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We analyze a specific class of random systems that are driven by a
symmetric Lévy stable noise, where the Langevin representation is absent.
In view of the Lévy noise sensitivity to environmental inhomogeneities, the
pertinent random motion asymptotically sets down at the Boltzmann-type
equilibrium, represented by a probability density function (pdf) ρ∗(x) ∼
exp[−Φ(x)]. Here, we infer pdf ρ(x, t) based on numerical path-wise simu-
lation of the underlying jump-type process. A priori given data are jump
transition rates entering the master equation for ρ(x, t) and its target pdf
ρ∗(x). To simulate the above processes, we construct a suitable modifica-
tion of the Gillespie algorithm, originally invented in the chemical kinetics
context. We exemplified our algorithm simulating different jump-type pro-
cesses and discuss the dynamics of real physical systems, where it can be
useful.
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1. Introduction

Despite many attempts to pin down the essential features of dynamics
and relaxation in random systems, the problem is still far from its com-
plete solution. It turns out that Lévy flight models are adequate for the
description of different random systems ranging from the motion of de-
fects in disordered solids to the dynamics of assets in stock markets, see,
e.g. [1]. They are especially useful to model the random systems on the
semi-phenomenological, mesoscopic level, when the (often unknown) details
of their microscopic random behavior are substituted by a properly tailored
(e.g. based on experimental data) (Gaussian or Lévy) noise. Paradoxically,
in disordered solids, the noise can promote order and organization, switching

∗ Presented at the XXV Marian Smoluchowski Symposium on Statistical Physics,
“Fluctuation Relations in Nonequilibrium Regime”, Kraków, Poland, September
10–13, 2012.

(1109)



1110 M. Żaba, P. Garbaczewski, V. Stephanovich

them between different equilibrium states. The latter situation emerges in
disordered ferroelectrics, where the fluctuations of order parameter (sponta-
neous polarization) give rise to self-localization of charge carrier, generating
a fluctuon, an analog of well-known polaron in disordered substance [2].
These fluctuons make a substantial contribution into conductivity and opti-
cal properties of disordered dielectrics.

Many random processes admit a description based on stochastic differ-
ential equations. In such case, there is a routine passage procedure from mi-
croscopic random variables to macroscopic (statistical ensemble) data. The
latter are encoded in the time evolution of an associated probability den-
sity function (pdf) which is a solution of a deterministic transport equation.
A paradigmatic example is the so-called Langevin modeling of diffusion-type
and jump-type processes. The presumed microscopic model of the dynam-
ics in external force fields is provided by the Langevin (stochastic) equation
whose direct consequence is the Fokker–Planck equation, [3] and [4]. We
note that in the case of jump-type processes, the familiar Laplacian (Wiener
noise generator) needs to be replaced by a suitable pseudo-differential oper-
ator (fractional Laplacian, in the case of a symmetric Lévy-stable noise).

We pay a particular attention to jump-type processes which are om-
nipresent in Nature (see [5] and references therein). Their characterization
is primarily provided by jump transition rates between different states of
the system under consideration. In the present paper, our major focus is
on a specific class of random systems which are plainly incompatible with a
straightforward Langevin modeling of jump-type processes and, as such, are
seldom addressed in the literature.

To this end, we depart from the concept, coined in an isolated publica-
tion [6], of Lévy flights-driven models of disorder that, while at equilibrium,
do obey detailed balance. The corresponding research line has been effec-
tively initiated in Refs. [7–9]. It has next been expanded in various direc-
tions, with a special emphasis on the so-called Lévy–Schrödinger semigroup
reformulation of the original probability density function (pdf) dynamics,
[10–15] and [8, 16–18]. We note in passing that the familiar Fokker–Planck
equation can be equally well reformulated in terms of the Schrödinger semi-
group and this property is universally valid in the standard theory of Brow-
nian motion [3, 18]. Its generalization to Lévy flights is neither immediate
nor obvious. It is often considered in the prohibitive vein following [19, 20].

