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Diffusion regimes most frequently found in nature are described in terms
of asymptotic behaviors. In this work, we use a generalization of the final-
value theorem for Laplace transform in order to investigate the anomalous
diffusion phenomenon for asymptotic times. We generalize the concept of
the diffusion exponent, including a wide variety of asymptotic behaviors
than the power law. A method is proposed to obtain the diffusion coeffi-
cient analytically through the introduction of a time scaling factor, λ. We
obtain as well an exact expression for λ, which makes possible to describe
all diffusive regimes featuring a universal parameter determined by the dif-
fusion exponent. We show the existence of two kinds of ballistic diffusion,
ergodic and non-ergodic. The method is general and may be applied to
many types of stochastic problem.
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1. Introduction

The study of systems with long-range memory-friction kernel reveals
some physical phenomena that are still not well understood, especially
whether they are outside of equilibrium or in anomalous diffusive regime
[1–26]. In this context, studies on correlation functions have contributed
to new insights and methodologies of wide application influencing many
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fields, such as the dynamics of polymeric chains [27–35], metallic liquids [36],
Lennard–Jones liquids [37], ratchet devices [38, 39], reaction rates [29–31],
diffusion of spin waves in disordered systems [40], Heisenberg ferromagnets
and dense fluids [41], biological systems [42–46], to cite just a few examples.
The vast majority of these problems are non-Markovian since there is corre-
lation between the various stages of dynamic evolution; this property is the
so-called memory-friction, which makes remote events of the past important
to dynamic events in the present time. In a recent work, Ferreira et al. [1]
have been discussing a scaling method to obtain asymptotic results for long
time behavior in anomalous diffusion. We revisit this work to call atten-
tion to connection between this approach and other stochastic phenomena
in which memory-friction is present. Although the method can be applied
to several situations, we focus our attention on the analysis of diffusion.

Here, we show a simple analytical method which describes the diffu-
sion behavior for large and intermediate times. First, we generalize the
understanding of the diffusion exponent. In order to obtain an analytical
asymptotic result for the diffusion coefficient, a conjecture is presented from
introducing a time scaling factor λ; as we shall doubtless see, the scaling
factor assumes an exact value beyond expressing a universal behavior. We
derive a numerical method to obtain the velocity autocorrelation function for
an ensemble of particles from any given memory-friction kernel; the results
are in close agreement. The method has general application in the study of
stochastic processes and it could be applied to several situations of physical
interest.

2. Memory-friction kernel and anomalous diffusion

The generalized Langevin equation (GLE) is a stochastic differential
equation which can be used to model systems driven by colored random
forces; the stochastic force is not anymore delta-correlated. For the veloc-
ity v(t), this equation can be written as

m
dv(t)

dt
= −m

t∫
0

Γ
(
t− t′

)
v
(
t′
)
dt′ + ξ(t) , (1)

where Γ (t) is the retarded memory-friction kernel of the system, or merely
the memory function. Here, ξ(t) is a stochastic force (noise), which is fully
characterized by the ensemble averages 〈ξ(t)〉 = 0, 〈ξ(t)v(0)〉 = 0, and

Cξ(t) = 〈ξ(t)ξ(0)〉 = m2
〈
v2(t)

〉
Γ (t) , (2)
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where Cξ(t) is the noise autocorrelation function. Equation (2) is Kubo’s
fluctuation dissipation theorem (FDT) [47, 48]. The presence of the kernel
Γ (t) allows us to study a large number of correlated processes.

