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OVERDAMPED DYNAMICS IN SEPTATE CHANNELS∗
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I summarize recent results on Brownian transport in hard-geometry
compartmentalized channel, investigating mobility and diffusion as func-
tions of the driving force and the geometry of the cells. Numerical cal-
culations are performed using parallel algorithms on graphics cards. The
large drive limit can be fairly well understood in terms of transverse diffu-
sion, while the low drive one can be explained using renewal theory or the
random walker jump approximation.
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1. Outline

Diffusion in periodic channels has gained much interest lately [1], because
of the many possible applications, both in explaining natural phenomena [2]
and in building nanotechnological devices [3]. Channels are naturally found
in zeolites [4], porous stones with a regular inner structure, and can be built
and modelled artificially. The study of these systems can be performed both
analytically, starting from the Fokker–Planck equation, mainly when the
channels have smooth boundaries, or numerically, relying on the Langevin
equation, and possibly exploiting the parallel behaviour of the problem.

This paper is organized as follows: the first section will deal with dif-
ferent types of channels and their physical role, in the second three types
of septate channels will be introduced, in the third the behaviour of mo-
bility and diffusion will be shown for periodic channels, in the fourth for
non-periodic channels, and, finally, in the fifth section, numerical methods
used for simulations, namely massively parallel computations on graphics
cards, will be described.
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2. Channels

Channels are widespread in physics and biology, appearing in cell ionic
channels, in porous materials and in many other fields of science; here, I will
restrict myself to compartmentalized channels, that is channels made up with
basic blocks, cells, that look all more or less the same. I will further assume
that motion is in the x-direction, while the y- and z-directions (in planar and
three dimensional space) are limited by boundaries. If the system is planar,
and the cell symmetric with respect to y-axis inversion, the boundaries can
be described by a positive function w(x); the motion is then restricted to
points (x, y) that satisfy |y| < w(x).

The analytic treatment of the problem is simplified if w(x) satisfies the
smoothness condition

w′(x) < 1 .

In this case, the y- and, eventually, z-variables can be averaged out in the
Fokker–Planck equation and we get the Fick–Jacobs equation [5–7]

∂P (x, t)

∂t
= D0

∂

∂x

(
w(x)

∂

∂x

P (x, t)

w(x)

)
.

Such channels allow interpreting the quantity kB ln (w(x)) as an entropy and
are thus named entropic channels (Fig. 1 (a)) [8–10]. When this condition
does not hold, we have to face the full Fokker–Planck equation or to solve the
problem by numerical simulation: we are then dealing with septate channels
(Fig. 1 (b)) [11–13].

(a) (b)

Fig. 1. Two types of cells: (a) with smooth boundaries (entropic cell) (b) with hard
boundaries (septate cell).

3. Septate channels

I will study here planar rectangular channel cells with sides xL and yL and
openings (pores) of amplitude ∆ on the y-side. The dynamics of particles in
these compartments changes depending on where the openings are precisely
placed. Three cases will be considered [14, 15]:
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1. all the cells are identical, and the openings are centred in the y-side
(periodic, Fig. 2 (a));

2. there are two types of cells alternating with the openings shifted up
and down respectively of the same amount yH (alternate, Fig. 2 (b));

3. the cells are all different, and the openings are randomly set with
the center displaced with respect to the x-axis by an amount yH dis-
tributed according to a truncated Gaussian with standard deviation σ
(random, Fig. 2 (c)).

(a)

(b)

(c)

Fig. 2. Different types of septate channels: (a) periodic; (b) alternate; (c) random.

3.1. Periodic channels

I first consider channels made of identical cells, with an aperture of am-
plitude ∆ centred on the y-axis. A particle subject to a constant drive F
along the x-axis, starting in the central lane, will be able to travel across
cells even in absence of noise. Adding white Gaussian noise in both direc-
tions, and assuming that the motion is overdamped, we get the Langevin
equations

dx

dt
=F +

√
2D0 ξx(t) ,

dy

dt
=
√

2D0 ξy(t) ,
〈
ξi(t) · ξj

(
t′
)〉

=δij δ
(
t− t′

)
.

