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It is shown that ergodicity breaking and anomalous Brownian motion
are not limited to composite and/or disordered systems, but can be gen-
erated also in simple fluids or solids with time-dependent and/or spatially
nonuniform temperature T (t, r). A few examples of simple arrangements
easy for experimental realization are discussed in detail. Proposed measure-
ments will enable also the observation of transitions from ergodic to weakly
nonergodic and from normal to anomalous diffusion. Similar behaviour can
be expected in inflationary systems with time-dependent metric, and in ex-
panding gases.
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1. Introduction

Ergodic theory is a cornerstone of the whole statistical physics. There-
fore, the detailed investigations of conditions which lead to ergodicity break-
ing, and recognition of systems in which the ergodic hypothesis may cease
to hold are important.

In the recent literature [1–4], the process X(t) is called weakly nonergodic
when

lim
tf→∞

〈δ2X(t, tf )〉 6=
〈
X2(t)

〉
, (1)

(throughout this paper X(t = 0) = 0) with

δ2X (t, tf ) =
1

tf − t

tf−t∫
0

ds[X(s+ t)−X(s)]2 , t� tf , (2)
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relating two positions of the process (walker) separated by a time lag t (for
more details cf. [4] and references therein).

Weak ergodicity breaking (WEB) was discussed mainly in the context
of anomalous diffusion (AD) [2], though recently it was shown that WEB is
typical for much wider class of cumulative-growth processes, both stochastic
and deterministic [4]. Experimentally, WEB was found in composite dis-
ordered systems: various glasses, cytoplasm of living cells, and like [3, 5],
which seems to imply that AD and WEB are the properties of complicated
structures.

It was shown in a recent paper [6] that anomalous diffusion (Brownian
motion) can be generated and measured also in much simpler systems, easier
to deal with and better suitable for various experimental manipulations. In
this note, we want to discuss in detail the WEB in such systems.

2. Time-dependent temperature

Consider the Brownian motion (BM) in a medium with variable tem-
perature [7]. The thermal (white Gaussian) noise ξ(t) driving the Brownian
particle is characterized by temperature- and density-dependent intensity

〈ξ(t)〉 = 0 , 〈ξ(t)ξ(s)〉 = σ2ξ (T, ρ)δ(t− s) . (3)

Let σ2ξ be changing in time through T = T (t), with ρ = const. For
an ideal medium σ2ξ ∼ T (fluctuation-dissipation theorem), and we may
write σ2ξ (T ) = (T/T0)σ

2
0(T0), where T0 > 0 is some reference temperature,

e.g., T (t = 0); however, in real systems, such dependence can be more
complicated, depending on details of interparticle interactions. In spatially
nonuniform systems, the noise intensity will also depend on the (coarse-
grained) position r, σξ = σξ(r, t) (time-dependent diffusion coefficient was
used recently for the description of random walks in porous materials [8]).

The Brownian motion driven by the noise with σξ = σξ(t) is weakly
nonergodic. Consider the process called scaled Brownian motion (SBM)
sXβ(t) and defined by the Langevin equation [9]

d

dt
sXβ(t) = tβξ0(t) , β > −1/2 , (4)

with formal solution

sXβ(t) =

t∫
0

uβξ0(u)du , (5)

where ξ0 is the thermal noise at constant reference temperature T0, with
dispersion σ20(T0). Define now the scaled thermal noise η(t) = tβξ0(t). Then,

〈η(t)〉 = 0 , 〈η(t)η(s)〉 = σ2η(t)δ(t− s) , ση(t) = tβσ0 , (6)
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and
d

dt
sXβ(t) = η(t) . (7)

It was shown in [4] that SBM is weakly nonergodic. This proof can be
easily extended for any Brownian motion driven by thermal noise ξ(t) with
time-dependent intensity σξ(t) = φ(t)σ0 (in fact, this follows directly from
the formulas (2.2)–(2.3) of [4]; for the sake of completeness, we present here
the specialized calculations). Namely, for

X(t) =

t∫
0

ds φ(s)ξ(s) , (8)

we get from Eqs. (1), (2) and (8):

〈
X2(t)

〉
= 2

t∫
0

dsD(s) , (9)

2D(t) = σ20φ
2(t) = σ2ξ (t, T (t)) , (10)

〈δ2X (t, tf )〉 =
2

tf − t

tf−t∫
0

ds

s+t∫
s

duD(u)

=
1

tf − t

tf−t∫
0

ds
[〈
X2(s+ t)

〉
−
〈
X2(s)

〉]
(11)

which is weakly nonergodic except forD = const., i.e., for the Wiener process
(with constant temperature), and maybe for some special combinations of
the spatial and temporal dependence of D(r, t) (i.e., T (r, t) — cf. Eq. (27)
below with γ = −2β for an example).