Using the GLE, it is possible to study the asymptotic behavior of the
second moment of the particle movement,

lim
t→∞

〈
x2(t)

〉
= 2D(t)t ∼ tα , (3)

which characterizes the type of diffusion exhibit by the system; as a gen-
eralization of Einstein’s relation for the mean square displacement of an
ensemble of particles. Here, D(t) is the diffusion coefficient as a function
of time. As usual, the system is in a normal diffusive regime for α = 1,
likewise limt→∞D(t) = constant; a subdiffusive regime if 0 < α < 1, sim-
ilarly limt→∞D(t) = 0; a superdiffusive regime if 2 ≥ α > 1, similarly
limt→∞D(t) =∞. Moreover, for an asymptotic behavior of the form

lim
t→∞

〈
x2(t)

〉
∼ tα[ln (t)]±1 , (4)

we shall define respectively, an α± diffusive behavior [1]. Here, the exponent
α = α± arises in analogy with the critical exponents in a phase transition.
For example, in the two-dimensional Ising model the critical exponent for
the specific heat is α = 0+ because it does not have a power law behavior;
rather it has ln |T − Tc| behavior for temperatures T close to the transition
temperature Tc. This generalized nomenclature is pertinent here since there
are quite a large number of possibilities of combinations for logarithmic and
power law behaviors.

In this way, the behavior of D(t) can be determined using

lim
t→∞

D(t) = lim
t→∞

lim
z→0

t∫
0

Cv
(
t′
)

exp
(
−zt′

)
dt′ = lim

z→0
R̃(z) , (5)

whereR(t) = Cv(t)/Cv(0), withR(0) = 1, and R̃(z) is the Laplace transform
of R(t); this is the Kubo’s formula [48] for t→∞ and normal diffusion. The
limits can be justified using the final-value theorem (FVT) for a Laplace
transform [49], i.e. for any function g(t) with a Laplace transform g̃(z)
then limt→∞ g(t) = limz→0 zg̃(z). Now a Laplace transform of the integral
gives D̃(z) = R̃(z)/z, ending up with the equation above. From this, it is
straightforward to derive a self-consistent equation for R(t) in the form

Ṙ(t) = −
t∫

0

Γ
(
t− t′

)
R
(
t′
)
dt′ . (6)
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In such a situation, applying the Laplace transform, one gets

R̃(z) =
1

z + Γ̃ (z)
. (7)

In order to describe the time-correlation function, it is crucial to invert this
transform, or a similar one. Unfortunately, in most cases, it is not an easy
task. In those situations, the use of numerical methods is an alternative to
overcome this problem.

3. The λ-scaling method

We consider now the FVT for D(t)

lim
t→∞

D(t) = lim
z→0

zD̃(z) = lim
z→0

R̃(z) . (8)

We claim that after a “transient time” τ , i.e. for t > τ , the leading term
for D(t) will fulfill Eq. (5) within a given approximation. In this context,
t→∞ is equivalent to t� τ . Now, we imposed the scaling

z → λ

t
. (9)

In order to determine λ, we rewrite Eq. (5) as

lim
t→∞

D(t) = lim
t→∞

R̃(z = λ/t) = lim
t→∞

t

f(t)
, (10)

where
f(t) = λ+ tΓ̃ (λ/t) . (11)

The derivative of Eq. (10) yields

lim
t→∞

R1(t) = lim
t→∞

d

dt
D(t) = lim

t→∞

1− t d
dt

ln [f(t)]

f(t)
, (12)

while from the FVT for R(t), we get

lim
t→∞

R2(t) = lim
z→0

zR̃(z) = lim
t→∞

λ

f(t)
. (13)

The relative difference

∆R(t) =
R2 −R1

R2
=
λ− 1 + t

d

dt
ln [f(t)]

λ
(14)
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should evolve to zero as t → ∞. The exact value is obtained for λ 6= 0,
which yields

λ = 1− lim
t→∞

t
d

dt
ln [f(t)] . (15)

The scaling works as long as the GLE holds. It is, generally, possible to derive
a GLE for the Markovian systems by eliminating variables in which effects
are incorporated in the memory-friction kernel and in the colored noise [50].
In particular, the absence of a coupling to a thermal bath (explicit in the
GLE) and consequently, the lack of a detailed balance relation or FDT may
require a specific analysis of each case. However, since it is possible to give
a kinetic description of the Hamiltonian dynamics by means of a fractional
Fokker–Planck–Kolmogorov equation [51], it is expected that the treatment
of anomalous diffusion in such systems should also be possible by the GLE
formalism.