The equations can be rescaled by setting t = t̄/D0 and f = F/D0, so that

dx

dt̄
= f+

√
2 ξx (t̄ ) ,

dy

dt̄
=
√

2 ξy (t̄ ) ,
〈
ξi(t̄ ) · ξj(t̄′)

〉
= δij δ

(
t̄− t̄′

)
.

This shows that, provided that time is measured in units of 1/D0, the
physical quantities can only depend on F/D0.
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The model is completely specified only when the properties of the bound-
aries are fixed: here we assume they are perfectly reflecting.

In the following, I will study the behaviour of mobility and diffusion as
functions of the compartment geometry and of the driving f .

3.2. Mobility

In figure 3, we show the mobility

µ(F ) = lim
t→∞

〈x(F, t)− x0〉
t · F

as a function of F/D0, for different values of the cell length. Three main
conclusion can be drawn from the results:

1. There is a finite limit, dependent on xL, for F/D0 → 0;

2. There is a plateau, independent on xL, for large drives;

3. The plateau is approached with an approximate law

µ− µ∞ ∼ F−1/2 .
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Fig. 3. Mobility as a function of F/D0 for yL = 1, ∆ = 0.1, D0 = 0.05 and different
values of xL. Inset: The same with µ− µ∞ plotted on the y-axis, instead of µ.

I will postpone the explanation of the first point since this is based on
the relation [16]

µ0 = µ(F = 0) = D(F = 0)/D0

and will be discussed together with the diffusion.
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The second point can be understood considering, as shown in Fig. 4, what
happens when the drive becomes very large: the time needed to cross the
cell will be very small compared to the time employed to diffuse transversely
and reach the central opening; therefore, on average, only a fraction ∆/yL
of particles will be in the central channel, moving with speed F . This gives
the large drive mobility independent on xL [11–13].

x
L

y
L

∆

(a) (b)

Fig. 4. Distribution of N = 10000 particles for xL = yL = 1, D0 = 0.05, ∆ = 0.1

for (a) F/D0 = 10000 and (b) F/D0 = 5.

In figure 5, the dependence on the aperture amplitude ∆ is shown. We
see that it depends logarithmically on the aperture amplitude. For small ∆,
we can assume that the process is a random motion of a walker jumping
between pores, with a mean first passage time τ0, and the mobility is

µ(0) =
x2L

2D0τ0
.

An approximate value for τ0 can be analytically calculated by a variety of
techniques [11, 15, 17, 18] and reads

µ(∆) =
µ(yL)

1− 2
π
yL
xL

ln
(
∆
yL

) .
This estimate of µ(∆) holds good for small ∆, while it fails for larger values,
when the random jumper description is not appropriate. The conditions of
equivalence between the discrete random jumper scheme and the entropic
Fick–Jacobs scheme are discussed in [19].
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Fig. 5. Mobility vs aperture amplitude ∆ for yvs = 1, F = 0, D0 = 0.05 and several
values of xvs. The dashed lines are the analytic formulae.

3.3. Diffusivity

Diffusivity

D(F ) = lim
t→∞

〈
(x(F, t)− 〈x(F, t)〉)2

〉
2 t

as a function of the driving force is shown in Fig. 6. We see that, unlike
what happens with entropic cells, the large drive limit is not the free particle
diffusion and that there is no diffusion peak, but a monotonic behaviour.
For large drives and small ∆, the system switches between running and
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Fig. 6. Diffusivity as a function of F/D0 for several values of xL and yL = 1,
∆ = 0.1, D0 = 0.05.
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locked states, the last ones slowly diffusing along the y-axis. Accordingly,
the particle velocity can be modelled by a dichotomous signal; its diffusivity
is given by [15]

D

D0
=
∆2

12

(
1− ∆

yL

)3( F

D0

)2

.

4. Non-periodic channels

Using the ideas developed for periodic channel, we examine now two
types of non-periodic channels: alternate channels, where the centre of the
aperture is shifted alternatively up and down by a fixed amount yH , and
random channels, where yH is a random variable with truncated Gaussian
distribution [14].

4.1. Channels with alternate cells

If yH > ∆/2 the central lane is blocked and, for large drives, almost all
of the time is spent diffusing on the y-axis (Fig. 7). This behaviour can be
described as a renewal process and, using the first two moments of P (τ), 〈τ〉
and 〈τ2〉, we get

µ(F ) =
xL

F · 〈τ〉
, D(F ) =

x2L
2
· 〈τ

2〉 − 〈τ〉2

〈τ〉3
.