In fact, in relation to Lévy flights, a novel fractional generalization of the
Fokker–Planck equation has been introduced in Refs. [7–9] to handle systems
that are randomized by symmetric Lévy-stable drivers. In this case, contrary
to the popular lore about properties of (Langevin-based) Lévy processes
(cf. Refs. [19, 21, 22] and [20]), the pertinent random systems are allowed to
relax to (thermal) equilibrium states of a standard Boltzmann–Gibbs form.
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The underlying jump-type processes, in the stationary (equilibrium)
regime, respect the principle of detailed balance by construction [15, 23].
Their distinctive feature, if compared with the standard Langevin modeling
of Lévy flights, is that they have a built-in response not to external forces but
rather to external force potentials. These potentials are interpreted to form
confining “potential landscapes” that are specific to the environment. Lévy
jump-type processes appear to be particularly sensitive to environmental
inhomogeneities [7, 14].

We note in passing that confining Lévy flights resolve themselves to the
problem of truncated distributions, which can be addressed in many ways.
Beside a simple cut-off, by considering fast falling tails. The random walk
theory predominantly employs the master equation as the major tool to
quantify random motion. Inhomogeneous transition rates have been used
in the literature before and the emergence of non-trivial target distributions
has been demonstrated, cf. [24].

Lévy flights are pure jump (jump-type) processes. Therefore, it seems
useful to indicate that various model realizations of standard jump pro-
cesses (jump size is bounded from below and above) can be thermalized by
means of a specific scenario of an energy exchange with the thermostat. It
is based on the principle of detailed balance. We have discussed this issue
in some detail before [15] along with an extension of this conceptual frame-
work to Lévy-stable processes. Not to reproduce easily available arguments
of past publications, we shall be very rudimentary in our motivations, see
however [23].

We quantify a probability density evolution, compatible with a jump-
type process on R (this limitation may, in principle, be lifted in favor of
Rn), in terms of the master equation

∂tρ(x, t) =

∫
ε1≤|x−y|≤ε2

[wφ(x|y)ρ(y, t)− wφ(y|x)ρ(x, t)]dy , (1)

where ε1 and ε2 are, respectively, the lower and upper bounds of jump size
and

wφ(x|y) = Cµ
exp[(Φ(y)− Φ(x))/2]

|x− y|1+µ
,

Cµ =
Γ (1 + µ) sin(πµ/2)

π
(2)

is the jump transition rate from y to x. We stress that wφ(x|y) is a non-
symmetric function of x and y.
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An implicit Boltzmann-type weighting involves a square root of a target
pdf ρ∗(x) ∼ exp[−Φ(x)] and accounts for the a priori prescribed “poten-
tial landscape” Φ(x) whose confining features affect the jump-type process.
What matters is a relative impact of a confinement strength of Φ(x) (level
of attraction, see Ref. [9]) upon jumps of the size |x− y|, both at the point
of origin y and that of destination x. In principle, Φ(x) may be an arbitrary
function that secures a L1(R) normalization of exp(−Φ(x)). In this case,
the resultant pdf ρ∗ is a stationary solution of the transport equation (1)
with unbounded jump length, e.g. ε1 → 0 and ε2 →∞.

We note that the presence of lower and upper bounds of the jump
size ε1,2, that are necessary for an implementation of numerical algorithms,
enforce a truncation of the jump-type process (without any cutoffs) to a stan-
dard jump process. The transition rates of the latter, however, are ruled by
Lévy measures of symmetric Lévy stable noises with µ ∈ (0, 2). A lower
bound for the jump size is usually removed while evaluating the correspond-
ing integrals in the sense of their Cauchy principal values. An upper bound
is less innocent and its effects need to be controlled by long tailed pdfs which
stands for a distinctive feature of Lévy flights, see a discussion of Lévy sta-
ble limits of step processes in Ref. [10]. There is also pertinent discussion
of a long time behavior of (unconfined, e.g. free) truncated Lévy flights in
Ref. [25].

In contrast to procedures based on the Langevin modeling of Lévy flights
in external force fields [4, 21, 22], there is no known path-wise approach
underlying the transport equation (1). With no direct access to sample
trajectories of the stochastic process in question, a method must be devised
to generate random paths directly from jump transition rates (2). The
additional requirement here is that we set a priori a “potential landscape”
Φ(x) for a chosen jump-type (symmetric Lévy stable) noise driver.

The outline of the paper is as follows. First, we describe our modification
of the Gillespie algorithm which entails a numerical generation of random
paths for the dynamics determined by Eqs. (1) and (2). Next, the statistics
of random paths is addressed and various accumulated data are analyzed
with a focus on inherent compatibility issues.

We analyze generic (Cauchy, quadratic Cauchy) and non-generic (Gaus-
sian and locally periodic) examples of target pdfs for the jumping dynamics.
Random paths are generated in conjunction with representative Lévy sta-
ble drivers, like e.g. those indexed by µ = 1/2, 1, 3/2. Their qualitative
typicality is emphasized.

