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In this paper, we examine the Ornstein–Uhlenbeck process, i.e. one
of the most famous example of continuous time models. Because many
studies indicate that the classic version of the Ornstein–Uhlenbeck process
is insufficient to description of examined phenomenon, there is a need to
consider various modifications of the conventional process. We introduce
generalized versions of the classic process in which the standard Brown-
ian motion (Wiener process) is replaced by α-stable and variance gamma
processes. We analyze similarities and differences between Gaussian and
considered non-Gaussian versions of the Ornstein–Uhlenbeck process. We
point at testing and estimation procedures which we illustrate by simulated
data. In order to illustrate theoretical results, we examine a real financial
data set in the context of presented methodology.
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1. Introduction

The Ornstein–Uhlenbeck (OU) process is one of the most famous exam-
ple of continuous time models. The classic version of the OU process was
introduced in [1] as a proper system that can be used to model data with
Gaussian and diffusion behavior. From a physical point of view, the process
is a stationary solution for the classic Klein–Kramers dynamics [2, 3]. In
economics, the Ornstein–Uhlenbeck process is known as the Vasiček model
because of the fundamental paper [4], where author proposed to use it as
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a model of interest rate time series. It was also proposed to description
of currency exchange rates and commodity prices [5, 6]. For other applica-
tions, see for example [7]. Moreover, the Ornstein–Uhlenbeck process is very
important in theoretical mathematical and physical studies [8, 9].

However, the assumption of normality in the classic version of OU process
seems not to be reasonable in number of examined phenomena. Therefore,
the Gaussian distribution in the Ornstein–Uhlenbeck model is replaced by
its various modifications. One of the simplest modification is to incorporate
the α-stable distribution [10, 11]. Processes based on stable distribution
are very useful in modeling data that exhibit fat tails. For example, the
classic Ornstein–Uhlenbeck process was extended to the stable case and an-
alyzed in [8] as a suitable model for financial data description. Instead of
using Gaussian or α-stable distribution in the OU process, it is also pos-
sible to introduce other distributions more appropriate for observed time
series. In this paper, we propose to analyze the variance gamma distribu-
tion known also as a generalized Laplace. It has semi-heavy tails, heav-
ier than Gaussian, but well-defined moment generating function categorizes
variance gamma distribution as a light-tailed. This distribution is character-
ized by leptokurticity and possible asymmetry. Those features cause the vari-
ance gamma distribution to be useful, for example in modeling stock prices
[12–14]. Other modifications of the classic OU process one can find, for in-
stance, in [15]. In this paper, we examine the Ornstein–Uhlenbeck process
driven by α-stable and variance gamma distribution. We indicate similari-
ties between the classic OU model and its modified versions, and point at
testing and estimation procedures in considered cases. Motivation of using
α-stable or variance gamma distribution comes from applications in finance,
therefore, we illustrate the theoretical results by analysis of real financial
data.

The rest of the paper is organized as follows: in Sec. 2, we introduce the
classic Ornstein–Uhlenbeck process and its generalized version based on Lévy
processes. In Sec. 3, we consider α-stable and variance gamma processes.
Moreover, we examine modified versions of the classic Ornstein–Uhlenbeck
process based on those distributions. Next section contains description of
testing and estimation procedures for considered models. In Sec. 5, we
examine a real financial data set in the context of presented methodology.
Last section contains conclusions.

2. The classic Ornstein–Uhlenbeck process

In this section, we introduce the classic Ornstein–Uhlenbeck model and
its modification based on Lévy processes. The origin of the classic OU
process was in 1930, when G.E. Uhlenbeck and L.S. Ornstein showed relation
between velocity of a Brownian particle and the normal distribution [1]. Four
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decades later, in the 1970s, Vasiček proposed a stochastic financial model,
where the interest rate was modeled by the OU process [4]. The classic
Ornstein–Uhlenbeck process {Xt}t≥0 is defined as a solution of stochastic
differential equation of the following form

dXt = θ (µ−Xt) dt+ σdBt , (1)

where µ ∈ R, θ > 0, σ > 0, and {Bt}t≥0 is the Brownian motion (called
also the Wiener process). Parameter µ represents a long-term mean of the
OU process, θ is a value of mean-reverting speed, and σ corresponds to the
deviation of stochastic factor [1, 4].