In order to obtain λ, we need to make progress on Γ̃ (z), which may be
different in each system. However, we can expand Γ̃ (z) in Taylor or Laurent
series around z = 0 since we are interested in the asymptotic behavior.
Based on this, one obtains

Γ̃ (z) ∼ zν [a− b ln(z)− c/ ln(z)] , (16)

where a, b, and c are positive constants. Note that we pay special attention
to ln(z); it will give us the behavior pointed out in Eq. (4). For b = 0, it
furnishes a diffusion with exponent α; for b 6= 0, an α−; for a = b = 0 and
c 6= 0, an α+. If Γ̃ (z) has another contribution besides ln(z), it cannot be
expanded at the origin as we kept it but does in other points. Nevertheless,
for small z, most of the memories in the literature can be cast in the form
of Eq. (16). Inserting Eq. (16) into Eq. (15), we obtain λ = ν for ν < 1, and
λ = 1 for ν ≥ 1. Notice that it does not depend on a, b, or c, which suggests
a universal behavior.

In our conjecture, some points deserve attention. First, we are consid-
ering integrals of the form Eq. (5), where the function R(t) is well behaved
and limited to −1 < R(t) < 1, whereas Cv(t) ≤ Cv(0) [10]. The function
R(t) is such that it always has a well-defined behavior for finite t, even when
the integral diverges as t → ∞, as in superdifusion. Second, the function
D(t) must have a leading term as t→∞, which drives the diffusive motion.
For instance, the inverse Laplace transform of R̃(z) is

R(t) =
1

2πi

+i∞+η∫
−i∞+η

R̃(z) exp(zt)dz . (17)



1090 R.M.S. Ferreira, L.C. Lapas, F.A. Oliveira

Here, the real number η is such that all the singularities lie at the left of the
line joining the limits. Consider now Eq. (16) with b = c = 0, and ν ≤ 1.
Thus limz→0 R̃(z) ∼ z−ν and

lim
t→∞

R(t) ∝ tν−1
+i∞+η′∫
−i∞+η′

s−ν exp(s)ds ∝ tν−1 , (18)

where we have done the transformations s = zt and η′ = η/t. For ν > 0,
the only pole is at s = 0, and the condition in η′ will be automatically
satisfied. Now, by direct integration on Eq. (5), we obtain D(t) ∝ tν . From
the scaling, one obtains the equivalent result

lim
t→∞

D(t) = lim
z→0

R̃(z = λ/t) ∼ lim
t→∞

R̃(λ/t) ∼ tν . (19)

Note that the above exact result is not only for power laws, but also for
any function performing as a power law for large t. We verify as well the
relation α = ν+1, obtained by Morgado et al. [2]. Our results can be readily
expressed as

λ = α− 1 = α± − 1 =

{
ν, −1 < ν < 1
1, ν ≥ 1

. (20)

The factor λ depends only on the diffusion exponent α, consequently it is
universal. Moreover, it will be the same for α or α±. For normal diffusion
α = 1, or for α = 1±, λ = 0. However, we still can obtain the final value.
Consider, as example, the Langevin equation without memory; for that, we
have R(t) = exp (−γt) and R̃(z) = (γ + z)−1. From Eq. (10), one gets

lim
t→ ∞

D(t) = lim
t→ ∞

R̃(λ/t) =
t

γt+ λ
= γ−1 , (21)

while direct integration gives

lim
t→ ∞

D(t) = lim
t→∞

t∫
0

R
(
t′
)
dt′ = γ−1 . (22)

In this case, the scaling yields correctly the expected final value.
Equation (6) imposes as well some requirements on R(t). First, its

derivative must be null at the origin, i.e. the integral in the right-hand
side must be null at t = 0. This is correct except for non-analytical mem-
ories, such as δ functions. Indeed, we do not expect exponential behavior
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of the form R(t) = exp (−γ|t|) with a discontinuous derivative at the origin
[52, 53]. Second, in Eq. (1), for a bath of harmonic oscillators the noise can
be obtained as [52]