Statistical data, acquired from our modification of the Gillespie algo-
rithm, have been employed to generate the dynamical patterns of behavior
ρ(x, t) → ρ∗(x). Effectively, that entails a path-wise reconstruction of the
solution ρ(x, t) of the master equation (1), (2), or — in case this solution is
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available prior to trajectory simulations — to verify a compatibility of the
transport (master) equation (1), (2) and its underlying path-wise represen-
tation. All that comes from the predefined knowledge of the target pdf and
non-symmetric (biased) jump transition rates.

2. Modified Gillespie algorithm

Here, we adopt [26] (and properly adjust to handle Lévy flights) basic
tenets of the so-called Gillespie’s algorithm [27, 28]. Originally, this algo-
rithm had been devised to simulate random properties of coupled chemical
reactions. The advantage of the algorithm is that it permits to generate
random trajectories of the corresponding stochastic process directly from its
(jump) transition rates, with no need for any stochastic differential equation
and/or its explicit solution. We emphasize that this feature of Gillespie’s
algorithm is vitally important, since Langevin modeling is not operational
in our framework.

We rewrite Eq. (1) in the form (x− y = z)

∂tρ(x, t) =

∫
ε1≤|z|≤ε2

[wφ(x|z + x)ρ(z + x, t)− wφ(z + x|x)ρ(x, t)] dz . (3)

To construct a reliable path generating algorithm consistent with Eq. (3),
we first note that chemical reaction channels in the original Gillespie’s al-
gorithm may be re-interpreted as jumps from one spatial point to another,
like transition channels in the spatial jump process. An obvious provision
is that the set of possible chemical reaction channels is discrete, while we
are interested in continuous set of all admissible jumps from a chosen point
of origin x0. With a genuine computer simulation in mind, we must re-
spect standard numerical assistance limitations. Surely, we cannot admit all
conceivable jump sizes. As well, the number of destination points, even if
potentially enormous, must remain finite for any fixed point of origin.

Our modified version of the Gillespie’s algorithm, appropriate for han-
dling of spatial jumps, is as follows [29]:

1. Set time t = 0 and the point of origin x = x0.
2. Create the set of all admissible jumps from x0 to x0 + z that is com-

patible with the transition rate wφ(z + x0|x0).
3. Evaluate

W1(x0)=

−ε1∫
−ε2

wφ(z + x0|x0)dz , W2(x0)=

ε2∫
ε1

wφ(z + x0|x0)dz , (4)

and W (x0) = W1(x0) +W2(x0).
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4. Using a random number generator, draw p ∈ [0, 1] from a uniform
distribution.

5. Using above p and identities
b∫
−ε2

wφ(z + x0|x0)dz = pW (x0) , p < W1(x0)/W (x0) ;

W1(x0) +
b∫
ε1

wφ(z + x0|x0)dz = pW (x0) , p ≥W1(x0)/W (x0) ,

(5)
find b corresponding to the “transition channel” x0 → b.

6. Draw a new number q ∈ (0, 1) from a uniform distribution.
7. Reset time label t = t+ ∆t, where ∆t = − ln q/W (x0).
8. Reset x0 to a new value x0 + b.
9. Return to the step 2 and repeat the procedure anew.

3. Statistics of random paths for different jump-type processes

In this section, we select the jump-type processes, which best demon-
strate the capabilities of our algorithm of random paths generation. Once
suitable path ensemble data are collected, we can reconstruct the pdf ρ(x, t)
dynamics and next, verify whether statistical (ensemble) features of gener-
ated random trajectories are compatible with the asymptotic a priori im-
posed upon solutions of the master equation (1). That refers to a control of
an asymptotic behavior ρ(x, t)→ ρ∗(x) when t→∞.

3.1. Harmonic confinement

Let us first consider an asymptotic invariant (target) pdf in the Gaussian
form

ρ∗(x) =
1√
π
e−x

2
. (6)

The corresponding µ-family of transition rates reads

wφ(z + x|x) = Cµ
e−z

2/2+xz

|z|1+µ
. (7)

The C-codes for trajectory generating algorithm, [29], were employed to get
the trajectory statistics data for Lévy drivers with µ = 0.5, 1, 1.5.