But for real phenomena processes based on the Gaussian distribution
are often insufficient [17–19]. The idea of generalization of the OU pro-
cess is to modify a random factor (i.e. product of σ and the Wiener noise
dBt) in (1). It would affect possibilities of modeling processes with the
non-Gaussian structure. It is known that the Itô’s integral is well-defined
for semimartingales, particularly for Lévy processes [20, 21]. Therefore, a
stochastic differential equation that defines generalized OU process can be
written as follows

dXt = θ (µ−Xt) dt+ dLt , (2)

where {Lt}t≥0 denotes a general Lévy process (i.e. process with independent
stationary increments) while parameters θ and µ have the same meaning as
in equation (1).

3. Non-Gaussian Lévy processes

As it was mentioned in Sec. 2, Gaussian models are insufficient in certain
applications. Therefore, in this section, we introduce two non-Gaussian
Lévy processes which can be used in the generalized version of OU process
presented in (2).

3.1. α-stable Lévy process

A random variable X is said to be α-stable (X ∼ Sα (σ, β, µ)) if its
characteristic function has the following form [23]

φX (z) =

{
exp

{
−σα |z| α

(
1− ıβ (sgn (z)) tgπα2

)
+ ıµz

}
α 6= 1

exp
{
−σ |z|

(
1 + ıβ 2

π (sgn (z)) ln |z|
)
+ ıµz

}
α = 1

,

where 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and µ ∈ R. Two most known instances
of α-stable distribution are Gaussian (α = 2) and Cauchy (α = 1, β = 0).
The main reason of using α-stable noise in stochastic models is a heavy
tail feature, i.e. extreme values are much more probable than for normally
distributed random variables.
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The α-stable Lévy process {Lα,σ,β (t)}t≥0 is a process with independent
and identically distributed increments of Sα

(
σt

1
α , β, 0

)
distribution on the

interval of length t. Therefore, the stochastic differential equation which
defines an α-stable OU process has the following form

dXα,σ,β (t) = θ (µ−Xα,σ,β (t)) dt+ dLα,σ,β (t) .

Three sample trajectories of the process {Lα,σ,β (t)}t≥0 are presented in
Fig. 1. One can see jumps typical for α-stable models. A lower value of α
evokes higher jumps. For more properties of α-stable Lévy processes, see for
instance [10, 11, 23].
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Fig. 1. Sample trajectories of the α-stable Lévy processes with µ = 0, σ = 1 and
different α and β parameters.

3.2. Variance gamma Lévy process

The next Lévy process we introduce is the generalized Laplace motion
(GLM). It is also known as the variance gamma process (VG), named after
its representation as a gamma-subordinated Brownian motion [24]. GLM
is a Lévy process with independent and identically distributed increments
of generalized Laplace distribution (equivalently — variance gamma distri-
bution). We say that GLM is standard if it is a zero-mean process with
variance equal to t on interval of length t. A random variable X has the
generalized Laplace distribution (X ∼ GL (δ, µ, σ, ν)) if its characteristic
function is given by [25]

φX (z) = eıδz
(
1− ıµz + σ2z2

2

)− 1
ν

, σ, ν > 0 , µ, δ ∈ R . (3)
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In the literature, there are several equivalent parameterizations of the VG
distribution. They might allow to control some properties of the distribution
(e.g. moments) or simplify certain estimation methods [25]. The parame-
terization used in formula (3) leads to a compact form of the generalized
Laplace probability density function

fδ,µ,σ,ν (x) =

√
2

(
|x−δ|√
µ2+2σ2

) 1
ν
− 1

2

√
πσΓ

(
1
ν

) exp

(
(x− δ)µ

σ2

)
K 1

ν
− 1

2
(y) ,

where y =
|x−δ|
√
µ2+2σ2

σ2 and Kp (x) is modified Bessel function of the order
of p [26]. The existence of moment generating function causes finiteness of
all moments. Formulas for mean, variance, skewness and kurtosis are as
follows [25]