When the heating function φ(t) is proportional to tβ (SBM case), this
setup enables the realization of both WEB, and anomalous diffusion. Other
forms of φ(t) will lead to non-diffusional (i.e., with dispersion not scaling
algebraically with time) behaviour of the (weakly nonergodic) Brownian
motions.

For example, let φ(t) = 1 +A sin(ωt), A2 < 1. This gives [6]〈
X2(t)

〉
= 2DAt + 4D0

A

ω

[
1− cos(ωt)− A

4
sin(2ωt)

]
, (12)

where DA = D0(1 + A2/2), 2D0 = σ20(T0), which tends asymptotically to
normal diffusion with higher effective diffusion coefficient (enhanced diffu-
sion or accelerated Brownian motion) [6]. When this result is averaged over
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phase ϕ (ωt→ ωt+ ϕ), the oscillating part vanishes, but the enhancement
remains. The same effect will appear for anomalous Brownian motions, and
for other forms of driving φ(t), either periodic or random. Note that when
the asymptotic temporal average of the changes of temperature is zero, as
in Eq. (12), we have a kind of pumping of energy into the Brownian particle,
analogous to e.g. ionic nanopumping in asymmetric nanopores [10].

The spatial analog of this situation could be realized experimentally in
the so-called bistable ballast resistor [11].

Inserting Eq. (12) into Eq. (11), one gets

〈δ2X (t, tf )〉 = 2DAt +
4D0A

2

ω2(tf − t)
{sin [ω(tf − t)]− sin (ωtf )}

− D0A

2ω2(tf − t)
{cos [2ω (tf − t)]− cos(2ωtf )} . (13)

Thus,
lim
tf→∞

〈δ2X (t, tf )〉 = lim
t→∞

〈
X2(t)

〉
, t� tf , (14)

i.e., the process Eq. (12) is asymptotically ergodic.

3. Spatially nonuniform temperature

When the heating/cooling of the system is spatially inhomogeneous, the
position- and time-dependent temperature profile T = T (r, t) has to be
calculated from the Fourier–Kirchhoff equation (FKE)

∂T

∂t
= Λ

∂2T

∂r2
+ S(r, t) , (15)

where Λ is the heat conduction coefficient and S — heat source. The analytic
solution of this equation can be found for very few special cases. On the other
hand, the FKE can be used for finding the space- and time-dependent heat
flow S(r, t) necessary for the attaining the prescribed temperature profile
T = T (r, t).

Analytic treatment of the Brownian motion with σξ(T (t, r)) is possible
for a few special cases only (cf. [6]). Let T (r, t) = T0φ

2(t)ψ2(r). Then,

dX(t)/dt = φ(t)ψ(r)ξ0(t) . (16)

Assume that the reaction of the Brownian particle on the stochastic “kicks”
is retarded (Stratonovich interpretation of stochastic integrals [12]). Then,
Eq. (16) can be written in the form

dY (t, r)/dt = φ(t)ξ0(t) , dY (t, r) = dX(t, r)/ψ(r) . (17)



Anomalous Weakly Nonergodic Brownian Motions in Nonuniform . . . 1141

Note that for stationary systems, φ = const., the process {Y (t)} becomes
the standard Wiener process {W (t)}.

The properties of the original process {X(t)} can be obtained by the
inversion of the transform (17), which again can be done analytically for
some special cases only.

