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In this paper, we propose a stochastic process with space dependent
force and diffusion coefficients. We show that PDF of this process satisfies
a generalized tempered fractional Fokker–Planck equation. Thus we obtain
a complete description of subdiffusion with tempered α-stable waiting-times
and with space dependent force and diffusion. Based on derived stochastic
representation, we simulate paths of the underlying process. Moreover, we
approximate the solution of the proposed system via Monte Carlo methods.
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1. Introduction

Usual description of diffusion is based on Fokker–Planck equation, which
describes probability density function (PDF) of the moving Brownian par-
ticle. However, many experiments confirm, that dynamics of complex sys-
tems is not satisfactorily described by this Gaussian process. Let us mention
here diffusion on fractals [1], transport of fluid in porous media [2], single
molecule spectroscopy [3], and many more (see [4] and references therein).
Mentioned here physical systems concern the so-called anomalous diffusion.
In contrary to normal, anomalous diffusion is characterized by nonlinear de-
pendence of centered second moment. Thus we can distinguish three cases.
When

〈
x2
〉
∝ tγ , where γ > 1, we consider a superdiffusive process and

γ = 1 characterizes normal diffusion. The case of γ < 1 is characteristic for
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subdiffusive processes, which are a main subject of this paper. Moreover,
we assume finite moments waiting times (with finite second moment jump
size) scenario to avoid special cases discussed in [5] when the long waiting
times can be hidden by long jumps.

In order to properly describe anomalous diffusion phenomenon, several
authors introduced fractional Fokker–Planck equations (FFPE), describing
PDF of anomalously diffusing particles [4]. For the case of space-dependent
force F (x), a FFPE was proposed in [6] (see also [4]). Its stochastic rep-
resentation was found in [7] and this result revealed that subdiffusion is a
combination of two independent mechanisms. First is the standard diffusion
represented by a Itô process X(τ), while the second is the waiting time dis-
tribution represented by the so-called inverse α-stable subordinator Sα(t),
where α ∈ (0, 1). This heavy-tailed waiting-time distribution is responsible
for trapping events (periods when the particle stays motionless).

Recent experiments show, however, another interesting phenomenon.
Namely, in many physical systems, we observe a transition from the sub-
diffusive motion (γ < 1) in short times to the normal (γ = 1) motion in long
times. This dual behavior was empirically confirmed in a number of sys-
tems. One should mention here random motion of bright points at the solar
photosphere [8], motion of molecules inside living cells [9–11], and transport
of passive tracers in heterogeneous media [12]. To model such situations
instead of α-stable, the inverse tempered α-stable subordinator Sα,λ(t) was
proposed [13–15]. This approach resulted in derivation of tempered version
of FFPE. Thus the complete description of tempered subdiffusion in the case
of space dependent force was given.

In this paper, we propose a stochastic process driven by inverse tempered
α-stable subordinator and subordinated Brownian motion whose PDF sat-
isfies tempered version of FFPE with space dependent force and diffusion
coefficient. Thus we obtain a new description of subdiffusion in the case
of tempered α-stable waiting times. This will extend the results presented
recently in [7, 16, 17].

This article is structured as follows. In section 2 we give a short de-
scription of tempered α-stable processes and their inverses. We propose a
model of tempered subdiffusion with space dependent force and diffusion
coefficient. We show that PDF of the introduced model satisfies a tempered
version of FFPE with some more general integro-differential operator. In
section 3 we present an algorithm of simulating its sample paths. By the
application of Monte Carlo methods, we also approximate solutions of the
generalized FFPE. Section 4 contains the conclusions.
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2. Tempered FFPE and its stochastic representation

In order to capture short time subdiffusive and long time normal charac-
ter of motion, one needs to modify α-stable heavy-tailed waiting times. The
first step in this direction was first proposed in [18]. Their idea was based on
cutting of the heavy tails and was further extended to smoothly truncated
stable laws in [19]. The complete description of a class of tempered α-stable
distributions was given by Rosiński in [20]. His modification is based on the
Lévy measure of α-stable process. As a result, the class of tempered distri-
bution has finite moments of all orders, but, at the same time, it resembles
stable laws in many aspects (see [20] for more details).