EX =
µ

ν
+ δ , E (X − EX)3 = µ

√
ν
2µ2 + 3σ2

(µ2 + σ2)
3
2

, (4)

VarX =
µ2 + σ2

ν
, E (X − EX)4 = 6ν − 3νσ4

(µ2 + σ2)2
+ 3 . (5)

In Fig. 2, we show trajectories of GLM with various parameters. One can
observe bigger jumps and longer periods of small fluctuations if kurtosis is
higher (ν = 1). Distribution of the generalized Laplace motion in t ≥ 0 is
GL
(
δt, µ, σ, νt

)
[25]. For zero-mean GLM, we write GLMµ,σ,ν . Now, we can

write stochastic differential equation which defines the Ornstein–Uhlenbeck
process with generalized Laplace structure

dXµ,σ,ν (t) = θ (µ−Xµ,σ,ν (t)) dt+ σdGLMµ,σ,ν (t) .
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Fig. 2. Sample trajectories of the standard generalized Laplace motion with differ-
ent µ and ν parameters.
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Figure 3 contains trajectories of both considered here OU processes with
the non-Gaussian structure. We can see a higher fluctuation of the sample
mean in the α-stable case than for other processes. The sample mean of
the generalized Laplace OU process behaves very similar to the mean of the
classic OU process even though GLM has jumps and Brownian motion has
not.
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Fig. 3. Sample mean and trajectories of generalized OU processes with θ = 0.6,
µ = 0: α-stable (top panel) with α = 1.5, σ = 1, β = 0.6 and standard generalized
Laplace with µ = 0.06, ν = 0.36 (bottom panel). Dashed (red) lines denote sample
means obtained from 1000 trajectories of those processes.

4. Testing and estimation

In this section, we describe estimation procedure for generalized OU pro-
cesses. Moreover, we test this procedure by using Monte Carlo simulations.

If observations are equally spaced in domain (e.g. time domain), we
treat them as a time series. We mention the discrete version of OU process
is simply autoregressive (AR) time series of the order of 1. In order to
check if the data represents autoregressive time series, we should examine
its stationarity and order of autocorrelation. For testing stationarity, we
propose the quantile lines test [27, 28]. This procedure is described in the
next paragraph. This method can be used only when lots of trajectories are
available, for example, when the experiment is repeated many times and, as
a result, we obtain many realization of the same process. In the case of one
trajectory, we can use, for example, the test for regime variance described
in details in [29]. The order of autoregressive model can be examined by
using autocorrelation (ACF) and partial autocorrelation functions (PACF).
In the case of an α-stable distribution, the ACF and PACF are not defined
but even in this case those functions can be useful in the problem of AR
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model order detection [30]. The next step is to estimate parameters µ and
θ in (2) using the sample mean for µ and the Whittle estimator for θ [31].
Another method of estimating θ is the Yule–Walker method [16]. It involves
finiteness of variance of analyzed time series, hence we cannot apply it to
the α-stable OU process.

Once estimators of µ and θ from OU model are calculated, we check
if residuals can be treated as a vector of independent random variables.
Finally, we can fit parameters of suspected distributions. In this paper, we
examine three distributions: Gaussian, α-stable and generalized Laplace.
Final step is to check how effectively information criteria choose the best
model.

In order to check this procedure, we have simulated 5000 trajectories of
each of OU processes with the same parameters µ and θ and length equal to
4000. Values of parameters are: µ = 0, θ = 0.85 (OU process parameters),
σ = 3.6× 10−3 (classic OU process parameter), α = 1.6, β = −0.1 (α-stable
OU process parameters) and µ = −0.0001, σ = 0.0033, ν = 0.84 (OU
process with zero-mean GL noise parameters).