The results of our numerical simulations are reported in Figs. 1 and 2. We
note, that in Fig. 1 the second moment oscillates near its equilibrium value
1/2. A numerical convergence to 〈X2〉 = 1/2 is consistent with an analytic
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equilibrium value of the second moment of the chosen ρ∗(x) (6). The rate
of this convergence is higher for larger µ ∈ (0, 2). Clearly, for small µ,
the big jumps are frequent which enlarges the inferred time intervals ∆t in
the Gillespie’s algorithm. Thus, the relaxation to equilibrium is slow. It
gets faster for larger µ, when big jumps are rare and time intervals ∆t are
generically very small.
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Fig. 1. Gaussian target: Time evolution of the pdf ρ(x, t) second moment for 75 000
trajectories. Inset visualize the oscillations smoothing in the asymptotic regime for
10 ≤ t ≤ 15; figures near curves correspond to µ values.
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Fig. 2. Gaussian target: Time evolution of ρ(x, t) inferred from 75 000 trajectories:
µ = 0.5 (left panel), µ = 1 (middle panel) and µ = 1.5 (right panel). All trajectories
originate from x = 0, i.e. refer to the δ(x)-type initial probability distribution.

Figure 2 displays a probability density evolution, inferred from the en-
semble statistics of 75 000 trajectories. All of them have started form the
same point x = 0. Although the data fidelity grows with the number of
contributing paths, we have not found significant qualitative differences to
justify a presentation of data for 100 000, 200 000, 250 000 and more trajec-
tories. The relaxation time rate dependence on µ is clearly visible as well.
It suffices to analyze differences between three curves for t = 0.2 and/or
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t = 1. We observe a conspicuous lowering of their maxima with the growth
of µ (take care of different scales on the vertical axes in Fig. 2 panels). The
simulated pdfs at t = 10 are practically indistinguishable from an exact ana-
lytical asymptotic pdf (6). The convergence of ρ(x, t) towards ρ∗(x) appears
to be relatively fast irrespective of the chosen µ-driver.

Although our reasoning is definitely path-wise and all data have been ex-
tracted from simulated trajectory ensembles, our focus was on the inferred
dynamics of ρ(x, t). We do not reproduce figures visualizing generic sample
paths. However, we indicate their (paths) distinctive qualitative typicalities,
if one would compare e.g. motion scenarios corresponding to stability indices
µ = 1/2, µ = 1 and µ = 3/2. The structural impact (probability of occur-
rence) of larger against smaller jumps, even on the visual level, conforms
with standard simulations of Lévy stable sample paths (with no forces or
potentials involved), cf. [30].

3.2. Logarithmic confinement
3.2.1. Quadratic Cauchy target

Let us consider a long-tailed asymptotic pdf which is a special α = 2
case of the one-parameter α-family of equilibrium (Boltzmann-type) states,
associated with a logarithmic potential Φ(x) ≡ α ln(1 + x2), α > 1/2, see
[12–15]

ρ∗(x) =
2

π

1

(1 + x2)2
. (8)

The transition rate (2) wφ(z + x|x) for any µ ∈ (0, 2) takes the form

wφ(z + x|x) =
Cµ
|z|1+µ

1 + x2

1 + (z + x)2
. (9)

Simulation results for this case are displayed in Figs. 3 and 4. If we
compare Fig. 3 with Fig. 1, we see the existence of small oscillations in the
asymptotic regime about the value 1/2. Those from Fig. 1 were relatively
small, while those in Fig. 3 are more noticeable. This is related to much
slower decay of transition rates (9) (determined by slow-decaying asymptotic
pdf (8)), as compared to those for the Gaussian case (7).

The second moment of the present ρ∗(x), (8), equals 1 and the conver-
gence towards this value is clearly seen in Fig. 3. This convergence is much
slower than in the Gaussian (harmonic confinement) case which is not a
surprise: (7) and (9) indicate that the present rate of convergence should
be logarithmically slower. Figure 5, quite alike Fig. 2, convincingly demon-
strates a convergence of ρ(x, t) to the asymptotic ρ∗(x). For definitely large
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times around t = 400, ρ(x, t) and ρ∗(x) become practically indistinguish-
able. Similarly to the Gaussian case, the rate of convergence becomes larger
with the growth of µ ∈ (0, 2).
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Fig. 3. Quadratic Cauchy target: Time evolution of the pdf ρ(x, t) second moment
for 200 000 trajectories.