Consider, for simplicity, the one-dimensional case r = X. The formal
solution of Eq. (16) reads

X(t) =

t∫
0

dsψ (X(s))φ(s)ξ(s) . (18)

Making use of the Stratonovich interpretation of stochastic integrals, we get

〈
X2(t)

〉
= 2D0

t∫
0

ds
〈
ψ2 (X(s))

〉
φ2(s) . (19)

Analogous calculations of the time average, Eq. (2), give

〈δ2X(t, tf )〉 =
1

tf − t

tf−t∫
0

ds
〈
[X(s+ t)−X(s)]2

〉

=
2D0

tf − t

tf−t∫
0

ds

s+t∫
s

du
〈
ψ2 (X(u))

〉
φ2(u) . (20)

Thus, even for the stationary case φ = 1, the process {X(t)} is ergodic only
when the second integral in Eq. (20) 6= f(s), which is fulfilled for ψ = const.,
but besides maybe only for some very special choices of the temperature
gradients. This proves that in most realistic cases the processes {X(t)} in
the media with spatial temperature gradients are weakly nonergodic.

Further analysis depends on the forms of the functions φ(t) and ψ(r).
Simplest and easiest for experimental realization spatially nonuniform

system is the stationary sample (e.g. rod or fluid-filled cylinder) of length L,
with isolated walls, kept at constant temperature T (X = 0) = T0 and
T (X = L) = TL, i.e., with stationary temperature gradient T (X) = T0+aX,
a = (TL − T0)/L. Then S(r, t) = 0 for 0 < X < L, and the Langevin
equation reads

Ẋ(t) = ξ(t) = [T (X)/T0]ξ0(t) = (1 + bX)ξ0(t) , b = a/T0 , (21)
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i.e.,

X(t) =
1

b

[
eaW0(t) − 1

]
, W0(t) =

t∫
0

dsξ0(s) , (22)

W0(t) being the Wiener process driven by thermal noise ξ0(t) at tempera-
ture T0, i.e., 〈W 2(t)〉 = 2D0t.

Thus [13],〈
X2(t)

〉
=

1

b2

〈[
eaW0(t) − 1

]〉
=

1

b2

(
e4a

2D0t − 2ea
2D0t + 1

)
. (23)

The Wiener process W0(t) is ergodic, however,

〈δ2X(t, tf )〉 =
1

tf − t

tf−t∫
0

ds [X(s+ t)−X(s)]2

=
1

tf − t

tf−t∫
0

ds
〈
e2aW0(s+t) − 2eaW0(s+t) eaW0(s) + eaW0(s)

〉

=
〈
X2(t)

〉 e4a2Do(tf−t) − 1

4a2D0
.

The latter results from the following

〈
eaW0(s+t) eaW0(s)

〉
=

〈
exp

2a

s∫
0

dzξ0(z)

 exp

a
s+t∫
s

dzξ0(z)


〉

= exp
{
a2D0(4s+ t)

}
from the fact that i.i.d. white thermal noises ξ0(t) at disjoint time intervals
are uncorrelated, and from the properties of averages of Gaussian-distributed
random series [13].

Thus, although the Wiener process W0(t) is ergodic, the process X(T ),
Eq. (22) is weakly nonergodic.

Brownian motion in a more general nonstationary and nonuniform sys-
tem with (X ∈ [−L,+L], L → ∞), initial condition T (X = 0, t = 0) =
T0 = const., X(t = 0) = 0, and T = T0φ

2(t)ψ2(X) = T0(t+ τ)
2β(|X|+a)2γ ,

τ > 0, a > 0 was analyzed in [6]. In this case, the heating function and the
solutions are

S(X, t)/T0 = ψ2(X)dφ2(t)/dt− Λφ2(t)d2ψ2(X)dX2

= 2(|X|+ a)2γ−2 (t+ τ)2β−1
[
(|X|+ a)2 − Λ(t+ τ)

]
, (24)
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Y (t) = sgn(X(t))

{
µ(|X|+ a)1−γ , γ 6= 1 ,

a ln(|X(t)|/a+ 1) , γ = 1 ,

X(t) =

{
sgn(Y (t)/µ)[|Y (t)/µ|µ − a] , γ 6= 1 ,

sgn(X(t))a[eY (t)sgn(X(t)) − 1] , γ = 1 ,

where µ = 1/(1 − γ), and sgn(f) denotes the sign of f (sgn(0) = 0). Note
that the initial condition X(t = 0) = 0 implies Y (t = 0) = 0. This gives the
dispersions 〈