As it was mentioned, there is a visual test for stationarity called “quantile
lines”. N trajectories of the process {Xt}t∈T correspond to N realizations
of a random variable Xt for each t. To verify if distributions of each Xt are
the same, one can calculate their sample quantiles and check if they change
in time. Plotting quantiles of each Xt leads to so-called quantile lines. See
Fig. 4 for quantile lines plotted for 3 different OU processes with 5000 trajec-
tories each. One can see parallelism in every plot which means stationarity
in every case. Large deviation of extreme quantiles estimators is caused by
quantity of sample trajectories. The next step of checking the estimation
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Fig. 4. Quantile lines obtained from 5000 trajectories of classical (left panel), gen-
eralized Laplace (center panel) and α-stable OU processes.
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procedure is to examine ACF and PACF. Expected behavior of PACF for
AR(1)-type time series is a spike on the lag 1 and zeros on higher-order lags.
ACF should decrease exponentially [32]. ACF and PACF for one trajectory
of each process are presented in Fig. 5. If the data represents AR(1)-type
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Fig. 5. ACF (bottom) and PACF (top) for Gaussian (left panels), GL (center
panels) and α-stable OU (right panels) processes.

time series, one can estimate parameters of the OU process given in (2). We
can firstly estimate µ as a sample mean of one trajectory and subtract it
from the data. Thus we have constructed zero-mean time-series for which
the Whittle estimator of θ can be applied. Figure 6 shows deviation of
estimators of µ and θ calculated for all of three analyzed OU processes.
Semi-heavy tail of the GL distribution does not affect more deviation than
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Fig. 6. The boxplots of µ (left panel) and θ (right panel) estimated from 5000
sample trajectories of Gaussian (1), GL (2) and α-stable OU (3) processes.
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in the light-tail Gaussian case. The α-stable OU process is characterized by
much higher deviation of µ̂, but behavior of θ̂ is specific. Extreme values are
more scattered, but interquartile range is smaller than in other cases. For
every trajectory of three processes, we have constructed residual series. One
series of each type is presented in Fig. 7. Even in one sample trajectory of
length 4000, the α-stable OU process is characterized by sporadic large val-
ues of residuals. The generalized Laplace residuals have more frequent, but
smaller deviations. Recall that variance of α-stable is infinite and variances
for noise of GL and Gaussian structures are the same but in the case of VG
distribution, we observe leptokurticity.
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Fig. 7. Residuals obtained from simulated trajectories of Gaussian (top panel),
generalized Laplace (middle panel) and α-stable (bottom panel) OU processes.

When 5000 vectors of residuals from every of three types OU processes
are obtained, we can fit their distributions. For the Gaussian and GL distri-
bution, we use maximum likelihood estimators (MLE) [26]. Starting points
for parameters δ, µ, σ and ν in GL distribution are calculated using the
method of moments (MM) [25]. Estimators of α, σ, β and µ in α-stable
distribution are calculated using the regression method [23] implemented in
MFE Toolbox [33].

Once we have all of parameters estimated, we compute values of the
Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) [34, 35] for every of 15 000 simulated trajectories and check if minimal
values are realized by the true model. As Table I shows, information criteria
are faultless when residuals are GL or α-stable distributed and we check fit
of three analyzed distributions. If the proper model is Gaussian, minimum
values of AIC and BIC are obtained by fitted Gaussian model in 4733, GL
model in 260 and α-stable model in 7 of 5000 cases. This indicates that the
estimation procedure used here is almost unerring.
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TABLE I

Efficiency of information criteria.

