1
at each time step. We should add that for the process investigated in [5],
the above multiplication does not occur; in trees the D process considered
there does not work at all.

The list of applications of the Sznajd model in politics and economy can
be found in [4]. Here, we add that the comparison of the results presented
here and of those in [5] reveals that a subtle modification of the mecha-
nism seriously alters the intensity of the Sznajd dynamics in clusterized
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networks. In the literature on the Sznajd model, we often find a reference
to the threshold effect introduced to sociology by Granovetter [10, 11]. In
this effect, people are inclined to imitate the others’ behavior if more than
a given number of persons behave in a given way. This means, that the
imitators see all the imitated persons, and not only one. Accordingly, this
sociological effect is described more accurately by the model described in [5]
or even by the bootstrap percolation, than by the Sznajd dynamics.

The calculations were performed in the ACK Cyfronet, Krakow, grants
No. MNiSW/IBM_BC_ HS21/AGH/070/2010 and MNiSW/SGI3700/AGH/
070/2010. This work was partially supported from the AGH UST project
No. 10.10.220.01.
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