Y 2(t)
〉
= 2Dβ(t+ τ)α0 , α0 = 2β + 1 , (25)

and for tf →∞, t� tf

〈δ2Y (t, tf )〉 → 2Dβt t
α0−1
f , (26)

where Dβ = D0/α0. Thus [13], for γ 6= 1〈
X2(t)

〉
= 2D2(t+ τ)α − 2aD1(t+ τ)α/2 + a2 ,

α = µα0 = (2β + 1)/(1− γ) ,
2D2 =

(
2Dβ/µ

2
)µ

Γ (µ+ 1/2)
√
2/π ,

2D1 =
(
2Dβ/µ

2
)µ/2

Γ ((µ+ 1)/2)
√

2/π , (27)

and for γ = 1〈
X2
〉
= a2 [exp {4Dβ(t+ τ)α0} − 2 exp {Dβ(t+ τ)α0}+ 1] . (28)

Note that γ = 1 implies parabolic increase of temperature T (X) with dis-
tance from the center. On the other hand, when β+ γ > 1/2, we get α > 2,
i.e., superballistic Brownian motion. These results show that the Brown-
ian motion accelerates exponentially in stationary systems with parabolic
increase of temperature from the center towards the ends of a long (for-
mally, infinitely long) cylinder. This means also that the logarithm of the
dispersion of X(t) behaves asymptotically as the normal diffusion. Linear
T (X) = T0(|X| + a) results in the parabolic acceleration of the Brownian
motion (ballistic motion).

Direct calculations of δ2X(t, tf )〉 cannot be done analytically [14]. How-
ever, to prove that the original process {X(t)} is weakly nonergodic, it is
sufficient to prove that the ensemble and time averages of any function of
this process are not equal. Therefore, the result (25)–(26) for the aver-
ages of Y (t) = f(X(T )) proves the weak ergodicity breaking of diffusional
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processes in systems with spatially nonuniform and/or time-dependent tem-
perature T (t, x). Note, however, that for γ = −2β we get α = 1, i.e., the
process {X(t)} becomes the normal ergodic diffusion.

The results discussed in this paper show that the anomalous nonergodic
transport is not restricted to composite systems, but can be easily gener-
ated in almost any body. Therefore, by (uniform) heating of the system
with changes of temperature proportional to tβ , one can measure directly
the weakly-nonergodic anomalous diffusion (both subdiffusion for −1/2 <
β < 0, slowing-down the heating, and superdiffusion for 0 < β < 1/2,
accelerating the heating).

A corollary to this implies that the Mandelbrot–Van Ness (cf. [4]) frac-
tional Brownian motion BH(t) which is ergodic, will become weakly noner-
godic in systems with varying temperature. Viz., the MBM of [4] can be
written as BH driven by η(t), Eq. (6)

BH(t) =
1

Γ (H + 1/2)

 t∫
−∞

(t− u)H−1/2η(t;T (t))dt

−
0∫

−∞

(−u)H−1/2η(t;T (t))dt


=

1

Γ (H + 1/2)

 t∫
−∞

(t− u)H−1/2φ(u)dW (u)

−
0∫

−∞

(−u)H−1/2φ(u)dW (u)

 , (29)

where dW (t) = ξ(t, T0)dt, andW (t) is the Wiener process at temperature T0.

4. Macroscopic diffusion

Macroscopic diffusion is described by the Ficks’ law

∂c(r, t)

∂t
= ∇{D(r, t)∇c(r, t)} , (30)

where c(r, t) is the concentration of the diffusing substance, and D(r, t) =
Dmacro is the macroscopic diffusion coefficient. For diluted ideal systems,
Dmacro can be identified with the used above D = Dmicro being the micro-
scopic diffusion coefficient for corresponding Brownian motion which implies
that Dmacro(T ) ∼ T . Such identification can be done “because the process
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of diffusion is the result of superposition of Brownian motions of different
molecules of diffusing substance” [15]. For dense real systems, Dmacro will
depend not only on temperature and density, but also on the concentrations
of all species constituting the considered system.

For spatially uniform systems, when D = D(T (t)) = φ(t)D0 and D
does not depend on concentration, the substitution dτ = φ(t)dt implies [16]
that the shape of spatial concentration profile c(r, t;D(T (t)) = c(r, τ ;D0)
remains unchanged, with the rate of establishing this profile depending now
on τ instead of t.