Proper model

Gaussian GL α-stable

Gaussian 94.66% 0% 0%

Fitted model GL 5.20% 100% 0%

α-stable 0.14% 0% 100%

5. Applications

In order to check usage of models examined in Sec. 4, we fit them to a
real-life financial data. The data represents S&P500 index stock quotes after
every trading hour from the period 05.06.2009–09.20.2011 and contains 4160
quotes (Fig. 8). Since it looks non-stationary, we decided to compute hourly
log-returns (Fig. 9). After this transformation, neither trend nor periodicity
can be observed.
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Fig. 8. S&P500 data from 05.06.2009 to 09.20.2011 (4160 observations).
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Fig. 9. Hourly log-returns of dataset.



Ornstein–Uhlenbeck Process with Non-Gaussian Structure 1133

The first step is to examine ACF and PACF. Plots of these functions
show possibility of fitting OU process to the data (Fig. 10). One can observe
spike of PACF for lag 1 with almost zeros in subsequent lags. ACF for lag
1 is about 0.15, so further values should be close to 0.
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Fig. 10. ACF (left panel) and PACF (right panel) of S&P500’s hourly log-returns.

Estimated values of µ and θ are 7.32×10−5 and 0.85, respectively. Vector
of residuals and corresponding ACF and PACF are shown in Fig. 11. See
no autocorrelation there. Moreover, vector of residuals appears very similar
to vector of GL residuals and completely different than α-stable (Fig. 7).
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Fig. 11. Vector of residuals (bottom panel) with ACF (top left panel) and PACF
(top right panel) of it.

Table II shows estimated parameters for each of three analyzed types of
noise with Kolmogorov–Smirnov statistics and corresponding p-values [36].
At the significance level 0.05, we cannot reject hypothesis of two distributions
of residuals: generalized Laplace and α-stable. Other tests have to be used
for distribution identification due to large differences between α-stable resid-
uals (Fig. 7) and residuals obtained from S&P500 data (Fig. 11). Quantile–
quantile (QQ) plots show better fit of the GL distribution (Fig. 12). The
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TABLE II

Estimated parameters with Kolmogorov–Smirnov test results.

Parameter value K–S statistic value p-value

N (µ, σ)
µ 0 0.0694 7.3629× 10−18

σ 0.003619

GL (δ, µ, σ, ν)
δ 0.000149

0.0196 0.0801µ −0.000125

σ 0.003256

ν 0.841245

Sα (σ, β, µ)

α 1.623035

0.0139 0.3972σ 0.001882

β −0.131476

µ −0.000003
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Fig. 12. QQ plots of α-stable (left panel), generalized Laplace (center panel) and
Gaussian (right panel) distributions fitted to residuals.

α-stable distribution has much heavier tails. For comparison, QQ plot for
fitted (and rejected by Kolmogorov–Smirnov test at the level 0.05) Gaussian
distribution shows its unacceptably light tail. The last comparison criteria
we use are AIC and BIC. Obtained values are shown in Table III. Indis-
putably, the best model for hourly log-returns of S&P500 is the Ornstein–
Uhlenbeck process with generalized Laplace distribution.
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TABLE III

Information criteria — Akaike information criterion (AIC) and Bayesian informa-
tion criterion (BIC). Lower value means better fit.

AIC BIC

N (µ, σ) −34939.7464 −34908.2762
GL (δ, µ, σ, ν) −35552.5235 −35521.0532
Sα (σ, β, µ) −35480.1272 −35448.6569

6. Conclusions

In this paper, we have examined one of the most famous example of the
continuous time models, i.e. the Ornstein–Uhlenbeck process. Because the
classic version of the process seems not to be reasonable in the number of
examined phenomenon, then we have introduced its modification. We have
combined the well-known process with the α-stable and variance gamma
distributions. We have pointed at the similarities and differences between
examined systems. Moreover, we have presented in details testing and es-
timation procedures. Motivation for using α-stable and variance gamma
distributions comes from financial applications thus the theoretical results
we have illustrated by the analysis of real financial time series. We believe
that proposed models can be useful tools in the advanced real data analysis.
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