−2 −1 0 1 2

0
1

2
3

0
.5

1
.5

2
.5

3
.5

x

ρ
(x

)

asymptote

0.5

1

400

−2 −1 0 1 2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

ρ
(x

)

asymptote

0.5

1 400

−2 −1 0 1 2

0
.0

0
.2

0
.4

0
.6

0
.8

x

ρ
(x

)

asymptote

0.5

1 400

Fig. 4. Quadratic Cauchy target: Time evolution of ρ(x, t) inferred from 200 000
trajectories for µ = 0.5 (left panel), µ = 1 (middle panel) and µ = 1.5 (right panel).
All trajectories are started from x = 0. Note scale differences on vertical axes.

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

x

ρ
(x

)

asymptote

0.2

3
600

Fig. 5. Cauchy target: Time evolution of pdf ρ(x, t) for µ = 1 and 200 000 trajec-
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3.2.2. Cauchy target

Now, we consider an asymptotic pdf of the form

ρ∗(x) =
1

π

1

1 + x2
. (10)

In this case, the transition rate from x to x+ z reads

wφ(z + x|x) =
Cµ
|z|1+µ

√
1 + x2

1 + (z + x)2
. (11)

We consider the Cauchy driver corresponding to µ = 1. In Fig. 5, we
report the time evolution of the statistically inferred ρ(x, t) for different time
instants. An approach to the asymptotic pdf (10) is clearly seen, together
with a convergence of a half-width to its asymptotic value 1. It can be
shown that the same convergence pattern is valid for cumulative probability
distribution which approaches the asymptotic function F (x) = 1

2 + arctanx
π .

3.3. Locally periodic confinement

To set firm grounds for future research, it is instructive to study our
model for more complicated forms of confining potentials. In view of their
physical relevance, it is appealing to address an issue of confining (trap-
ping) environments with a periodic spatial structure. This problem may be
relevant to the random motion of defects in doped semiconductors and to
phenomena like hopping conductivity. Here, we encounter a major difficulty
with integrability of the Boltzmann-type weighting function exp(−Φ) as for
periodic Φ the corresponding integral is divergent. Periodicity and integra-
bility can here be reconciled by means of locally periodic potentials that
take a definite confining form (harmonic or polynomial) for larger values of
x ∈ R. Let us consider the following asymptotic pdf

ρ∗(x) =

{
1
C e
− sin2(2πx) , |x| ≤ 2 ;

1
C e
−(x2−4) , |x| > 2 ,

(12)

where C = 3.032818 is a normalization constant. The transition rate from
x to x+ z reads

wφ(z + x|x) =
Cµ
|z|1+µ

exp [(φ(x)− φ(x+ z))/2] , (13)

where the potential φ has the following locally confining form

φ(x) =

{
sin2(2πx) , |x| ≤ 2 ;

(x2 − 4) , |x| > 2 .
(14)
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Time evolution of the inferred pdf ρ(x, t) is reported in Fig. 6 for µ = 1.
All sample trajectories were started form x = 0 which corresponds to the
δ(x)-type initial distribution. The probability density spreads out with time
in conformity with the trapping (confining) properties of the locally periodic
enclosure (environment or “potential landscape”). For large running times
t = 400, the trajectory statistics produces data that are indistinguishable
from those for the asymptotic pdf. We have checked that beginning from
about 100 000 trajectories, further accumulation of the trajectories number
like e.g. 200 000 (displayed) and 300 000 (not displayed) for the data statistics
is inessential. In such cases, the curves are almost the same, we merely
improve a fidelity of the statistics.
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Fig. 6. Time evolution of ρ(x, t) inferred from 200 000 trajectories at µ = 1. The
data for 100 000 and 300 000 trajectories (not displayed) do not show qualitative
differences.

4. Conclusions

If a random process does not admit the description in terms of a stochas-
tic differential equation (e.g. Langevin modeling), its direct numerical sim-
ulation becomes impossible by means of existing popular algorithms. In
the present paper, for the first time in the literature, we propose a work-
ing method to generate stochastic trajectories (sample paths) of a random
jump-type process without resorting to any explicit (or numerical) solution
of a stochastic differential equation.