When D depends on time t and position r through its dependence on
concentration c only, i.e., D = D(r, t; c) = D(c(r, t)), the analytic solutions
can be found (for some cases) by the Boltzmann transform y = r

√
t/2, which

givesD(c(r, t)) = χ(y)D0(c) (for details cf. [16]). In this case, Eq. (30) reads

−2y · ∇yc(y) = ∇y
{
D0(c)χ(y)∇yc(y)

}
. (31)

5. Final remarks and conclusions

It was shown here that weak ergodicity breaking can be detected in
simple systems with nonstationary or/and nonuniform temperature. One
may expect that similar effects should appear in systems driven by exter-
nal forces [17], and in systems with changing density (the latter through
the density dependence of the diffusion coefficients), either in inflationary
spaces (spatially uniform systems) or in expanding/contracting gases (spa-
tially nonuniform systems).

The results and assertions described in this paper (and in [6]) can be
checked experimentally. This can be done by standard measurements of the
time-dependence of the dispersion 〈X2(t)〉 and — when possible — by the
measurements of the single trajectories of Brownian particles. The latter
would give direct experimental verification of nonergodic character of SBM,
and of other processes of this type. Note that the same can be done with
other time characteristics of the speed of heating/cooling, including natural
exponential cooling by radiation. It is important (and obvious) in such
measurements that the time-scales of heating/cooling and of diffusion should
be of the same order of magnitude. Note that when the cooling/heating is
spatially uniform, there will appear no temperature gradients through the
system, and we shall get the system in a quasi-adiabatically shifting thermal
equilibrium.

Nonuniform heating can be realized in almost any system, by almost
any means. However, one should remember that in such systems the tem-
perature gradients ∇T lead to appearance of thermoosmotic flows caused
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by additional concentration gradients (∇c)T (Ludwig–Soret effect [18, 19])

(∇c)T = −ST c0(1− c0)∇T , (32)

where c = c(X) is the particle number (mole) fraction of the diffusing species
(i.e., traced Brownian particle), c0 — its equilibrium value, and ST — the
so-called Soret coefficient. The contamination of measured diffusional flows
by this effect can be reduced when either ST or c0 are small enough. On
the other hand, thermoosmotic flows can be subtracted from measured dif-
fusional flows — the values of the Soret coefficients are known for simple
mixtures and solutions.

No thermoosmotic flows will appear in systems with spatially uniform,
changing in time temperature. In this case, experimental realizations of bulk
uniform heating were discussed in [6]. For the sake of completeness, let us
repeat: (i) heating of solutions in water (or in other dielectric solvents and
their mixtures containing -OH groups — fats, alcohols, and like) can be real-
ized in microwave ovens; (ii) other options which also can be easily realized
experimentally are (quasi) one-and two-dimensional systems: monomolecu-
lar films on heated/cooled support, and thin flat layers or long thin rods or
fluid-filled cylinders, cooling or heating e.g. by emitting or absorbing radia-
tion, or immersed in a heat bath.

As we have mentioned, the analytic treatment of the Brownian motion
in systems with spatial temperature gradients is in most cases very difficult
(or just impossible). Even for the realistic situation: constant in time point
heating, i.e., for

S(r, t) =

{
AT ∗ , r = 0 , ∀t , T ∗ = const. ,
0 , r 6= 0 , ∀t ,

when the temperature profile resulting from the FKE is Gaussian (for r 6= 0)
the analytic inversion of the transform (17) cannot be done. Nevertheless,
one may expect that the behaviour of the Brownian particles in such simple
experimentally arrangements should be similar, at least in a qualitative fash-
ion, to the cases discussed in this paper. On the other hand, although the
analytic calculations of dispersions (both ensemble and temporal) are too
difficult, it is possible to find the averages of some functions of X(t), e.g. the
inversions Y (t) of the process X(t), or some functions of these inversions.
The ergodicity-breaking by the transformed process Y (t) will be sufficient
to prove the ergodicity-breaking by the original process X(t), however, the
ergodic behaviour of Y (t) does not imply the same for X(t).
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