ξ(t) =

∫ √
2kBTg(ω) cos[ωt+ φ(ω)]dω , (23)

where 0 < φ(ω) < 2π are random phases and g(ω) is the noise spectral
density. From the FDT, one obtains

Γ (t) =

∫
g(ω) cos(ωt)dω . (24)

This shows that the memory is an even function of t; even functions have
zero derivatives at the origin as required before. An analytical extension
of Γ̃ (z) in the whole complex plane has the property Γ̃ (−z) = −Γ̃ (z).
Consequently, from Eq. (7), R̃(−z) = −R̃(z), or R(−t) = R(t). In short,
it requires well-behaved functions and derivatives. For finite times, we shall
pay attention that one can obtain values of λ(t) using Eq. (15) as a map in
the form

λn+1(t) = Fl(λn(t), t) (25)

with
Fl = 1− t d

dt
ln [f(t)] = t

d

dt
ln
[
R̃(λn/t)

]
. (26)

For a given memory function, this map converges readily for a final value of
λ(t) after few iterations.

4. The ballistic diffusion

Let us consider the spectral density

g(ω) =

{
bω1−β

s ωβ, ω ≤ ωs
0, ω > ωs

. (27)

The above equation acts as a generalization of the Debye density of states.
Here b > 0 is a dimensionless constant and ωs is a cutoff frequency. Notice
that, for β 6= 0, one obtains anomalous diffusion. In particular, for β = 1,
by inserting Eq. (27) into Eq. (24), it yields

Γ (t) = bω2
s

[
sin(ωst)

ωst
+

cos(ωst)− 1

(ωst)2

]
, (28)

with the Laplace transform

Γ̃ (z) =
bz

2
ln

[
1 +

(ωs
z

)2]
. (29)
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First, we have the analytical function D(t) = R̃(z = λ/t); second, from
Eq. (15), we have limt→∞ λ = 1, exactly. This corresponds to the ballistic
diffusion in the form of α = 2−.

In Fig. 1, we have shown λ(t) by using Eq. (25) and the Laplace transform
of the memory-friction, Eq. (29). After 50 iterations the difference |λn+1 −
λn| becomes less than 10−12, thus reaching the numerical convergence; the
convergence is faster as the ratio ωs/b increases. For both curves, the plot
has displayed the evolution of λ(t) towards 1. The convergence is faster as
the ratio ωs/b increases. In addition, a comparison between the analytical
asymptotic result and the numerical solution of Eq. (6) shall be provided.
In this sense, we rewrite Eq. (6) in a discrete form and expand it up to terms
of the order of ∆t2n, obtaining

R(t+ ∆t) = R(t−∆t) + 2

n∑
k=0

R(2k−1)(t)
(∆t)2k−1

(2k − 1)!
, (30)

where R(n)(t) is the time derivative of R(t) of the order of n. Note that
this expansion eliminates all the even derivatives. Thus, we can obtain all
R(t + ∆t) from the sequence of the previous value of R(t), starting from
R(0) = 1. From these values, its possible to get the diffusion coefficient
through direct integration of Eq. (5).

Fig. 1. The λ-scaling parameter as a function of time t. We have used the map (25)
and the memory-friction kernel (29). The convergence has been reached over 50
rounds of iterations. The line ‘a’ (blue), we have used ωs = 1 and b = 1; the
curve ‘b’ (red), we have used ωs = 5, and b = 1/2.

In Fig. 2, we have plotted the normalized correlation R(t). The curves
correspond to the numerical solution and are calculated by using Eq. (30)
and Eq. (28) with ∆t = 10−5. The oscillations exhibited in Fig. 2 emphasize
all dynamical contributions due to the response for the coupling between
the system plus reservoir [15, 47, 48]. In this case, the system’s dynamics
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assuming different parameters impose non-Markovian evolutions in dissimi-
lar transient regimes of the order of memory-friction time. This will reflect
on the diffusion coefficient D(t), Fig. 3.