Let us define strictly increasing tempered α-stable Lévy process Tα,λ(τ)
via its Laplace transform

E
(
e−uTα,λ(τ)

)
= e−τ((u+λ)α−λα) .

Here, the constant λ > 0 is the tempering parameter and 0 < α < 1 is the
stability parameter. Let us observe that if λ ↘ 0, we obtain the Laplace
transform of one-sided positive stable distribution. The PDF of Tα,λ has a
simple form ce−λxfα(x), where fα(x) is the PDF of one-sided stable distri-
bution and c > 0 is the normalizing constant [20]. Based on the above, we
define the inverse tempered α-stable subordinator by

Sα,λ(t) = inf{τ > 0 : Tα,λ(τ) > t} , t ≥ 0 .

The process Sα,λ(t) serves as a new operational time of a system. In Fig. 1
(top panel) we present a trajectory of the process Sα,λ(t). One observes the
constant intervals distributed according to the tempered α-stable law. This
intervals represent the events when the particle stays motionless.

Before we formulate our main result, let us present two important theo-
rems, which will be used later.

Theorem 2.1. Let Sα,λ(t) be the inverse tempered α-stable subordinator,
and l(t) be an integrable function, then

E

 t∫
0

l(Z(Sα,λ(τ)))dSα,λ(τ)

 =

t∫
0

M(t− τ)E [l (Z(Sα,λ(τ)))] dτ , (1)

where the memory kernel M(t) is defined via its Laplace transform

M̂(k) =

∞∫
0

e−ktM(t)dt =
1

(k + λ)α − λα
(2)
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and the process Z(t) is given by

dZ(t) = F (Z(t))dt+
√
D (Z(t))dB(t) . (3)

Proof of this theorem is given in Appendix A.
With the help of Theorem 2.1, we can formulate the following corollary

the proof of which is similar as in [21].

Corollary 2.1. For any continuous function f(·) we have the following
equality

E

 t∫
0

f(τ)l (Z(Sα,λ(τ))) dSα,λ(τ)

 =

t∫
0

f(τ)ΦτE [l (Z(Sα,λ(τ)))] dτ ,

where Φt is the integro-differential operator defined as

Φtf(t) =
d

dt

t∫
0

M(t− y)f(y)dy , (4)

where the memory kernel M(t) is defined in Eq. (2) and Z(t) is given by
Eq. (3).
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Fig. 1. Sample realizations of the inverse tempered α-stable subordinator Sα,λ(t)

(top panel) and the process X(t), Eq. (8). The parameters are α = 0.8 and λ = 0.1.
F (x) = 0.01x1/6 and D(x) = 0.06x1/4. The constant intervals in the trajectory of
the process X(t) represent the periods of stagnation of subdiffusive particle.
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Now, let us show that PDF q(τ, t) of the process Y (t) =
∫ t

0 f(t1)dSα,λ(t1)
satisfies the following equation [22]

∂

∂t
q(τ, t) = −f(t)

∂

∂τ
Φtq(τ, t) . (5)

This will extend the results presented in [23]. Equation (5) was introduced
in [22] within generalized master equation approach, and it describes the
response of a continuous time random walk system to a time-dependent
field f(t). Authors showed that the moments

mn(t) =

∞∫
−∞

τnq(τ, t)dτ ,

of the distribution q(τ, t) satisfy the following recursive form

mn(t) = n

t∫
0

f(t1)Φt1mn−1(t1)dt1 . (6)

The formal assumption is that m0 = 1.
Thus we can formulate the following theorem.

Theorem 2.2. Let the process Y be defined as

Y (t) =

t∫
0

f(t1)dSα,λ(t1) , t ≥ 0 (7)

and the function f(·) be integrable. Then the PDF of Y satisfies the tempered
fractional Fokker–Planck equation (5), with time dependent force f(·).