(b)(a) (b)
Fig. 7. Distribution of N = 5000 particles moving in alternate cells for (a) F/D0 =

5000 and (b) F/D0 = 5, xL = yL = 1, D0 = 0.05 and ∆ = 0.1.

Since the particles are bound to move in a small strip around the cell
border, their motion can be considered one-dimensional; the moments can
be computed considering the problem of the mean exit time from an interval
with one reflecting and one absorbing barrier, leading to the result [20]

µ =
yL

2yH −∆

(
2xL
y2L

)
D0

F
,

D(F )

D0
=

[
1 +

(
yL

2yH −∆

)2
]
x2L
3y2L

.
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A comparison between theory and numerical simulations is shown in
figures 8 and 9. Our theory describes well large F decay of both diffusion
and mobility.
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Fig. 8. Mobility in channels with alternate pores with ∆ = 0.05, D0 = 0.05,
xL = yL = 1.
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Fig. 9. Diffusivity in alternate channels averaged over 104 trajectories, with ∆ =

0.10, D0 = 0.05, xL = yL = 1.

4.2. Random channels

If we take randomly the position of the aperture centre in the interval
[−yL+∆/2, yL−∆/2] with Gaussian probability, the situation is a mix of the
two previous cases: for small values of the standard deviation σ the cells will
look almost as periodic, while for large values the central lane will be closed
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and y-diffusion will dominate. What we expect is therefore that, for small σ
(Fig. 10 (a)), there will be a resemblance with periodic channels whereas,
for large σ (Fig. 10 (b)), the problem will be rather similar to alternate cells.

Fig. 10. Random channels (a) σ small (b) σ large.

What we see in fact is that, for large F , the mobility approaches a
constant value at small σ, and drops to zero with a power law for large σ.
Similarly, the diffusion diverges for small σ and large F while it reaches an
asymptote for large σ. Results for random channels are shown in Fig. 11

10
1

10
2

10
3

10
4

F / D
0

10
-3

10
-3

10
-2

10
-2

10
-1

10
-1

10
0

10
0

µ

0.01

0.05

0.10

0.20

10
1

10
2

10
3

F / D
0

10
2

10
4

D
 /

 k
T

σ = 

Fig. 11. Mobility and diffusion (inset) for random channels averaged over 103 tra-
jectories with D0 = 0.05, ∆ = 0.05 and xL = yL = 1.

5. Numerical methods

Numerical computations can be considerably sped up if we consider that
we want to calculate averages over many particles, and we can assume
that all these particles evolve during the same time interval. Moreover,
in the present description, all particles are independent of one another, and
the simulations can be performed in parallel. There are presently several
choices to perform such computations, two of them being computations dis-
tributed over a network grid and over a computer cluster using MPI. In
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the present work, I used the capability of recent graphics cards, made of
hundreds or thousands of processors, to perform parallel calculations using
the CUDA [21] extension to the C programming language. The basic idea
is that every processor in the Graphics Processing Unit (GPU) can be used
for simple tasks, so we can employ it for advancing one time step for a sin-
gle particle in numerical integration. Since several thousands of threads are
allowed simultaneously, many particles can be advanced of one time step
simultaneously, considerably reducing the computation time. In practice,
the Central Processing Unit (CPU) gives control to the GPU for the time
needed to perform, in parallel, a simple operation, and the result is then
copied back to the CPU. The operation is then repeated for the next time
step, as many times as needed. A flow diagram of the code is shown in
Fig. 12

Fig. 12. Scheme of a program running on a GPU.

6. Conclusions

I have been studying overdamped motion in septate channels made of
cells with different shapes. Their behaviour is quite different form entropic
channels and depends on the geometry: for periodic channels we find a
finite large-F mobility asymptote and a diverging diffusivity, while, in the
same limit, alternate channels display a mobility vanishing like 1/F and a
diffusivity reaching an asymptote. Finally, random channels switch between
the two behaviours by increasing σ.

All calculations were performed using GPU computing capabilities.
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