Fig. 2. The normalized velocity autocorrelation R as a function of time t. We
have used the map (25) and the memory-friction kernel (29). The line ‘a’ (blue),
we have used ωs = 1 and b = 1; the line ‘b’ (red), we have used ωs = 5 and b = 1/2.

In Fig. 3, the oscillatory (blue) lines correspond to the numerical solu-
tion and have been calculated from the data of Fig. 1. The lines without
oscillations (red) correspond to the analytical asymptotic limit, Eq. (10),
with memory function as Eq. (29). Here, we see that the asymptotic (red)
lines are mean values of the oscillatory ones. In this range, the fit yields
λ = 0.928 ± 0.002, for line ‘a’, and λ = 0.94822 ± 0.00001, for line ‘b’. We

Fig. 3. The diffusion coefficient D as a function of time t. Lines ‘a’, we have used
ωs = 1 and b = 1; lines ‘b’, we have used ωs = 5 and b = 0.5. The oscillatory
(blue) lines are the numerical result. The (red) lines, without oscillations, are the
analytical asymptotic limit. We see in lines ‘b’ that the two curves collapse onto a
single one.



1094 R.M.S. Ferreira, L.C. Lapas, F.A. Oliveira

see in lines ‘b’ that the two curves collapse onto a single one. Here, the
transient time τ to which we refer before, Eq. (10), is a decreasing function
of b/ωs. The value of λ approaches the exact value 1 as the ratio b/ωs de-
creases, or as time increases. This shows the efficiency of the scaling; even
before convergence is fully established, lines ‘a’, the asymptotic curve gives
us an average value that can be used to understand the main characteristics
of the process.

Consider now Γ̃ (z) = az, where a is a constant. It is straightforward
to show that R̃(z) = [(1 + a)z]−1, or R(t) = [1 + a]−1, and, by direct
integration, D(t) = t/(1 + a), exactly. This covers ballistic diffusion with
α = 2. By applying Eq. (10), we obtain the same result with λ = 1. Since
from the relations (16) and (20) the value of λ does not depend on ln (z), this
result is exactly what we get from Eq. (29). There are important differences
between the α = 2− diffusion, which according to the Khinchin theorem
[15, 54] is ergodic, and the α = 2 diffusion, which does violate ergodicity.
This distinction was not possible before the generalization of the diffusion
exponent we present here.

5. Conclusion and perspectives

In this work, we have generalized the concept of the diffusion exponent
by proposing a conjecture to investigate the asymptotic limits of anomalous
diffusion. We have obtained an exact time scaling factor λ and also we have
shown that it is universal, depending only on the diffusion exponent. We
have analyzed the ballistic diffusions in two different regimes: α = 2− and
α = 2; both analytically and numerically. Our method can be useful as well
to analyze large amounts of data in stochastic processes [9] and in different
fields of science, where is necessary to inverse a Laplace transform of the
form of Eq. (7).

The diffusion phenomenon also poses challenges in the understanding of
fundamental concepts in statistical physics, such as entropy [10] and general
properties as correlation functions [52], ergodicity [15, 17, 54–59], Khinchin
theorem [15, 54], FDT [11, 60], and so on. In biological systems, where
motion [42] and pattern formation [61–63] are tangled, diffusion has still
important contributions to be done. A very broad and growing area is
that of synchronization [14, 64–66], in which one expects the scaling may
produce more analytical results. In nonlinear phenomena, such as growth
and etching [67–69], analytical results are rather difficult to obtain. For
example, the KPZ equation has exact solution for one-dimension. However,
solutions for higher dimensions have been not found; as in many other areas
of nonequilibrium physics, where even not exact solutions can be considered
major results. In this way, we hope that this work may inspire research into
similar asymptotic limits.
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