To this end, we have modified the Gillespie algorithm [27, 28], normally
devised for sample paths generation, if transition rates occur between a
finite number of states of a system. The essence of our modification is that
we take into account the continuum of possible transition rates, thereby
changing the finite sums in the original Gillespie algorithm into integrals.
The corresponding procedure for stochastic trajectories generation has been
changed accordingly.
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In other words, here we “extract” the background sample paths of a
jump process, whose pdf ρ(x, t) is to obey the generalized Fokker–Planck
dynamics (1), (2). We emphasize, once more here, that we have focused our
attention on those background jump-type processes that cannot be modeled
by any stochastic differential equation of the Langevin type. However, our
ultimate result was a reconstruction of the pdf dynamics from the path-
wise data. Thus, our modfication of the Gillespie’s algorithm serves two
purposes: (i) getting access to path-wise data and (ii) reconstructing the pdf
ρ(x, t) dynamics, compatible with the master equation in question, without
resorting to other methods of its solution

Although heavy-tailed Lévy stable drivers were involved in the present
considerations, we have clearly confirmed that an enormous variety of sta-
tionary target distributions is dynamically accessible in each particular µ ∈
(0, 2) case. That comprises not only a standard Gaussian pdf, discussed
usually in relation to the Brownian motion like Wiener process. We can
reach Cauchy pdf in terms of any µ 6= 1 driver as well, provided a steering
environment is properly devised. In turn, the Cauchy driver in a proper en-
vironment may lead to an asymptotic pdf with a finite number of moments,
the Gaussian case included [15].

An example of the locally periodic environment has been considered as
a toy model for more realistic physical systems. We mention possible gen-
eralizations of our method to the Brownian motor concept (e.g., Ref. [31]
for recent review) to include a non-Gaussian jumping component. In those
systems, it is the properly tailored periodic “potential landscape” which en-
forces a conversion of a homogenous stochastic process (Brownian motion
for reference) into the directed motion of particles at nanometer scales. It is
closely related to the problem of so-called sorting in periodic potentials [32].
Other problems to be addressed concern ultracold atoms in optical lattices
subject to random potentials [33], which are promising not only from purely
scientific point of view, but also for many technological applications.

We note that the theoretical description of the above mentioned topics
relies essentially on the Langevin-like equation input. Our approach offers
prospects for generalizations, where systems with non-Langevin response to
external potentials may come into consideration, along with more traditional
ones. What we actually need to implement to our version of Gillespie’s
algorithm is the knowledge of jump transition rates of those random systems
only.

Our preliminary work (in progress) shows that an extension of our algo-
rithm to higher dimensions is operational. In particular, the planar case is
worth further analysis, possibly with more realistic “potential landscapes”.
The direct numerical modeling in three-dimensional case can also be im-
portant, for instance, in the investigations of the dynamics of amorphous
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materials. Theoretical studies of their physical properties have a longer
history, starting in the eighties and even earlier [34, 35]. These materials
may comprise conventional glasses (see, e.g., [36]), so-called spin [34, 36]
and orientational (for example, dipole) glasses [35] as well as virtually any
disordered solid-like doped semiconductors. In these substances, the ran-
dom motion of defects can be regarded as real jump-type process to be
modeled numerically. Moreover, if defects have only rotational degrees of
freedom (like spins or electric/elastic dipoles), their dynamics can be well
represented by some effective jump-type process. Such representation can
be complementary to existing Monte-Carlo modeling techniques which for
disordered systems are very computer intensive. For instance, we hope to
tackle the issue of interplay between exponential and long-time (logarith-
mic or stretched-exponential) relaxation in these substances. Also, the 3D
modification of our algorithm can be used in the simulation of switching pro-
cesses in disordered ferroelectrics [37]. Similar fictitious jump-type process
can be assigned to the dynamics of inhomogeneous broadening of resonant
lines [38]. This broadening occurs in condensed matter and/or biological
species, in a number of spectroscopic manifestations such as the electron
paramagnetic resonance, nuclear magnetic resonance, optical and neutron
scattering methods. It arises due to random electric and magnetic fields,
strains and other perturbations from defects in a substance containing the
centers whose resonant transitions between energy levels are studied. Here
also, the standard approaches cannot describe all the details of experiment
and we hope that our algorithm can improve the situation.

Let us, finally, note that in the 3D problems admitting full spherical
symmetry (like spin glasses with random exchange interactions), the problem
becomes reducible to 1D case so that our algorithm might work in its present
form.

P.G. would like to thank Professor I.M. Sokolov for focusing our attention
on the Gillespie’s algorithm. All numerical simulations were completed by
means of the facilities of the Platon — Science Services Platform of the
Polish Pioneer Network.
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