Proof of this theorem is given in Appendix B.
In the next theorem, we give our main result which extends previous

considerations in [14], to the case when drift coefficient is space dependent.
Following [14], we propose a form of a stochastic process X(t) in the case
when the force and diffusion coefficient are space dependent. We also prove
the corresponding tempered Fokker–Planck equation for PDF p(x, t) ofX(t).

Theorem 2.3. Assume that inverse tempered α-stable subordinator Sα,λ(t)
is independent of the standard Brownian motion B(τ). Then the PDF of the
following process

X(0) = 0 ,

dX(t) = F (X(t)) dSα,λ(t) +
√
D (X(t))dB(Sα,λ(t)) , (8)
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is the stochastic solution of the tempered fractional Fokker–Planck equation

∂

∂t
p(x, t) =

[
− ∂

∂x
F (x) +

1

2

∂2

∂x2
D(x)

]
Φtp(x, t) . (9)

Here, the initial condition is p(x, 0) = δ(x) and the functions F (x), D(x) ∈
C∞((−∞,∞)).

Let us discuss briefly the proposed model. First, we observe that force
and diffusion coefficient are space dependent. When D = 1 we obtain results
presented in [14]. Moreover, we observe that when λ ↘ 0 the integro-
differential operator (9) is proportional to the fractional Riemann–Liouville
derivative, thus we recover results derived in [7] in the case when D = 1.
The proof of this theorem is presented in Appendix C.

3. Approximation of sample paths

Here, we will show how to simulate sample paths of the tempered subd-
iffusion process X(t). In the first step, we need to simulate the trajectory of
the inverse subordinator Sα,λ(t). As was shown in [14], the approximation
process can be written as

Sα,λ,∆t(t) = (min{n ∈ N : Tα,λ(n∆t) > t} − 1)∆t , (10)

where ∆t is the step length and t ∈ [0, T ]. To obtain accurate approxi-
mation we need to take small ∆t [23]. From the form of (10), we infer
that to simulate the process Sα,λ,∆t we only need to generate the values
Tα,λ(n∆t), n = 1, 2, . . . Since the process Tα,λ(t) is a Lévy process this can
be accomplished by method of summing up the increments

Tα,λ(0) = 0 , (11)
Tα,λ(n∆t) = Tα,λ((n− 1)∆t) + Ti , (12)

where Ti are independent, tempered α-stable random variables. The algo-
rithm of generating Ti was proposed in [27], one can find it also in [14]. For
completeness, we include it in the Appendix D. In the second step, we finally
approximate the process X(t) by the classical Euler scheme [26]

X(0) = 0 ,

X(tk) = X(tk−1) + F (X(tk−1)) ∆τk +
√
D (X(tk−1))(∆τk)

1/2ξk ,

where ξk are i.i.d. standard normal random variables ξk ∼ N(0, 1) and
∆τk = Sα,λ(tk)− Sα,λ(tk−1).

In Fig. 1, we present sample realizations of the time-change process
Sα,λ(t) and X(t). Observe the characteristic subdiffusive constant periods
visible on the plots. In Fig. 2 we obtained the solution of (9) via Monte
Carlo methods.
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Fig. 2. Approximated solution of Eq. (9). One can observe that when λ → 0 we
approximate solution of the FFPE with pure α-stable waiting times. The parameter
α = 0.8, F (x) = x, and D(x) = 0.06x1/4.

4. Conclusions

It is confirmed by many experiments that tempered processes play an
important role in description of such complicated phenomenon as subdiffu-
sion. In this paper, we have extended the model of tempered subdiffusion
proposed in [28] to the case of space dependent force and diffusion coeffi-
cient. We found that our model is driven by the inverse tempered α-stable
subordinator and Brownian motion. We derived the corresponding tempered
FFPE equation for the PDF of the considered system. We also presented
an algorithm of simulating of the sample paths of the underlying process.
We compared our results with the case of purely α-stable waiting times [21].
We believe that presented here methodology will be useful in description of
anomalous diffusion phenomenon.

Appendix A

Proof of Theorem 2.1.

Let us denote by g(τ, t) the PDF of the process Sα,λ(t) and by v(z, t)
the PDF of the process Z(t) given by Eq. (3). Moreover, we assume that
both Z(t) and Sα,λ(t) are independent. From [14] we know that the Laplace
transform of g, has the form

ĝ(τ, k) =

∞∫
0

e−ktg(τ, t)dt =
(k + λ)α − λα

k
e−τ [(k+λ)α−λα] . (A.1)
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Next, we have

E

 t∫
0

l(Z(Sα,λ(τ)))dSα,λ(τ)

 = E

 Sα,λ(t)∫
0

l(Z(τ))dτ


=

∞∫
0

g(τ, t)

τ∫
0

∞∫
−∞

l(z)v(z, t1)dzdt1dτ . (A.2)

Now, the Laplace transform Lt→k of the last line of (A.2) yields

L


∞∫

0

g(τ, t)

τ∫
0

∞∫
−∞

l(z)v(z, t1)dzdt1dτ


=

1

k

∞∫
0

∞∫
−∞

e−τ [(k+λ)α−λα]l(z)v(z, τ)dzdτ =
1

k

∞∫
−∞

l(z)v̂(z, [(k + λ)α − λα])dz .

(A.3)

Taking the Laplace transform of the right-hand side (RHS) of Eq. (1).

L


t∫

0

M(t− τ)

∞∫
0

∞∫
−∞

l(z)v(z, s)g(s, τ)dzdsdτ


=

1

k

∞∫
0

∞∫
−∞

e−s[(k+λ)α−λα]l(z)v(z, s)dzds =
1

k

∞∫
−∞

l(z)v̂(z, [(k + λ)α − λα])dz .

(A.4)

Since in the Laplace domain both sides of Eq. (1) are equal, the result of
Eq. (1) follows from uniqueness of the Laplace transform.

Appendix B

Proof of Theorem 2.2.

First, let us show that the moments of the process Y coincide with (6).
By the change of variable formula, we can get t∫

0

f(t1)dSα,λ(t1)

n

= n

t∫
0

 t1∫
0

f(t2)dSα,λ(t2)

n−1

f(t1)dSα,λ(t1) .
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Thus, performing n iterations, we can get that t∫
0

f(t1)dSα,λ(t1)

n

= n!

t∫
0

t1∫
0

. . .

tn−1∫
0

f(t1) . . . f(tn)dSα,λ(tn) . . . dSα,λ(t1) .

(B.1)
Now, following the same procedure as in [23], we introduce the following
measure on the [0,∞), by Π((s, t]) = Sα,λ(t) − Sα,λ(s), where t > s ≥ 0.
Let {C(t)}t≥0 be the Cox process directed by Π. C(t) is the renewal process
with renewal function

u(t) = E[C(t)] = E[Sα,λ(t)] =

t∫
0

M(t1)dt1 .

From [23], we have

E[dSα,λ(t1) . . . dSα,λ(tn)] =

n∏
i=1

u′(ti − ti+1)dti ,

where t1 > t2 > . . . > tn > tn+1 = 0. Combining the above and (B.1), we
obtain

rn(t) = E

 t∫
0

f(t1)dSα,λ(t1)

n
= n!

t∫
0

t1∫
0

· · ·
tn−1∫
0

n∏
i=1

f(ti)M(ti − ti+1)dtn . . . dt1 .

Thus we have

rn(t) = n

t∫
0

f(t1)

t1∫
0

M(t1 − t2)
d

dt2
rn−1(t2)dt2dt1

= n

t∫
0

f(t1)
d

dt1

t1∫
0

t1−t2∫
0

M(s)
d

dt2
rn−1(t2)dsdt2dt1

= n

t∫
0

f(t1)Φt1rn−1(t1)dt1 .
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This shows that mn(t) coincides with rn(t). Therefore, to prove that the
PDF of the process Y (t) satisfies (5) it is enough to show its characteristic
function is holomorphic at a neighborhood of zero. In such case, the mo-
ments determine uniquely the distribution. Assume that t0 > 0. We have
that

rn(t0) = E

 t0∫
0

f(u)dSα,λ(u)

n ≤ MnE
[
Snα,λ(t0)

]

= Mn

∞∫
0

xn−1P (Sα,λ(t0) > x) dx

= Mn

∞∫
0

xn−1P (Tα,λ(x) < t0) dx

= Mn

∞∫
0

xn−1P
(
e−uTα,λ(x) > e−ut0

)
dx

≤ Mneut0
∞∫

0

xn−1e−x[(u+λ)α−λα]dx

= Mn eut0Γ (n)

[(u+ λ)α − λα]n
,

where M = sup0≤s≤t0 |f(s)|. In consequence, if we set |z| < M−1 and u
large enough, we get that the series

∑∞
n=1 rn(t0)zn/n! is convergent. There-

fore, indeed, the moments determine the distribution (see [24], chapter VII,
Section 3). Thus, the PDF of Y (t0) is equal to the solution q(τ, t0) of (5).

Appendix C

Proof of Theorem 2.3.

The main idea of the proof of Theorem 2.3 comes from the paper [21].
We use the fact that characteristic function determines the distributions [25],
thus we need to show that characteristic function of the processX(t) satisfies
Fourier transformation of Eq. (9) with respect to the space variable x. We
use the assumption that processes Sα,λ(t) and Z(t) are independent, more-
over [23], we have that X(t) = Z(Sα,λ(t)). The process Z(t) is given by (3).
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From subdiffusive Itô formula [29] in tempered case, we have

deikX(t) = ikeikX(t)F (X(t)) dSα,λ(t)− k2

2
D (X(t)) eikX(t)dSα,λ(t)

+ikeikX(t)
√
D (X(t))dB(Sα,λ(t)) . (C.1)

Thus, we get

E
[
eikX(t)

]
−E

[
eikX(0)

]
= E

ik Sα,λ(t)∫
0

F (Z(τ)) eikZ(τ)dτ


−E

k2

2

Sα,λ(t)∫
0

D (Z(τ)) eikZ(τ)dτ


= E

ik t∫
0

F (Z(Sα,λ(t1))) eikZ(Sα,λ(t1))dSα,λ(t1)


−E

k2

2

t∫
0

D (Z(Sα,λ(t1))) eikZ(Sα,λ(t1))dSα,λ(t1)

 .
Noting that the Fourier transform of function f(x) is defined as

F{f(x)}(k) =
∫ +∞
−∞ f(x)eikx, one can observe that E

(
F (X(t))eikX(t)

)
=

F{F (x)p(x, t)}, where p(x, t) is the PDF of X(t). Similar thing happens
with E

(
D(X(t))eikX(t)

)
. Taking the first derivative w.r.t. t, we can get

∂

∂t
E
[
eikX(t)

]
= ikΦtE

[
F (X(t)) eikX(t)

]
−k

2

2
ΦtE

[
D (X(t)) eikX(t)

]
, (C.2)

which is identical with the Fourier transform of Eq. (9) with initial condition
E
[
eikX(0)

]
= 1. This leads to the conclusion that PDF of X(t) satisfies

Eq. (9).

Appendix D

In order to complete the presentation, we show the method of simulating
tempered α-stable random variables. This method was proposed in [27].
Thus to simulate the tempered random variable T > 0 with the Laplace
transform E(e−uT ) = e−∆t((u+λ)α−λα), we follow three steps:



1160 J. Gajda

(I) Generate exponential random variable E with mean λ−1;

(II) Generate totally skewed α-stable random variable S using the for-
mula [30]

S = ∆t1/α
sin
(
α
(
J + π

2

))
cos(J)1/α

(
cos
(
J − α

(
J + π

2

))
W

)(1−α)/α

, (D.1)

where, J is uniformly distributed on [−π/2, π/2], andW exponentially
distributed with mean 1;

(III) If E > S put T = S, otherwise go to step (I).
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